DOCTORAL THESIS 1995:162 D

DIVISION OF COMPUTER SCIENCE AND ENGINEERING ISSN: 0348 — 8373
ISRN: HLU-TH-T--1994 - 162 -D - - SE

Highly Parallel Computers for
Artificial Neural Networks

Tomas Nordstrom

TEKNISKA
HOGSKOLAN I LULEA

LULEA UNIVERSITY OF TECHNOLOGY



Doctoral Thesis 1995:162 D

Highly Parallel Computers for
Artificial Neural Networks

Tomas Nordstrom

Division of Computer Science & Engineering
Luleé University of Technology, Sweden
E-mail: tono@sm.luth.se

March 1995

Supervisor / Handledare
Professor Bertil Svensson, Chalmers University of Technology

Faculty opponent / Fakultetsopponent
Associate Professor Dan Hammerstrom, Oregon Graduate Institute




Highly Parallel Computers for Artificial Neural Networks

I do not know what I may appear to the world, but to myself I
seem to have been only like a boy playing on the seashore, and
diverting myself in now and then finding a smoother pebble, or
a prettier shell than ordinary whilst the great ocean of truth lay
all undiscovered before me.

ISAAC NEWTON

[0 Tomas Nordstrom 1995

ISSN: 0348-8373
ISRN:  HLU-TH-T--162-D--SE

Published 1995
Printed in Sweden by “Hdogskolans Tryckeri, Luled”




ABSTRACT

ABSTRACT

During a number of years the two fields of artificial neural networks (ANNs) and highly par
allel computing have both evolved rapidly . In this thesis the possibility of combining these
fields is explored, investigating the design and usage of highly parallel computers for ANN
calculations.

A new system-architecture REMAP (Real-time, Embedded, Modular, Adaptive, Parallel
processor) is presented as a candidate platform for future action-oriented systems. With this
new system-architecture, multi-modular networks of cooperating and competing ANNs can
be realized. For action-oriented systems, concepts like real-time interaction with the envi-
ronment, embeddedness, and learning with self-organization are important. In this thesis the
requirements for efficient mapping of ANN algorithms onto the suggested architecture are
identified. This has been accomplished by studies of ANN implementations on general pur-
pose parallel computers as well as designs of new parallel systems particularly suited to
ANN computing. The suggested architecture incorporates highly parallel, communicating
processing modules, each constructed as a linear SIMD (Single Instruction stream, Multiple
Data stream) array, internally connected using a ring topology, but also supporting broadcast
and reduction operations.

Many of the analyzed ANN models are similar in structure and can be studied in a uni-
fied context. A new superclass of ANN models called localized learning systems (LLSs) is
therefore suggested and defined. A parallel computer implementation of LLSs is analyzed
and the importance of the reduction operations is recognized. = The study of various LLS
models and other commonly used ANN models not contained in the LLS class, like the mul-
tilayer perceptron with error back-propagation, establishes REMAP modules as an excellent
architecture for many different ANN models, useful in the design of action-oriented systems.

Descriptors

Action-oriented systems, artificial neural networks, sparse distributed memory, self-organiz-
ing maps, multi-layer perceptrons, localized learning systems, massively parallel computers,
SIMD, bit-serial processor array, REMAP.
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PREFACE

PREFACE

This thesis deals with the implementation of artificial neural networks on massively and
highly parallel computers.

The thesis consists of nine papers. The first two papers introduce the concept of noncon-
forming massively parallel computers and survey parallel computer architectures used for
artificial neural networks. The two following papers are descriptions of the REMAP archi-
tecture which I use as a starting point for my studies. This architecture has been developed at
Lulea University of Technology, in cooperation with Chalmers University of Technology
and Halmstad University. In the last five papers the mapping of dif ferent ANN algorithms
onto parallel computers is studied.

As each of the papers is self-contained there are sections that overlap, but the major part
of each paper is original work. The nine papers are:

PAPER A

Paper Ais published in Proceedings of the New Frontiers, a Workshop of Future Direction
of Massively Parallel Processing

Davis, E. W., T. Nordstrom and B. Svensson, “Issues and applications driving re-
search in non-conforming massively parallel processors,” in Proceedings of the New
Frontiers, a Workshop of Future Direction of Massively Parallel Processing, Scher -
son Ed., McLean, Virginia, 1992, pp. 68-78.

PAPER B

Paper B is published in Journal of Parallel and Distributed Computing

Nordstrom, T. and B. Svensson, “Using and designing massively parallel computers
for artificial neural networks,” Journal of Parallel and Distributed Computing, vol.
14, no. 3, pp. 260-285, 1992.

