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Abstract—The reduction of energy consumption in digital sub-
scriber line (DSL) networks has obtained considerable attention
recently. Today’s DSL is designed under an “always on” principle
to keep the crosstalk noise as stable as possible. Departuring
from this restriction, one approach to achieve energy savings
is by “lazy scheduling” which exploits the tradeoff between
energy-consumption and transmission delay inherent in many
communication systems.
This work extends the scope of this idea to multi-user in-
terference limited systems employing multi-carrier modulation.
Mathematical decomposition appears to be a natural approach
for cross-layer optimization when the physical-layer spectrum
management algorithm is already based on dual relaxation. We
identify Benders decomposition as the appropriate choice of
an optimization scheme for rate and delay constrained energy-
minimization. Based on this we propose a cross-layer scheduler
for multi-user/multi-carrier systems. By simulations of a single-
hop, multi-user DSL scenario this scheduler is shown to closely
approximate the optimal solution to this nonconvex problem.
Furthermore, by example we demonstrate that scheduling for
interference avoidance in DSL yields negligible additional per-
formance gains over sole physical layer spectrum balancing in
practice.

I. INTRODUCTION

In this work we study the delay aware energy-minimization
problem by means of cross-layer scheduling in a multi-user
interference-limited digital subscriber line (DSL) network em-
ploying discrete multi-tone (DMT) modulation. In single-link
communication the common term “lazy scheduling” refers to
the idea of lowering transmit energy consumption by lowering
transmission rates and hence increasing the transmission delay
[1]. Reducing rates in discrete multi-tone (DMT) systems has
recently been shown to effectively reduce the transmit energy
[2]. However, transmission time cannot be arbitrarily increased
since data packets may have stringent delay constraints.

This work extends the scope of energy-efficient schedul-
ing in two dimensions, cf. Figure 1(a). On the one hand
we regard multi-carrier systems, where Lagrange multipliers
associated with the spectrum management problem will have
the interpretation of marginal costs, cf. scheduling without
frequency diversity [3], [4]. Second, the more general case
of a multi-user interference channel will be considered. We
will present a near-optimal algorithm based on generalized
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Fig. 1. Considered Scheduling Problems; 1(a) Finite-Horizon Lazy Schedul-
ing; 1(b) Periodic Scheduling for Interference Avoidance.

Benders decomposition [5] for optimizing this generic and in
general nonconvex scheduling problem. Additionally note that
this scheduler can straightforwardly be adapted for wireless
multi-carrier systems as well.

Our problem is related to that studied in [6] in the context of
cross-layer optimization by network utility maximization for
wireless networks. Therein, the nonlinear column generation
method resulted in separate physical-layer and scheduling
problems, where the latter employs time-divisioning to alle-
viate interference and improve utility. This scheduler however
would not achieve any performance gain when applied to our
problem as we consider linear energy cost functions. While not
exploiting traffic variability, the idea of constructing schedules
that are periodically repeated in time is still appealing due to
lower complexity and feasible avoidance of delay violations,
cf. Figure 1(b).

In this paper we will study, by simulation, the perfor-
mance gain by periodic scheduling for interference avoidance.
Theoretically our scheduling algorithm will allow for energy
reduction even in case of linear objectives. It can be expected,
however, that the energy-savings achieved by solving this
problem are fairly small in practical DSL networks. This is
partly motivated by previous results for a simplistic model
with two users and two carriers in [7].

This work is structured as follows. In Section II we
present our system model and introduce a program formu-
lation for multi-user finite-horizon scheduling in DMT-based
systems. Next, in Section III the Benders decomposition for
energy-efficient multi-carrier scheduling (BEEMS) algorithm
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is proposed to alleviate complexity by modularization into a
scheduling and a spectrum management problem. Comments
on the sub-optimality of the approach in the multi-user case
and issues related to infeasibility are given separately in Sec-
tion III-A. The convergence of BEEMS will be demonstrated
by simulation in Section IV, where we quantify the perfor-
mance gain by periodic scheduling for interference avoidance
in DSL. After summarizing our contributions in Section V we
finally outline directions of future work.

