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Abstract—Dynamic spectrum management (DSM) is an im-
portant technique for mitigating crosstalk noise in multi-user
digital subscriber line (DSL) environments. Until now, most of the
proposed algorithms for DSM have been designed solely for the
purpose of bitrate maximization. These algorithms assume a fixed
maximum total power and neglect the energy consumption in
DSL modems. However, since recently there is a strong interest in
the DSL field to reduce energy consumption as shown, e.g., by the
European Commissions’ code of conduct on energy consumption
of broadband equipment.

In contrast to traditional DSM, this paper will show how DSM
can be used for minimizing the energy consumption. We will
formulate a global optimization problem for energy minimization
and discuss several of its peculiarities compared to the current
DSM problems. Furthermore, we derive an iterative, dual-based
and semi-distributed algorithm for its local solution, which we call
energy-efficient spectrum balancing (EESB). The performance
of the algorithm is evaluated through simulations, which show
similar results to optimal schemes. In addition, EESB achieves
substantial energy savings that can be exploited by adapting the
transmit powers to users’ bitrate demand.

Index Terms—DSL, dynamic spectrum management, energy
efficiency, dual relaxation.

I. INTRODUCTION

Energy-efficiency has always been an important design
criterion for wireless systems. However, it has only recently
become an issue for wired communication systems. One
example of how it is address is the “EU Code of Conduct on
Energy Consumption of Broadband Equipment” which exists
since July 2006 with the goal to half the expected electricity
consumption of broadband equipment by 2015 [1]. Reducing
the power consumption in wired communication systems is
now also on the agenda of various standardization bodies,
e.g. for Ethernet [2] and ETSI [3].

Up to now no systematic effort has been pursued to optimize
the energy efficiency in DSL systems. The only attempt so far
to reduce the energy consumption was the introduction of low-
power modes in the ADSL standard, unfortunately they have
largely failed due to concerns about instability in the operator’s
network. When a modem returns from a low-power state and
transmits at full power again it will introduce time-varying
crosstalk that can not be handled by currently deployed ADSL
systems.

This work has been supported in parts by the Austrian Government and the
City of Vienna within the competence center program COMET.

There are of course many ways to tackle the problem
of energy minimization in DSL, e.g., through increasing the
effectiveness of framing or implementing more appropriate
congestion control mechanisms. However, in this paper we
will restrict ourselves to the physical layer and even further to
the problem of controlling the transmit power.
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Fig. 1. a) An example of a power distribution in a current VDSL transceiver,
b) dependency of normalized energy consumption in a line driver (LD) on
the maximum transmit power for 17 MHz bandwidth.

From power consumption measurements of today’s state-
of-the-art VDSL2 chipsets we know that the line driver (LD)
accounts for up to 60 %, cf. Figure 1(a). From Figure 1(b) we
can conclude that a reduction in transmit power yields addi-
tional energy savings by reducing the power consumption in
the LD. Thus, by optimizing the power used for transmission
we can significantly lower the DSL system power consumption
as a whole. With this potential for energy savings in mind
we will introduce dynamic spectrum management (DSM) as a
means to achieve energy-efficient transmission in DSL. Up to
now DSM has mainly been utilized to maximize the bitrates by
adapting the transmit power spectral density (PSD) of modems
to the actual network environment. In recent years a number of
algorithms based on dual-decomposition have been proposed
for DSM which achieve optimal or near-optimal performance,
e.g. in [4], [5], [6], [7], [8].

In this paper we formulate a global optimization problem
for energy minimization and discuss several of its peculiarities
compared to the current DSM problems. We will show that
when convex approximations and dual decomposition are



applied jointly, certain care has to be taken during algorithm
design in order not to run into infeasibility problems. Further-
more, we derive an iterative, dual-based and semi-distributed
local solution algorithm, which we call energy-efficient spec-
trum balancing (EESB). The performance of the algorithm
is evaluated through simulations, which show similar results
to optimal schemes. In addition EESB reveals the substantial
energy savings that can be exploited by adapting the transmit
power to users’ bitrate demand.