PAPER C

Paper C is published in Proceedings of Connectionism in a broad perspective

Svensson, B., T. Nordstrom, K. Nilsson and P .-A. Wiberg, “Towards modular, mas-
sively parallel neural computers,” Connectionism in a Broad Perspective: Selected
Papers from the Swedish Conference on Connectionism - 1992, L. F . Niklasson and
M. B. Bodén Eds. Ellis Horwood, pp. 213-226, 1994.
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PAPER D

Paper D is published in Selected papers from: Second International Workshop on Field-Pro-
grammable Logic and Applications

Linde, A., T. Nordstrdém and M. Taveniku, “Using FPGAs to implement a reconfig-
urable highly parallel computer,” Field-Programmable Gate Array: Architectures and
Tools for Rapid Prototyping; Selected papers from: Second International Workshop
on Field-Programmable Logic and Applications (FPL'92), Vienna, Austria, Griin-
bacher and Hartenstein Eds. New York: Springer-Verlag, pp. 199-210, 1992.

PAPERE and F

Paper E and F are submitted for publication:

Nordstrom, T., “On-line localized learning systems, part I - model description,” sub-
mitted for publication, 1995.

Nordstrom, T., “On-line localized learning systems, part II - parallel computer imple-
mentation,” submitted for publication, 1995.

These papers are also available as research reports:

Nordstrom, T., “On-line localized learning systems, part I - model description,” Res.
Rep. TULEA 1995:01, Luled University of Technology, Sweden, 1995.

Nordstrom, T., “On-line localized learning systems, part II - parallel computer imple-
mentation,” Res. Rep. TULEA 1995:02, Luled University of Technology, Sweden,
1995.

PAPER G

Paper G is to be submitted for publication:

Nordstrom, T., “Hardware for sparse distributed memory simulations,” to be submit-
ted for publication, 1995.

An earlier version is available as a research report:

Nordstrom, T., “Sparse distributed memory simulation on REMAP3,” Res. Rep.
TULEA 1991:16, Luled University of Technology, Sweden, 1991.

Vi
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PAPERH

Paper H was presented at Fourth Swedish Workshop on Computer System Architecture

Nordstrom, T., “Designing parallel computers for self organizing maps,” in DSA-92,
Fourth Swedish Workshop on Computer System Architecture, Linkdping, Sweden,
1992.

This paper is also available as a research report:

Nordstrom, T., “Designing parallel computers for self or ganizing maps,” Res. Rep.
TULEA 1991:17, Lulea University of Technology, Sweden, 1991.

PAPER J

Paper J is published in Proceedings of 10th International Conference on Pattern Recogni-
tion, Computer Architectures for Vision and Pattern Recognition

Svensson, B. and T. Nordstrom, “Execution of neural network algorithms on an array
of bit-serial processors,” in 10th International Conference on Pattern Recognition,
Computer Architectures for Vision and Pattern Recognition, Atlantic City, New Jer-
sey, USA, 1990, vol. II, pp. 501-505.

vii
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THESIS SUMMARY

THESIS SUMMARY

Motivation and significance

Both the computer and the model of biological neural networks emer ged during the ‘40s.
Many computer architects have been inspired by how the human brain works. Already von
Neumann [22] discussed the relation between human and machine computations. Many neu-
ral-like algorithms or machines emer ged during the late ‘50s and early ‘60s, and were used
in the fields of pattern recognition, classification and adaptive signal processing. However ,
after the book “Perceptrons” by Minsky and Papert appeared in 1969 the artificial neural
network field seemed to be a dead end. In their book Minsky and Papert showed the limita-
tions of the most popular model at that time: the perceptron.  The results in the book were
correct and elegantly described, but the authors also speculated that more complex models,
e.g. multi-layer ones, would show the same limitations as the simple perceptrons, a specula-
tion which was later proven to be wrong. In the ‘70s and early ‘80s much of the research on
human-like capabilities for computers was conducted as research in the field of artificial in-
telligence using a symbol oriented approach, in which Minsky and Papert became promi-
nent.

In parallel with the research on human-like capabilities for computers a continuous evo-
lution of computer hardware took place. Technological development in the fields of semi-
conductors, transistors, and integrated circuits resulted in an enormous increase in calcula-
tion speed. Most of the computers before the ‘80s were uniprocessors or several loosely
connected individual computers. Despite the power of the computer in the early ‘80s, there
seemed to be little progress in the solving of problems like image recognition, speech recog-
nition etc. It became apparent that new algorithms and computing models were needed to
solve these problems, which humans solve without effort.

During the early ‘80s some of the dedicated scientists who had continued their ef fort af-
ter the publishing of Minsky’ s and Papert’ s book, like Kohonen, Grossber g, Anderson,
Rumelhart and McClelland together with some new scientists in the field like Hopfield,
gradually built a foundation on which many new and powerful artificial neural network
models could be built. In the late ‘80s the field of artificial neural networks literally exploded
and efforts from many researchers from biology, physics, mathematics, control theory, psy-
chology, computer science, and computer engineering demonstrated the capabilities and
possibilities of the artificial neural network models. At the same time a number of commer -
cial, massively parallel computers were manufactured. As many of the new neural network
models are massively parallel by nature they seem to map very well onto these new massive-
ly parallel computers.