II. MODEL, NOTATION AND PROBLEM FORMULATION

In the following we will adopt the physical layer system
model and related assumptions from [8]. Therein we have a
DSL multi-user system limited to spectral level cooperation
and employing discrete multi-tone (DMT) modulation with
C orthogonal and static subchannels. We associate users and
carriers with the sets of indices U = {1, . . . , U} and
C = {1, . . . , C}, respectively. Furthermore, we denote the
rate per DMT-frame on carrier c of user u as
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spectral density of user u on carrier c in frame n and we
will compactly capture the power-allocation in frame n by
p(n) = [(p(n)

1 )T , . . . , (p(n)
C )T ]T . The squared magnitudes of

the direct channel transfer coefficient of user u on carrier c are
written as Huu

c and of the cross-channel transfer coefficient
from user i to user u as Hui

c , respectively. The SNR-gap to
capacity [9] is denoted by Γ and Nu

c symbolizes the total
background noise power spectral density on carrier c and line
u.

For the scheduling part we adopt a fluid packet departure
model, assuming knowledge of all packet arrivals in a finite
scheduling horizon. Hence, packets can arbitrarily be split and
transmitted so that all data arrive before the packets’ deadline.
Scheduling of multi-carrier transmissions is naturally slotted
in multiples of the inverse symbol frequency, and the data
arriving during one symbol frame cannot be scheduled before
the next frame. For simplicity of notation we assume in the
forthcoming a single flow per user u ∈ U and an associated
packet-individual maximum delay Dmax

u , equal for each packet
of user u. The size of all S data-packets, be it in the backlog
or arriving in the scheduling horizon, are captured by a vector
s ∈ RS+. The frames in the scheduling horizon of length N
are indexed by N = {1, . . . , N}. Furthermore, we denote the
vector of scheduling variables by d = [(d1)T , . . . , (dU )T ]T ,
where du = [(du,(1))T , . . . , (du,(N))T ]T and du,(n) =
[du,(n)

1 , . . . , d
u,(n)
Dmax

u
]T is the vector of the number of bits with

remaining maximum delay between 1 and Dmax
u frames,

assigned by user u to frame n. It is this vector that defines
when and which data are sent, where data transmissions at
different time frames associated with the same packet are
modeled by different variables. Similar to a node-incidence

matrix on graphs, we define a binary block-diagonal matrix
M of dimension S × (N

∑
u∈U D

max
u ) which maps between

the scheduling variables and the packet-data they serve. More
precisely, each row associates a packet to all the (up to Dmax

u )
scheduling variables which serve a packet of user u. We
assume a delay cost vector c of the same dimensions as d,
associated with having a single bit waiting a discrete amount
of time up to its deadline. The entries may be regarded as
the values of various arbitrary (e.g., sigmoidal [10]) flow or
packet specific delay-cost functions, sampled at multiples of
the frame-length. This delay cost can be seen to serve two
purposes. On the one hand it will allow for a variable tradeoff
between energy and delay, while on the other hand it models a
first-come-first-serve packet-scheduling policy, where packets
with higher delay costs are preferably scheduled. Furthermore,
we note that users/flows may have different costs and delay-
constraints, as modeled by c and M.

We formulate a generic cross-layer problem allowing for an
energy-delay tradeoff as

minimize
d�0, p(n),∀n∈N

θ
∑

n∈N ,c∈C
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c + (1− θ) cTd (2a)
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Therein we denote the tradeoff coefficient by θ ∈ [0, 1]
and user weights by w ∈ RU+, where

∑
u∈U wu = 1.

The objective (2a) is simply a weighted sum of power-
expenditure (proportional to energy-consumption) and the total
delay cost. Constraints (2b) and (2c) denote the feasible power-
allocations, where Pc = {p(n)

c | pu,(n)
c ≥ 0, ruc

(
p(n)
c

)
∈ B},

B = {0, 1, . . . , Bmax} is the discrete set of feasible bit-
allocations per carrier and we assume a maximum number of
loaded bits per carrier Bmax. Constraint (2c) enforces that the
total number of bits scheduled for a frame are supported by the
physical layer spectrum management. It is the discreteness of
B and the nonconcavity of ruc

(
p(n)
c

)
in the multi-user case

which make this problem nonconvex. The data-conservation
constraint (2d) finally assures that all data are scheduled.

Note that this model can easily be extended to the case of
multiple flows by thinking of them as multiple “users”, where
only the rate constraint in (2c) has to be adapted accordingly.