The remainder of this paper is organized as follows: In
Section II we present the system model and introduce the used
notation. In Section III a generic DSM problem formulation
for energy minimization in DSL is presented for which we
derive a distributable, local optimization algorithm in Section
IV. Next we exemplify our discussion in Section V through
numerical simulation results obtained in a realistic VDSL
scenario. Section VI finally summarizes our contributions and
contains conclusions for future work.

II. SYSTEM MODEL

We consider a DSL system consisting of U interfering lines
sharing a single cable binder, where synchronized discrete
multitone modulation (DMT) is employed at each modem and
frequency division duplexing is used to separate transmission
directions. These assumptions allow us to model the C carriers
as orthogonal subchannels and neglect near-end crosstalk,
yielding a far-end crosstalk limited system due to the typically
comparably low background-noise levels. We assume a central
unit, e.g. a spectrum management center at the colocated end
of the cable bundle, has full knowledge of the magnitudes
of crosstalk couplings and that no interference cancelation
is performed. Thus modems regard crosstalk solely as noise,
which for a sufficiently high number of users can be well
approximated by a Gaussian distribution. Considering continu-
ous bit-loading and two-dimensional signal constellations, the
achievable rate per DMT-symbol for user u ∈ U on carrier
c ∈ C, where U = {1, . . . , U} and C = {1, . . . , C}, is thus
given by
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where Puc is the power assigned to carrier c of user u, P\uc
is the vector of powers on carrier c of all users except user
u and SINRuc denotes the corresponding signal-to-interference
ratio
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Herein Huu
c and Hui

c are the squared magnitudes of the
direct channel transfer coefficient of user u and the cross-
channel transfer coefficient from user i to user u on carrier
c, respectively. Constant Γ denotes the SNR-gap to capacity
depending on modulation, targeted bit-error rate, coding and
noise-margin and Nu

c represents the total received background
noise power on carrier c and line u, including white thermal
noise, alien-crosstalk and radio-frequency interference.

III. MATHEMATICAL PROGRAM FORMULATION

In the following we state a mathematical program formu-
lation for the problem of optimal DSM for power-reduction
in DSL. We refer to the following as the global optimization
problem

minimize
P�0

∑
u∈U

wu
∑
c∈C

Puc (GOP)

subject to
∑
c∈C
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(
Puc ,P

\u
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)
≥ Ru, ∀u ∈ U ,

where P = [(P1)T , . . . , (PU )T ]T , Pu = [Pu1 , . . . , P
u
C ]T

denotes the power-assignment over carriers of user u, wu is
a weighting of user u, where wu ≥ 0,

∑
u∈U wu = 1, and

Ru is the target-rate for user u in [bits/DMT-symbol]. The
total used energy per DMT-symbol can then be calculated
as 1/fs

∑
u∈U

∑
c∈C P

u
c , where fs denotes the DMT-symbol

frequency. Therefore, assuming the power allocation and the
environment does not change over time, we are minimizing
the transmit-energy consumption of the system. Further note
that we aim for solving a nonconvex and continuous problem,
where in reality we are restricted to a discrete bit-allocation
over carriers. However, a suboptimal discrete solution can be
recovered, e.g. by rounding Puc , ∀c ∈ C down to power-levels
associated with feasible bit-allocations [6].

We also note the similarity of (GOP) to the problem of
margin-maximization in DSL [9], where however the (un-
weighted) objective is to maximize the (minimum) gap to
capacity while still transmitting with full power. Hence the
solution is considering higher crosstalk than we do in our
formulation and is therefore suboptimal w.r.t. sum-power.
Furthermore, we see that this formulation is complementary to
the standard DSM problem formulation for rate maximization
[6]. There one maximizes the weighted sum-rate subject to
a fixed power budget of each user, while here the objective
is to minimize the weighted total power-consumption w.r.t. a
target-rate constraint for each user.

The theoretical idea behind the weighting in problem (GOP)
is to allow us to trace the boundary of a “power-region”. By
adjusting weights we can steer the optimization to achieve
(if existent!) boundary-points which additionally fulfill certain
per-user total-power restrictions. This becomes possible since
by decreasing a single user’s weight one will never increase
other users’ sum-powers at a solution of (GOP). An outline
of a proof of this is given in the appendix, where also the
concept of a power-region is explained in more detail. Note
that this idea can be seen complementary to the notion of a
rate-region in the standard DSM rate maximization problem
[6], where one traces its boundary to satisfy (if feasible) certain
additional minimum-rate demands.