However, in many instances the current high performance, parallel, general purpose
computers are not as well suited as they first appear to be since they do not address issues
like real-time, time determinism, heterogeneous communication, physical size, or power
consumption. These issues are important in the realization of action-oriented systenis$, 2]
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which interact in real-time with their environments by means of sophisticated sensors and
actuators, often with a high degree of parallelism, and are able to learn and adapt to different
circumstances and environments. These systems will be trainable in contrast to the program-
ming of today’s computers. All these issues can be viewed as honconformingo the systems
available on the more general purpose oriented market for parallel computers.

The common theme in this thesis is the idea of finding an architecture suitable with re-
spect to these issues and thus suitable for action-oriented systems. A new system architec-
ture, REMAP (Real-time, Embedded, Modular, Adaptive, Parallel processor project), incor-
porating highly parallel, communicating processing modules, is presented as a candidate
platform for future multi-modular artificial neural networks (ANNs).  Action-oriented sys-
tems are studied mainly by focusing on separate ANN modules (algorithms) and on separate
hardware modules, but all these software and hardware modules are parts in the concept of a
modular and heterogeneous system.

Approach

For this thesis the approach has been to start with simple processing elements and simple
means of communication. In a way this approach is inspired by the relatively simple build-
ing blocks (nerve cells) the brain consists of. As needed, architectural features have been
added to this basic concept. For the major part of my study the REMAP architecture has
been used as a starting point. This is a reconfigurable bit-serial SIMD (Single Instruction
stream, Multiple Data stream) processor array . As the processing elements are reconfig-
urable it is possible to include dif ferent types of support for dif ferent kinds of algorithms.
Architectural principles and components that are essential for the ef ficient simulation of the
most frequently used ANN models are established in the thesis. One of the results is that sur
prisingly few additions to the basic concept are required to get good performance and high
efficiency.

Summary Outline

The rest of this thesis summary is outlined as follows: first I discuss the design space on a
general level; then follows a more detailed discussion of the design space for control, pro-
cessing elements (PEs), and the interconnection network. The next major section will dis-
cuss the ANN implementation studies I have done. In the sub-sections some of the findings
which make it possible to find a suitable architecture in the vast design space will be pointed
out. These findings are used in the following section to design our own REMAP architecture
and the REMAP prototype. After that I briefly point out possible future directions for this re-
search. The major conclusions of this thesis are then summarized in the next section. Finally
there are sections with corrections and comments, abbreviation list, acknowledgments, and
references.
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Design space

The design space for computers that can be used for ANN is very large, and even if it seems
futile to talk about an optimal design there are a number of interesting trade-offs to be made.
One basic trade-of f is between flexibility and speed That is, to increase speed we usually
have to sacrifice some flexibility. In one end of the spectrum we have ordinary general pur -
pose computers and in the other end we might have analog or optical computers. In between
we have various digital parallel computer designs.

The large number of ANN algorithms and the continuous development of new models
and variations suggest that a certain degree of flexibility through reprogramming is desir -
able. This is usually solved by constructing a general architecture that can be software pro-
grammable. With the arrival of reconfigurable hardware, such as field programmable gate ar
rays (FPGAs), it is possible to achieve some of the needed flexibility through “soft
hardware.” The possibility to build a computer for ANN with FPGAs has been explored in
Paper D.

While analog or optical computers in certain situations might give higher performance
than corresponding digital computers they will need to be designed for a specific algorithm
and cannot easily be reprogrammed or reconfigured. Even though I can see a future where
analog modules fit into the concept of multi-modular computers (esp. close to sensors) it has
not been considered in this thesis. Instead I have concentrated on the part of design space
where digital, software programmabjgarallel computergan be found, as the flexibility to
run many different ANN models is desirable.

Given that we want to design a digital parallel computer suitable for ANN there are still
many trade-offs. The main questions are:

What form and level of execution autonomy should the PEs have?

What is a suitable size and complexity of the PEs? How many PEs should be avail-
able and what amount of memory should each PE have?

- How should the PEs be interconnected?
These questions correspond to the building blocks of a parallel computer: the controller, the
processing elementsd their memory, and the interconnection networkvhich will be dis-
cussed in the following sub-sections.

How will this (still lar ge) design space be further reduced? The most important aspect
has been the intended application: action-oriented systems, that is, be able to run a number
of different artificial neural networks models.
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Control design space

There has been a long controversy in the parallel computer field between the concept of
SIMD (Single Instruction stream, Multiple Data streams) and MIMD (Multiple Instruction
streams, Multiple Data streams) from the taxonomy by Flynn [10]. The core of the contro-
versy is the question of how much autonomy each PE should have. Whereas the SIMD com-
puter has one single controller the MIMD computer will use a controller for each PE, pro-
viding the PEs maximal autonomy.