III. BENDERS DECOMPOSITION FOR ENERGY-EFFICIENT
MULTI-CARRIER SCHEDULING (BEEMS)

In the following we approach the optimization of the global
scheduling problem (2) by modularization using generalized
Benders decomposition (“constraint generation”) [5]. This
method is commonly applied in case of coupling variables,
cf. variables d in (2). By inspection of Problem (2) we rec-
ognize that it consists of two subproblems which are coupled



by the target-rate constraints in (2c). The first is a spectrum
management subproblem in each frame n, given as

P (n) (d) = minimize
p(n)
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where the target rates are given by R
(n)
u = 1Tdu,(n). In our

derivation we replace (3) by a dual subproblem (DSP(n)).
Denoting the Lagrangian term of user u on carrier c in frame
n by L

u,(n)
c = wup

u,(n)
c + λ

(n)
u (R(n)

u /C − ruc (p(n)
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multipliers λ(n) ∈ RU , it is given as
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λ(n)�0
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c∈C,u∈U
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c

subject to p(n)
c ∈ Pc, ∀c ∈ C. (DSP(n))

We refer to its optimal objective as D(n) (d) and denote the
weighted power at optimum by E(n) (d) =

∑
c∈C wTp(n)

c .
While we note that due to nonconvexity Problems (3) and
(DSP(n)) are in general not equivalent, the optimum of the
latter has the advantage of being convex [11, Ch. 5] (but
not continuously differentiable) in the scheduling variables d,
a prerequisite for applying the generalized Benders decom-
position. Note however that the minimization over p(n) in
(DSP(n)) is still a nonconvex problem. We will discuss this
approximation step in more detail in Section III-A. The second
part is a scheduling master problem (SMP) which in epigraph
form [12, p. 134] can be written as

minimize
d�0, t

t (SMP)

subject to θ
∑
n∈N

D(n)(d) + (1− θ) cTd ≤ t,

Md � s.

The decomposition now suggests an iterative procedure that
consists of a subproblem stage in which we optimize the spec-
trum balancing problem (DSP(n)) for each frame separately
given a fixed bit-allocation d. For the solution of these sub-
problems we refer to the dual-based energy-efficient optimal
spectrum balancing algorithm in [8]. After each iteration we
hence obtain the optimized total dual cost

∑
n∈N D

(n) (d)
and a subgradient with respect to d as given by the following
proposition.

Proposition 1: Assume a binary matrix T of dimension
(N
∑
u∈U D

max
u ) × (UN) mapping from the stacked vector

of multipliers λ(n), ∀n ∈ N , to the scheduling variables d
according to the association of the variables to frames and
users. Then a subgradient of

∑
n∈N D

(n) (d) with respect to
d is given as

g (d) = T
[
(λ(1))T , . . . , (λ(N))T

]T
. (4)

The complete proof is omitted here due to space restrictions.
However, this proposition can easily be shown by invoking
Danskin’s theorem [11, p. 737]. The possible non-uniqueness
of the subgradient and hence the necessity of a subgradient
based optimization method follows from integer-bitloading
and the hence polyhedral convex hull of the sets X (n) =∑
c∈C X c,(n), n ∈ N , where

X c,(n) = {xc|xc = [rc
(
p(n)
c

)
,wTp(n)

c ]T ,p(n)
c ∈ Pc}, (5)

and rc(p
(n)
c ) ∈ RU+ is a vector-valued function with the u’th

element given by ruc (p(n)
c ) , cf. also [11, ch. 5].

In order to exploit the collected subgradient information
fully we construct a polyhedral outer approximation of the
first constraint in (SMP), given by

A
[

d
t

]
+ f � 0. (6)

Therein f ∈ R2k, k denoting the scheduling iteration, where
corresponding to a schedule d in iteration i we have the 2i−
1’th and 2i’th element of f given as

f2i−1 = f2i = θ
∑
n∈N

D(n) (d) + (1− θ) cTd, (7)

and the corresponding rows in A ∈ R2k×(N
∑

u∈U D
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u )+1 as(

a2i
)T

=
[

(θ g (d) + (1− θ) c)T −1
]
, (8)(

a2i−1
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= [0, . . . , 0, 1] . (9)

The second stage of the scheduler hence first involves updating
its approximation according to new constraints as described in
(7) – (9), and then updating the scheduling variables. While the
latter update can be performed in numerous ways [13], [14],
we rely on the practically efficient analytic center cutting plane
method [13]. Hence, at iteration k instead of (SMP) we solve
the convex optimization problem

minimize
y,d�0,t

−
2k∑
i=1

log (yi) (10)

subject to y = −f −A
[

d
t

]
, Md � s.