IV. ENERGY-EFFICIENT SPECTRUM BALANCING (EESB)

The first step in the derivation of our EESB algorithm for
solving problem (GOP) is a convexification of the nonconvex
constraints. Based on this we will later define a local opti-
mization algorithm. An adequate approximation r̃uc , u ∈ U ,



c ∈ C of the corresponding rate-functions ruc is given by [7]
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where
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Since this function underestimates the real rates, any solution
of the approximated problem is also feasible w.r.t. the original
one. Note however that the approximated problem turns out to
be convex only after the variable transformation P = eP̃, see
[7] for a detailed description. While the objective in (GOP) is a
sum of per-user sum-powers and the positivity constraints sim-
ply constrain P to the (decomposable) positive orthant, it is the
set of approximated constraints

∑
c∈C r̃

u
c (P) ≥ Ru, ∀u ∈ U

which couples the optimization over users. Full dual relaxation
of these constraints does not change this fact, since although
the problem becomes decomposable into per carrier problems
similar to as shown in [6], the optimization of power-allocation
on each carrier has to be performed jointly over all users. This
fact motivates the application of a slightly different decompo-
sition concept, known as optimality condition decomposition
(OCD) [10]: The key idea is to form U subproblems by only
doing a partial relaxation w.r.t. other-users’ rate constraints,
using Lagrange multipliers λi, i ∈ U \ u. This allows us
to spare the need of doing the update of dual variables in a
centralized fashion. Furthermore, each user u only optimizes
over Pu and assumes the primal variables Pi, i ∈ U \ u
and dual variables λi, i ∈ U \ u to be fixed. The u’th user
subproblem constructed in this manner can then be written as

minimize
Pu�0
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c∈C
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∑
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)
≥ Ru, (USP)

where the bars over primal and dual variables emphasize that
they are kept constant during the course of a single user’s
optimization. The name of the applied decomposition comes
from the fact that the Karush-Kuhn-Tucker (KKT)-conditions
remain unchanged w.r.t. those of the original global problem
(GOP). Note further that user u also considers other-user
approximation-parameters αic,∀i ∈ U \ u,∀c ∈ C to be
fixed. In other words, we only improve the approximation
of ruc , ∀c ∈ C in each step of the following iterative local
optimization scheme. This is in strong contrast to [7] where
both, primal and dual optimization aim for the optimum
of an approximation which is held fixed during one sweep
of a nonlinear Gauss-Seidel update [11]. For convergence
reasons we also deviate from the standard OCD in [10]
in that we replace the Jacobi-like update scheme [11] with
non-full optimization by a nonlinear Gauss-Seidel algorithm

with full per-user optimization. At this point we are free
in selecting a method to optimize (USP) which gives us
(e.g. approximately) optimal Pu and a Lagrange multiplier λu
associated with the rate constraint of user u. We select standard
Lagrangian relaxation to facilitate a simplifying decomposition
of the problem into C per-carrier problems. Furthermore, a
simple gradient-based fixed-point update of Puc , ∀c ∈ C is
readily derived. Applying the above mentioned transformation
P = eP̃, the thereby convex Lagrangian of subproblem u has
the form

L̃u(P̃u, λu) =
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which notably also contains user u’s rate constraint. Further
derivation of L̃u(P̃uc , λu) w.r.t. P̃uc where αuc and βuc are
considered as constants, equation to zero and reformulation
yields the fixed-point update

Puc =
λuα

u
c

log(2) wu +
∑

i∈U\u

λ̄iᾱi
cH

iu
c∑

j∈U\{i,u}
Hij

c P̄
j
c + Hiu

c Pu
c + Ni

c

.