Disadvantages of the MIMD concept are [5]: the problem to program and debug hun-
dreds of processors running independently, more parallelism is found in data than in instruc-
tions, and the high cost of synchronization. A major advantage of MIMD is that highly opti-
mized “off-the-shelf” components like RISC processors and high density memory modules
can be used as building blocks.

One trend among today’ s general purpose parallel computers is to either extend the
SIMD concept with a suitable amount of autonomy (like local address modification), or to
reduce the MIMD concept to SPMD (Same Program on Multiple Data streams).

This debate can be extended to the two major paradigms used to express parallelism:
data parallelismand control parallelism[5]. Whereas the former finds parallelism in the
data set the latter will find parallelism in the instructions. In a study by Fox [1 1] he reports
that the most successfully implemented problems on parallel computers were those which
could be specified as data parallel.

In this thesis the basic SIMD concept, thus, a data parallel paradigm, has been found suf-
ficient for most of the ANN models studied. However , action-oriented systems with their
structure of cooperating modules suggest that the SIMD concept should be extended to a
MIMSIMD (Multiple Instruction streams for Multiple SIMD arrays) as will be discussed in
Papers A, B, C, and G.
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PE design space

In the PE design space there are important decisions to be made on how many PEs there
should be, and the size and complexity of these PEs.  There is a trade-of f between having
many simple PEs and few complex PEs, a PE granularity design choice.

While discussing parallel computers it is interesting to use an adjective to indicate the
number of PEs available. And while studying parallel computers for ANN we found that the
term massively paralletvas used without defining what was meant by massive. Therefore
we set out to make a suitable definition, thus, in Paper B we argue that being massive should
mean that the structure gives an impression of being solid. ~ That is, the number of units
should be so high that it is impossible to treat them individually; they must be treated en
masseBy definition then, each PE must be told what to do without specifying it individual-
ly. This is actually the concept of SIMD or SPMD. The lower bound for massive parallelism
will then be set by the largest computer in which each PE is treated as an individual with its
own instruction flow (MIMD). We think that for the moment 2'% = 4096 is a suitable limit. It
is useful to have characterizations also of the lower degrees of parallelism and to this end we
suggest a rough division between: highly parallel, moderatelyparallel, and barelyparallel.
By defining the limits to 2!2, 28, 2% 20 we have an easy-to-remember scheme for the charac-
terization. In the previous section we introduced the MIMSIMD concept as a suitable way of
extending the SIMD concept for action-oriented systems, this also implies that we prefer a
system of highly parallel moduleso a single massively parallel computer.

To guide the decision on the PE complexity required it is interesting to determine the
precisionneeded in calculations and for input/output (I/O). This precision is of course deter-
mined by the intended application area, ANN. From the discussion in Paper B it is clear that
most ANN implementations will not need very high precision calculations (typically less
than 16 bits). In general the precision used by I/O will depend on the environment in which
the ANN or the action oriented system is used, but it can be noted that layers close to sensors
often use low precision, say 16 bits or less.

The PE granularity decision also depends on the amount of memory needed for each PE
and whether the memory should be on-chip or of f-chip. Given additional levels of autono-
my, other sets of constraints might become important. For example, if local address modifi-
cation is wanted, each PE’s address lines need to be sent outside of the chip (assuming of f-
chip memory). Thus, the number of pins becomes a limiting factor.

Many realization aspectsill also influence the PE granularity decision. One such real-
ization aspect is the type of VLSI (very large scale integration) technology available. Differ-
ent technologies, for example CMOS, GaAs, and FPGA, will introduce dif ferent optima in
our design space. Another realization aspect is packaging. That is, the number of pins that
can be used to connect the PEs to external memory and I/O are limited. The load they can
take and their maximum switching rate are also limited. The use of standard components,
like SRAM or DRAM is desirable as such components use highly optimized realizations.
Even though I, as mentioned earlier, suggest that highly parallel computer modules are bet-
ter than massively parallel computers for ANN calculations, the number of PEs in a module
are still too high for single chip solutions to be feasible. This requires us to have many sig-
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nals to go off-chip. Within the REMAP project multi chip modules (MCM) are investigated
as a possible remedy for the off-chip connectivity problem.

If a bit-parallel approach is not taken for granted, a bit-serial approach opens up a new
set of opportunities. Besides allowing many more PEs into each chip the bit-serial approach
will allow a trade-off between speed and precision, even dynamically. This lets us make im-
portant experiments on the precision needed for dif ferent ANN models. Bit-serial design
also allows for rapid prototypingusing FPGAs. Even if FPGAs have low density compared
to full custom VLSI a highly parallel computer can be built with FPGAs if bit-serial PEs are
chosen, as shown in Paper D.