Subsequently we have a new set of target-rates R(n)
u ,∀u ∈

U , n ∈ N , from where the procedure continues as described.
With respect to the initialization of the search region for d

we note that the maximum bit-loading constraints in (DSP(n))
allow to efficiently search the optimum but also should be
taken into consideration by the scheduler. This gives us initial
cuts according to du,(n)

i ≤ Bmax ·C. Another source of initial
constraints is the maximum number of bits that can possibly
be scheduled per frame based on the available data.

A basic description of the BEEMS algorithm is given in
Algorithm 1. As we note that the spectrum management prob-
lems are in fact almost identical, differing only in the target-
rate assignment, one might immediately extend Algorithm 1
to incorporate multiple cuts in each iteration. An intelligent



Algorithm 1 BEEMS Algorithm
Initialize target-accuracy ε, the best found primal objective
E =∞, and the cuts in A and f , cf. Equation (6)

2: repeat
Solve (10) to obtain d

4: for ∀n ∈ N do
Solve (DSP(n)) to obtain the optimal dual objective
D(n) (d) and the corresponding weighted
energy term E(n) (d) =

∑
c∈C wTp(n)

c

6: end for
Update E = min{E, θ

∑
n∈N

E(n) (d) + (1− θ) cTd}

8: Evaluate subgradient g (d) according to (4)
Update the approximation as in Equations (7) – (9)

10: Solve (11) to obtain the lower objective bound η
until

(
E−η
E ≤ ε

)
or convergence of d

Fig. 2. Schematic Illustration of the Suboptimality-bound, including Optimal
Primal, Dual and Approximated Objectives P ∗, D∗ and η, and the Best Pri-
mal Objective E∗ Obtained by Dual Optimization in (DSP(n)), respectively.

selection-algorithm using only a few of the “best” cuts is
however out of the scope of this work.

A. Suboptimality and Infeasibility

In the following we discuss two issues we overlooked sofar,
namely suboptimality and infeasibility. First we justify the de-
parture from the original, primal subproblem (3) motivated by
the need for a convex objective in the applied decomposition.
While we note that Problems (3) and (DSP(n)) are equivalent
in the single-user case under relaxation of the integer bit-
loading constraints and assuming strict feasibility of (3) [12,
p. 226], in general we have that P (n) (d)−D(n) (d) ≥ 0, i.e.,
the optimal objective in (DSP(n)) is a convex underestimator
of the original one. Recent results however show that the
gap may be negligible in practical multi-carrier systems,
depending on the target-rates [8]. Another way to look at
it is that applying the decomposition scheme directly on the
primal subproblems (3) one would work with approximated
subgradient information. A general bound on the suboptimality
of this subgradient information seems however intractable.
Considering the dual optimum D(n) (d) as our objective we
deal with exact subgradient information, and further are able
to quantify the suboptimality of this approach, e.g., by weak
duality [12, p. 225].

An important feature of the applied cutting plane method

is that one has a lower bound η on the globally optimal dual
objective which is computable by solving the linear program

η = minimize
d�0, t

t (11)

subject to A
[

d
t

]
+ f � 0, Md � s.

Hence, denoting D = {d|Md � s,d � 0} we may infer
(cf. Figure 2)

η ≤ D∗ = min
d∈D

θ
∑
n∈N

D(n)(d) + (1− θ) cTd (12a)

≤ P ∗ = min
d∈D

θ
∑
n∈N

P (n) (d) + (1− θ) cTd (12b)

≤ E∗ = min
d∈D

θ
∑
n∈N

E(n) (d) + (1− θ) cTd, (12c)

where the first, second and third inequality follow from the
outer approximation, weak duality, and the definition of E(n),
respectively. In Algorithm 1 this bound is used as a stopping-
criterion.