(7)

As explained in [7] the right-hand-side in (7) is a “standard
interference function” which guarantees convergence and non-
negativity of Puc for Puc ≥ 0, ∀ u ∈ U . Note however that
in practice due to numerical rounding αuc may become zero
which would prevent any further update. To circumvent this
problem it is sufficient to reset αuc to a small positive value
in case it becomes zero. We update the multiplier λu using a
simple and efficient subgradient algorithm with adaptive step-
size: On convergence of the above described local optimization
scheme we obtain a subgradient gu(Pu) of L̃u(P̃u, λu) w.r.t.
λu in the form of

gu(Pu) = (Ru −
∑
c∈C

r̃uc (Puc , P̄
\u
c , α

u
c , β

u
c )) |Pu=P̂u , (8)

where P̂u = arg minPu L̃u(P̃u, λu).
Algorithm 1 summarizes the EESB scheme, where the

exact dual-update with step-size adaption is explained in
detail. Therein ε denotes a small positive constant, Λ and ∆
are initial values for λu and step-size e.g. found through some
fast 1-D search as in [12], and {·}+ denotes the projection
onto the positive orthant. It is important to note that the
scheme from [7] is not directly applicable to problem (GOP).
The above described partial update of the approximation
becomes necessary since, unlike in the complementary rate
maximization problem, we would otherwise update the
multipliers using approximated rates – a process which could
lead to heavy oscillations in dual variables or even prohibit
convergence due to infeasibility of the target-rates w.r.t. the
approximation, depending on the quality of the approximation



Algorithm 1 EESB Scheme
1: High-SNR initialization of the approximation:
αuc = 1, βuc = 0, ∀u ∈ U ,∀c ∈ C

2: Initialize Puc = ε, ∀u ∈ U ,∀c ∈ C
3: repeat
4: for u = 1 to U do
5: Initialize λu = Λ, δ = ∆, σ̃ = 0
6: repeat
7: repeat
8: Update Pu according to (7)
9: Refresh αuc , βuc , ∀c ∈ C according to (4) and (5)

10: Refresh r̃uc (Puc , P̄
\u
c , αuc , β

u
c ), ∀c ∈ C as in (3)

11: until user-local primal convergence∗

12: Compute subgradient gu according to (8)
13: Subgradient update λu = {λu + δgu}+
14: Step-size update δ = UpdateStepsize(gu, δ, σ̃)
15: until user-local dual convergence∗ and feasibility
16: end for
17: until global dual convergence∗

18: Function δ = UpdateStepsize(gu, δ, σ̃)
19: Calculate σ = sign(gu)
20: if σ 6= σ̃ then
21: δ = δ/2, σ̃ = σ
22: end if
∗ While there are various stopping-criteria in practice, for our simulations
we use the change in PSD between iterations as a primal- and the change in
dual-variables between per-user iterations and Gauss-Seidel sweeps as local
and global dual-convergence criteria respectively.

at the current state. However, since we update the parameters
of the approximation after each local optimization step in
Line 9 of Algorithm 1, the multipliers are in effect updated
using the real achieved rates. Contrarily, in [7] they apply the
same approximation in a framework of rate maximization.
There a primal/dual solution of the approximated Lagrangian
meets the sum-power constraints and is hence also feasible
w.r.t. the original problem. We also found that the proposed
dual subgradient-update using an adaptive step-size in practice
clearly outperforms simple bisection-search. This comes from
the local optimization by each user of a nonconvex function
L̃u(P̃u, λu), a fact not altered by the applied stepwise
convexification. Bisection-search however discards half of the
search-space in each iteration, which can clearly be wrong
if the calculated subgradient is not the one at the primal
optimum of the Lagrangian.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section we present several simulation results demon-
strating our EESB algorithm, showing the potential of energy
minimization in DSL and illustrating the concept of an achiev-
able power-region from Section III. We consider a VDSL
upstream scenario as depicted in Figure 2 with two users
located at 300m (user 1) and 600m distance (user 2) from

Fig. 2. VDSL upstream scenario.