The simplicity of bit-serial PEs allows a high clock frequency to be used. The chip area
is also more efficiently used for bit-serial calculations. It can in fact be argued that bit-serial
computation is always the most ef fective way of computing [12]. Still, for bit-serial arith-
metic to be competitive in modern CMOS technology the design either needs to implement
very many (more than 128) PEs or to clock them at high clock speeds (probably above
500MHz). The possibility of such sizes and clock-speeds are shown in the Blitzen project
[6] which 1990 resulted in a chip with 128 PEs in 1.25 pm standard CMOS process and by
Larsson-Edefors who built a 470 MHz bit-serial arithmetic unit in 1.0 pm standard CMOS
process [14]. However, there are drawbacks in having very many PEs and using high clock-
speed. One problem is the size mismatch between PE array size and problem size in the case
of very many PEs. For the high speed PEs it becomes hard to construct the fine-grain con-
troller. Thus, for future CMOS implementations these problems must be addressed. Howev-
er, the modular concept and a distributed (on-chip) control seem to alleviate the problems.
Another possible drawback with bit-serial computation is the dif ficulty of performing float-
ing point calculations, but studies by Ahlander [24] indicate that bit-serial floating point
hardware is a feasible alternative.

The synaptic processing rate argument

While discussing granularity it is also interesting to discuss the balance between the process-
ing power and the network size (that is, the number of weights). Holler [13] has introduced
the concept of synaptic processing rat&PR) (or CPSPW - connections per second per
weight). His argument for the importance of this measure is the following: Biological neu-
rons fire approximately 100 times per second. This implies that each of the synapses pro-
cesses signals at a rate of about 100 per second, hence the synaptic processing rate (SPR)
(or, to use Holler’s terminology, the CPSPW) is approximately 100.

If we are satisfied with the performance of biological systems (in fact, we are even im-
pressed by them) this number could be taken as a guide for ~ANN implementations. Many
parallel implementations have SPR numbers which are orders of magnitude greater than
100, hence have too much processing power per weight. A conventional sequential comput-
er, on the other hand, has an SPR number of approximately 1 (if the network has about a mil-
lion synapses), that is, it is computationally under -balanced. Bit-serial PEs might be a suit-
able compromise between these extremes. It should be noted that Holler ’s argument is of
course not valid in batch processing training situations.
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Conclusion

Without knowing all the realization aspects there is no definite answer about the best PE
granularity. But following our design approach we started to explore the simplest form of
PEs, the bit-serial ones. This choice for our first prototype architecture has made it possible
to make a highly parallel prototype with large flexibility by using FPGAs and the possibility
to easily experiment with different precision in the calculations.

Interconnection network design space

A large number of interconnection networks (ICNs) have been suggested for parallel com-
puters over time, thus the ICN design space is large. Even after restricting ourselves to com-
munication networks suitable for SIMD control, that is, synchronous communication, there
are many choices of topology available. The most powerful communication is found in an
all-to-all network, but the cost to implement this structure quickly becomes prohibitive. At
the other end of the cost/complexity scale we find the bus. Even if the structure is simple, the
possibility to perform broadcast makes a bus interesting for = ANN computations. Between
these two extremes many topologies have been suggested [8], for example, ring, star , tree,
mesh, hypercube, shuffle-exchange, omega, Benes.

The trend among highly parallel computers today is to use  low-dimensional networks
like ring, mesh, torus, or 3D networks, as well as trees and fat-trees. Each of these networks
can be shown to be optimal under certain important criteria, like hardware volume or wiring
cost [7, 17].

The special requirements for ANN computations make other more specialized communi-
cation structureattractive. For instance the use of broadcast becomes very interesting, sup-
porting the spreading of activation values among nodes.

Design space conclusion

Based on earlier studies of highly parallel architectures [9] and a general conception of the
architecture’s usefulness the hypothesis has been that a linear SIMD array internally con-
nected using a ring topology, but also supporting broadcastis a suitable architecture for
ANN calculations. In this thesis I have conducted studies around this concept which, as it
turns out, fits very well to the requirements of ANN calculations. As discussed in the next
section two important extensions are the support for reduction operations and the support for
fast multiplication.

On a higher level the REMAP concept also includes the idea to support multi-modular
ANNS by using a number of these highly parallel SIMD array modulesterconnected to
form a modularand heterogeneous system
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Studies of ANN implementations on highly parallel
computers

General studies of ANN implementations on highly parallel computers have been conducted
as well as specialized studies of our experimental architecture REMAP . The results have
then been used to restrict the hardware design space (finding what extensions to the basic
concept that are needed).

Paper B surveys the most used models and describes some basics of ANNs. The compu-
tational and communication needs are analyzed for the basic models. The different dimen-
sions of parallelism in ANN computing are identified, and the possibilities for mapping onto
the structures of dif ferent parallel architectures are analyzed. Some means to measure the
performance of ANN simulations are given. A survey of 27 different parallel computers used
for ANN simulations is also given.