A second point is the possible infeasibility of the dual
subproblems (DSP(n)). While infeasibility can be neatly in-
corporated if the epigraph-constraints were given in functional
form [14], here the constraints are only evaluated implicitly
by solving the spectrum management subproblems. A way
to obtain a value for D(n),∀n ∈ N , and g (d) even in
case of infeasibility is by turning (DSP(n)) into an always
feasible problem, cf. [15, Sec. 3.3]. While not used in our
simulations, we may also make the bit allocation always
feasible by artificially limiting the constraint-set in the master
problem (SMP). This can be done, e.g., by incorporating the
optimum rates from a rate-maximization spectrum manage-
ment problem, constrained by the maximum bit-loading. Note
that while a convergence proof is available for the used cutting
plane method [13], it does not apply in our case due to the
mentioned infeasibility issue.

IV. SIMULATIONS ON PERIODIC SCHEDULING

We now demonstrate the convergence of the proposed
BEEMS algorithm by applying it to the problem of computing
a finite-length schedule, cf. Figure 1(b). This schedule is
assumed to be repeated periodically in time and we only
constrain the average rate over the whole schedule. This
constitutes a special case of the global problem (2), obtained
by setting θ = 1 and appropriately defining the constraints
in (2d) such that an average-rate demand is fulfilled. More
precisely, Dmax

u = N , wu = 1/U , ∀u ∈ U , each user has
a single packet (i.e., S = U , du,(n) ∈ R+), and s ∈ RU+
contains the targeted average rates per frame. Neglecting delay
costs is notably more insightful for investigating our algorithm
as it makes the suboptimality of our convex approximation
more visible.

We compare now the energy-expenditure per schedule as
achieved by our algorithm to that using a constant rate
over the same number of frames. On the physical layer
we assume a VDSL upstream scenario with U = 3 users

. 



Fig. 3. Energy-Reduction by Periodic Scheduling for Interference Avoidance;
Convergence of the BEEMS Algorithm in Dual Objective to the Best Found
Underestimating Function Value And Comparison to a Constant Rate Solution.

located at 200 m/400 m/600 m distance from the deployment
point, respectively. The simulation parameters were chosen
according to the ETSI VDSL standard [16] (i.e., an SNR-gap
Γ = 12.8 dB and two upstream subbands as specified by band
plan 997). The background noise comprises ETSI VDSL noise
A added to a constant noise floor at −140 dBm/Hz.

The simulation results for a schedule length of N = 6,
a DMT system transmitting at 4000 frames/s and an average
rate demand of 40 Mbps per user (i.e., su = N · 104,∀u ∈ U)
are shown in Figure 3. We note that the scheduling cost is
huge in iterations 3 and 4. This is due to infeasibility of the
applied schedules which is punished by the modified spectrum
management subproblems through a large cost, cf. Section
III-A. As expected, the primal objective in our simulation
closely follows the dual one. We also see that the best primal
solution found by our algorithm outperforms the constant-rate
solution. By (12) we find that the possible suboptimality of our
algorithm can be upper-bounded by 0.8 %. Differently stated,
our algorithm gave us a certificate that in this scenario no time-
sharing solution could give an energy-improvement above 1 %
compared to the energy-cost for constant-rate transmission.

We see that the schedule with constant rates over frames
achieves a dual objective fairly close to the corresponding
lower bound. We emphasize that this constant rate schedule
can be constructed by solving a single subproblem (DSP(n))
with average rate target. The solution of the linear problem
(11) gives then already a “quick” valid upper bound on the
gain by periodic rate scheduling. Thereby, we were able to
obtain the above mentioned certificate by just solving a single
spectrum management problem and a single linear program.

V. CONCLUSION

In this work we formulated an optimization problem
for lazy scheduling and interference avoiding scheduling
in interference-limited multi-user and multi-carrier digital
subscriber line (DSL) systems. We proposed a cross-layer
scheduling algorithm which is based on a problem approxima-
tion and a Benders decomposition approach. Our demonstra-

tion by means of an example indicates that the feasible energy-
reduction through scheduling for interference-avoidance in
DSL networks is negligible. This suggests that most of the
potential power savings up to the link-layer are achieved
by exploiting traffic variability. Furthermore, much simpler,
single-user link-layer schedulers may be sufficient to harvest
most of the possible performance gain. The latter however still
necessitates more research on the design of low-complexity
and real-time rate-adaptation algorithms for multi-carrier DSL
systems.

A future target is to use the proposed algorithm for investi-
gations on the possible energy-reduction by periodic schedules
in wireless networks, where we expect higher benefits due
to stronger interference. Another direction from this work is
the extension to an infinite scheduling horizon through the
derivation of (near-)optimal queue-state based rate policies.
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