Fig. 3. Spectral power distribution for target-rates R = [45, 45]T Mbps.

the deployment point, respectively. This is a near-far problem
and therefore more challenging than the typical downstream
situation. Furthermore, the restriction to a 2−user scenario is
only due to ease of illustration while in general EESB can deal
with any number of users. The simulation parameters were set
according to the ETSI VDSL standard [13]. Correspondingly
we used an SNR-gap Γ = 12.8 dB and band plan 997
which defines two upstream bands. Taking alien noise into
account we added ETSI VDSL Noise A to the background
noise at −140 dBm/Hz. The results were computed using the
sequential EESB algorithm with the sequence of user-updates
starting with user 1.
In Figure 3 we show as an example the spectral power dis-

tribution obtained by EESB for target-rates R = [R1, R2]T =
[45, 45]T Mbps. While on the longer line the power is allocated
over lower frequencies, the shorter line also uses the higher
ones. Intuitively this is due to the lower attenuation at low
frequencies and the fact that the FEXT-crosstalk from the
shorter line into the longer one is already decreasing with
frequency at higher frequencies.
Figure 4 shows the minimum (unweighted) sum-power at-

tained by EESB as a function of target-rates. Regarding the
dependency of the rate-region in the complementary problem
on total power, we expect this function to be convex – an intu-
ition supported by our simulations. The exponential increase of
sum-power as seen in Figure 4 reveals the dramatic potential
for energy saving in DSL which could possibly be exploited
through adaptation to instantaneous rate requirements, i.e.,
through use of cross-layer information. It can be seen that by
reducing the rates by 20% from [50, 50] (indicated by point
A) to [40, 40] (indicated by point B) the total consumed power
for transmission reduces by as much as 95.9%! While here we
did not distinguish between the total-power spent by each user



Fig. 4. Minimum sum-power achieved by EESB over target-rates, showing
the energy-saving potential in DSL through rate-adaptation.

Fig. 5. Power-regions of EESB for target-rates R2 = 40Mbps and R1

between 42Mbps and 52 Mbps (sum-powers P tot
1 , P tot

2 of user 1 and 2
respectively; marked points resulted from equal weights for each user).

separately, we plot in Figure 5 the power-regions of EESB for
target-rates constant for user 2 at 40 Mbps and increasing for
user 1 in steps of 2 Mbps from 42 Mbps up to 52 Mbps.
As expected from Section III the curves are approximately
convex for lower target-rates and most choices of weights, and
their distance to each other seems to increase exponentially.
However, we observed that for increasing target-rates and
unbalanced weighting it becomes more and more challenging
to achieve meaningful curves due to the increasing sensitivity
of primal solutions on changes of Lagrange multipliers. Note
that taking the point of each curve obtained by applying equal
weights (cf. Figure 5) we have the points in Figure 4 for the
corresponding target-rates. Theoretically the points according
to equal weights are sum-power optimal. In Figure 5 though
we recognize that EESB implicitly puts preference on user 1
for the chosen update-sequence, yielding shifted equal-weight
points. We see that still the weights in (GOP) allow one to
privilege certain users. However, this strategy seems to become
increasingly hard to implement for higher target-rates due to

Fig. 6. Comparison to a “guided” optimal spectrum balancing (OSB)
algorithm, showing the small sub-optimality of EESB (< 0.5% in rate/user).

the increasing nonconvexity of the problem.
The suboptimality of iterative schemes such as iterative

spectrum balancing (ISB) [4], [5] in comparison to optimal
spectrum balancing (OSB) [6] is well-known [5]. To investi-
gate the suboptimality of EESB, in the following we compare
it to the original OSB-algorithm which uses a discrete grid-
search over bit-allocations per user and carrier. We guide OSB
by setting the maximum sum-power constraints according to
the solution obtained by EESB for target-rates R̃ = [R̃1, R̃2]T .
Next we search the boundary of the rate-region for a point R
achieving the rate-relation R̃1/R̃2. Given that at this point
the maximum sum-power is used we allow us to compare
the thereby achieved rates R to the above target-rates R̃.
The thereby obtained points are plotted in Figure 6, where
we see that for most target-rate combinations OSB obtains
solutions very similar to our target-rates. More precisely, the
suboptimality of EESB in terms of per-user rates was found
to be less than 0.5% at the examined target-rate combinations.
Comparing the two different problems however it is obvious
that one would have to exhaustively search for all possible
maximum sum-power combinations in order to get a picture
of the OSB-optimal solution. Although EESB performs sub-
optimally, as seen in Figure 5, we find that EESB’s target rates
are almost identical to the OSB solution when OSB is guided
to use the sum-powers found by EESB.