In Paper ET introduce the concept of localized learning systengBLSs). This concept
makes it possible to combine many commonly used ANN models into a single “superclass.”
The LLS model is a feedforward network using an expanded representation with more nodes
in the hidden layer than in the input or output layers. The main characteristics of the model
are local activity and localized learning in active nodes. Some of the well known ANN mod-
els that are contained in LLS are generalized radial basis functions (GRBF), self-or ganizing
maps (SOM) and learning vector quantization (L VQ), restricted Coulomb ener gy (RCE),
probabilistic neural network, sparse distributed memory (SDM), and cerebellar model arith-
metic computer (CMAC). The connection between these models as variations of the LLS
model is demonstrated. This connection also lets us suggest new variants of “old”  ANN
models. In two separate papers, Paper G and Poper H, two of the LLS models are studied in
greater detail (SDMrespectively SOM). Furthermore, in Paper J the mapping of two well
known ANNs not contained in the LLS class, the multilayer perceptrofMLP) with error
back-propagation and the Hopfield networkare studied. Thus, it covers both the mapping of
feedforward and feedback neural nets. The characteristics of these models are briefly out-
lined. The computations are analyzed for all these models, performance figures are given,
and system implementation is discussed.
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Mapping ANN onto the computer architecture

Before the best mapping can be found it is important to identify the kind of parallelism
found in the algorithm. In Paper B the different dimensions of parallelisnypically found in
ANN algorithms are identified as follows:

Training session parallelism
Training example parallelism
Layer and Forward-Backward parallelism
Node (neuron) parallelism
Weight (synapse) parallelism
Bit parallelism

Among these forms of parallelism the greatest amount of parallelism is found in training
session, training example, node, and weight parallelism. As the first two are batch oriented
and cannot be used in real-time the most interesting forms of parallelism are found to be
node and weight parallelistMaybe node parallelism is the most natural form, that is, map-
ping a node (neuron) onto a PE. This is also suggested as the basic mapping for all the mod-
els studied. However, this basic mapping becomes inefficient if there is a large mismatch be-
tween the sizes of different node layers. In Paper F a strict node parallel mapping is therefore
relaxed and a weight parallel mapping is used for the final layer, thus we get a “mixed paral-
lelism” solution. To support weight parallelism, facilities to combine the “weight output” is
needed, thus the addition of an adder-treeto the architecture is suggested. This adder-tree
can also support the implementation of MLPs with back-propagation learning as suggested
in Paper J.

For Kanerva’s SDM model described in Paper G, a node parallel mapping used for all
layers is found to be the most efficient one. This is accomplished by using a so called trans-
posed mapping.

Operations required for ANN calculations

The basic operations for ANN calculations are addition, subtraction, and multiplication.
Multiplication is the most complex of these operations and can easily become the bottle-
neck. Therefore the multiplicationshould be supported with extra hardware.

While studying the implementation of SDM in Paper G, it was found beneficial to add a
bit-counterto the architecture. By adding such a counter to each PE, the selection time (the
first layer) can be reduced by a factor of three to four. As the basic SDM model does not use
a the multiplier it could actually be exchanged for the counter This possibility is particularly
interesting if reprogrammable logic is used.

Much of the computing power of ANN comes from the use of non-linear functions, for
example, the sigmoid or a Gaussian. Since the calculation of such functions can be time con-
suming the support for such functions needs some consideration. This is discussed in Papers
Band E.
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Adding control autonomy to allow addition and subtraction to take place at the same
time (depending on an add/sub control bit) has been found to speed up certain parts of the
SDM calculations by a factor of two.

Many of the ANN implementations studied can benefit numerically from having satura-
tion arithmeticwhere overflow saturates to the maximum value and underflow is set to the
minimum value.

Communication structure required by ANN

The basic building block of the brain is the nerve cell (neuron). In humans there are about
10'2 neurons. But the complexity of the brain is not limited to the vast number of neurons.
There is an even lar ger number of connections between neurons. One estimate is that there
are a thousand connections per neuron on the average, giving a total of 10 ' connections in
the brain. Neurons are often grouped naturally into lar ger structures (hundreds of thousands
of neurons). Inside these cortical areas or modules the interconnection is denser than be-
tween modules. Much of the impressing performance of biological systems comes from the
highly interconnected (and modular) structure. Thus, communication is essential for the neu-
ral networks field and this is also reflected in the usage of the term connectionism. This
structure should also be taken as a guide for ANN implementations.

One such multi-modular structure is suggested for action-oriented system§hese sys-
tems consist of a number of cooperating, often different, ANN models. These separate ANN
models often use dense interconnection patteris Poper B we find broadcast or ring com-
munication to be very ef ficient ways to support these dense communication patterns. It is
also noted that the synchronous form of communication resulting from a SIMD control
helps to achieve an effective solution. To support ANN models which use competitive learn-
ing, and which use the *“ transposed mappifigi.e., SDM), we early on added a select-first
network and global-or into the communication structure. These structures are also generally
needed for general purpose programming on SIMD computers.

Later in my studies the importance of the reduction operations noted, cf. Paper F. This
is especially true in on-line situations where batch training is not suitable. The importance is
clearly shown for LLSs in Paper F but these operations are also useful for MLP with back-
propagation, even if this is not stressed in the earlier Papers B and J. Surveying other archi-
tectures (see Papers B and F) few architectures are found that have support for reduction op-
erations, thus few of the architectures include a suitable support for the LLS class of models.

To support the communication needed between dif ferent modules an optical network
connected as a star is suggested. This is briefly described in Paper C. By using time multi-
plexing (TDMA) this network can support real-time and time-determinism. In each module
a real-time database reflects the status of the environment which is cyclically distributed
over the optical network. A more thorough treatment of the intermodule communication
structure is found in [18].

10
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Real-time, Embedded, Modular, Adaptive,
Parallel processor project — REMAP

The REMAP project started as “Reconfigurable, Embedded, Massively Parallel Processor
Project” but has evolved into “Real-time, Embedded, Modular, Adaptive, Parallel processor
project.” This change reflects the change of focus in the project. The reconfigurabilitybe-
came less emphasized, even if it is still there. As discussed in Paper A we did instead find
modularity adaptabilityand real-time operationsmportant for this type of massively paral-
lel computer. It also has become apparent that highly parallel modules fit the intended appli-
cation area better than a monolithic massively parallel computer.

The REMAP project is described in Paper C and the first realization of a REMAP mod-
ule, a reconfigurable bit-serial processor array with SIMD control, is described in Paper D.
To allow real-time operations and time determinism the architectural concept is based on re-
source adequacy, both in processing and communication [15, 16]. Learning algorithms are
cyclically executed in distributed SIMD-nodes, which access their data from local real-time
databases, updated with data from the other nodes via a shared high-speed optical link. Oth-
er aspects of the project are described in [3, 4, 18, 19, 21, 23].  The support for the multi-
modular REMAP is an ongoing research.

As described earlier in this summary support for fast multiplication is desired. In Paper J
the very simple bit-serial multiplier suggested by Ohlsson in [20] was added to the architec-
ture. This simple bit-serial multiplieruses a carry-save technique and can equalize multipli-
cation time relative to addition time. In Poper G I suggest that the bit-serial multiplier be re-
placed by a simple bit counter that can support fast Hamming distance calculations. For the
LLS model described in Paper E I found a need for reduction operations. The architectural
support for this is analyzed in Paper F. Three different implementations of global-sumare
identified and studied in PaperF. It is found that a bit-serial tree of addergives the best per-
formance/size ratio. For the global-minimunmoperation a new bit-serial structure is pro-
posed. This new min/max network has the advantage of not needing a global-or network
which the standard bit-serial way of finding minimum needs. This also results in a speed ad-
vantage in most cases. These reduction operations can be seen as special communication
structures, but besides them I have not found any other means of communication necessary
in a single module.

All the studied ANN implementations in this thesis show that the REMAP concept is an
excellent architecture. Minor additions have been needed, but as they have been added a
high performing and efficient architecture has emerged.

11
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The REMAP prototype

Building custom computensith FPGAs is today a field of research in its own right. In Pa-
per D the possibility to build a REMAP module with FPGAs was explored. One of the find-
ings was that in order to use the FPGA circuits efficiently, and get high performance, the sig-
nal flow is crucial. Unfortunately the Xilinx EDA software did not support this design issue
at the time of implementation (1992-1993), and the signal flow design had to be made by
hand. The need to assign the I/O pins to memory and controller further restricted the recon-
figurability. Thus, even if the processing elements are simple and regular , which makes it
easy to implement them with the XACT Editor, the possibility to reconfigure has not been
used much in our project. On the other hand the implemented PE design fulfills the require-
ments for most ANN models and thus the need to change the PEs is limited.  This design
method also gives the PEs high performance, with clock rates up to 40-50 MHz. These is-
sues are also discussed by Linde and Taveniku in [21].

The positive side of using FPGAs is that they allow you to think of the computer as
“modeling clay” and you feel free to really change the architecture towards the application
and not the other way around. With better tools this kind of architecture also has the poten-
tial to allow different architectural variations to be easily tested and evaluated on real appli-
cations.

Future REMAP Research

The main objective for future REMAP research is to develop the multi-modular concept.
The design and use of multi-modularANN, and the question of how to map them onto multi-
modular highly parallel computers, should be addressed.

For the next generation of REMAP computers there are of course also many other re-
search issues to be resolved. Whether a new realization technology will result in a dif ferent
PE granularity is one such issue. And if the bit-serial design is retained it is clear that the
control issues must be addressed.