VI. CONCLUSIONS

In this paper we have formulated a global optimization
problem (GOP) aiming at minimizing total energy consump-
tion in DSL while still adhering to certain rate requirements.
We have proposed an energy-efficient spectrum balancing
(EESB) algorithm for solving this GOP, which has specifically
been developed to cope with practical convergence issues
emerging in realistic scenarios. It relies on a decomposition
of the problem among users with respect to primal and dual
updates. Furthermore, EESB allows for a semi-distributed
implementation.

Comparing EESB to a “guided” optimal spectrum balanc-
ing (OSB) solution, we find the solutions similar. We have



Fig. 7. Schematic illustration of the “power-region” P , the optimal achievable
set S ⊆ bd(P) and the influence of weights w on users’ sum-powers Ptot.

furthermore shown through simulations that EESB is able
to achieve substantial energy savings by adapting to varying
user demands. Future work in this line of research includes
investigating other optimization techniques going beyond pure
dual decomposition and finding ways to make dual-based
DSM algorithms applicable in practice.

APPENDIX

To render the idea of a “power-region” introduced in Section
III more precisely let P tot

u =
∑
c∈C P

u
c and denote Ptot =

[P tot
1 , . . . , P tot

U ]T . The achievable power-region P of the system
for given target-rates can then be defined as

P = {Ptot |
∑
k∈C

ruk

(
Puk ,P

\u
k

)
≥ Ru,

Puc ≥ 0,∀u ∈ U ,∀c ∈ C}. (9)

Due to the nonconvexity of the full Lagrangian of our problem,
P is in general nonconvex and we are not able to find every
point on the boundary of P , bd(P), by changing the weights
w = [w1, . . . , wU ]T in (GOP), cf. Figure 7. More precise, the
set of achievable boundary points S can be described as

S = P ∩ bd(conv(P)), (10)

where conv(·) denotes the convex hull. We also know that
in the extreme cases where all weights are zero except that
of user u we get kind of a “waterfilling solution” for user
u where all other users allocate any power to reach their
target-rates with minimal disturbance to user u. Interpreting
conv(P) as the epigraph of one of the U possible U − 1
dimensional functions bu(P tot

i , ∀i ∈ U\u) = P tot
u defined over

S, where u ∈ U , we can conclude that bu(P tot
i , ∀i ∈ U \ u)

is in general noncontinuous and monotonously decreasing.
Hence, making a step from a point P̄tot ∈ S to a point
P̃tot ∈ S by increasing P̄ tot

u of a single user u will not increase
P̄ tot
i , i ∈ U \ u. By looking at the KKT-conditions of a

modified problem of (GOP) where we assume an additional
sum-power constraint

∑
c∈C P

u
c ≥ P̃ tot

u and a multiplier ν ≥ 0
associated with it, we see that the increase of user u’s total-
power is equivalent to a decrease of wu by ν∗, where ν∗ is
the optimal Lagrange multiplier. Hence we see that decreasing

a single user’s weight will never increase P tot
i , i ∈ U \ u at

a solution of (GOP). Figure 7 illustrates this idea, where we
have w̄ = [w̄1, w̄2]T , w̃ = [w̃1, w̄2]T , w̃1 < w̄1, and hence
for the associated optimal points P̄tot, P̃tot ∈ S it necessarily
holds that P̃ tot

2 ≤ P̄ tot
2 .

Several results in the optimization-literature show that the
duality gap, and hence the afore mentioned nonconvexity of
P vanishes as the number of subproblems (i.e., carriers) goes
to infinity. In practice however it can be observed that P is
approximately convex for a sufficiently high but finite number
of carriers (see Figure 5). This expectation is further supported
by corresponding results reported for OFDMA systems, e.g. in
[14]. However, even if we assume P to be convex the
weights do not lose their meaning. By applying equal weights
we still may find optimal points Ptot which are infeasible
w.r.t. additional per-user total-power constraints while such a
feasible solution may exist in S.
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