12
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MAIN CONTRIBUTIONS

The main results presented in this work are the following:

A new system-architecture REMAP (Real-time, Embedded, Modular, Adaptive, Par-
allel processor project), incorporating highly parallel, communicating processing
modules, is presented as a candidate platform for future multi-modular artificial neu-
ral networks (ANNSs).

The suggested architecture for the modules is a linear SIMD (Single Instruction
stream, Multiple Data stream) array , internally connected using a ring topology , but
also supporting broadcast and reduction operations. Besides addition and subtraction
the PEs need to support fast multiplication, which is identified as the most important
operation in ANN implementations. For certain ANN models minor additions or re-
placements of PE features have been suggested, for example, the addition of a bit-
counter to support Kanerva’s sparse distributed memory (SDM) is proposed.

Requirements for efficient mapping of ANN algorithms onto highly parallel comput-
er modules are identified. This has been accomplished both by studies of ANN imple-
mentations on general purpose parallel computers as well as designs of new parallel
systems tuned for ANN computing.

The terms massively/highly/moderately/barely parallel are defined. The analysis sug-
gest that modules of highly parallel modules are better than a single monolithic mas-
sively parallel computer, i.e., each module should have less than 4096 PEs.

Six different dimensions of parallelism in ANN calculations have been identified. For
action-oriented systems it is established that node and weight parallelism are the
most important. In this thesis I also establish that the combination of node and weight
parallelism, “mixed parallelism”, is the preferred form of parallelism for most of the
ANN models studied.

Many of the analyzed models are similar in structure and can be studied in one con-
text. I therefore suggest and define a new superclass of ANN models called localized
learning systems (LLSs). A parallel computer implementation of LLS is analyzed and
the importance of the reduction operations is recognized. After adding support for re-
duction operations to the REMAP computer concept, it becomes very well suited for
LLS.

For many ANN algorithms, the reduction operations have been found to be an impor-
tant extension to the basic SIMD architecture. Three implementations of global-sum
are identified and studied. It is found that a bit-serial tree of adders gives the best per
formance/size ratio. For the global-minimum operation a new bit-serial structure is
proposed. This new min/max network has the advantage of not needing a global-or
network as the standard bit-serial way of finding minimum does.  This results in a
speed advantage in most cases.

13
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A REMAP prototype containing 128 bit-serial PEs has been built, showing that it is
possible to build a highly parallel computer module suitable for ~ ANN calculations
with field programmable gate arrays.

The potential of the suggested architecture is shown through theoretical studies, for
example, an SDM implementation of a normal problem using 256 REMAP process-
ing elements is found to run 10 times faster than the normal Connection Machine
simulation, where 8k processing elements are used. Another example is the very effi-
cient implementation of self-organizing maps on the REMAP architecture.
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CORRECTIONS AND COMMENTS

CORRECTIONS AND COMMENTS

This thesis consists of papers that have been published as separate documents and no correc-
tions have been made to the content. However, there are some corrections and clarifications
that should be made. These are listed below.

The number of layers defined in Paper J is not consistent with the other papers. InPo-
per J the layer count is the number ofnodelayers while in Paper A to Paper Hit is the

number of weight layers

In PoperJ on page H) 5021 1§1 Algorithm 1, Step 2, replace net!) = zlw(l)o(I >

0) y
with ¢ net; zl

In Poper J the descrlptlon of the problem associated with accessing the weight matrix
W during the feedforward phase and needing to access the transposed matrix ~ W'
during the back-propagation phase is sketchy. Solutions to this problem can be found
in Paper B, for example using skewed matrices or an adder -tree. Additionally, three
different forms of adder-trees are suggested and analyzed in PoperF.
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ABBREVIATIONS

ABBREVIATIONS

The following abbreviations are used in this thesis:

ALU
ANN
ANS
AOS
BAP

arithmetic and logic unit
artificial neural network
artificial neural systems
action oriented system
bit-serial array processor

BP back-propagation

CL
CLB
CMAC
CMOS
CPS
CPSPW
CU
CUPS
DRAM
EBF
ER

FA
FIFO
FLOPS
FPGA
GRBF
GaAs
HD
HEP
HyperBF
/0
ICN
I0B
IPS
LAN
LHC
LLS
LRTDB
LVQ
MCM
MD
MIMD
MIMSIMD
MLP
MM
MSB

competitive learning

combinatorial logic blocks
cerebellar model arithmetic computer
complementary metal oxide silicon
connections per second
connections per second per weight
control units

connection updates per second
dynamic RAM

elliptic basis function

expanded representation

full adders

first in first out

floating point operations per second
field programmable logic arrays
generalized radial basis function
gallium arsenide

Hamming distance

high energy physics

hyper basis function

input and output

interconnection network
input-output blocks
interconnections per second

local area network

large hadron collider

localized learning system

local real-time database

learning vector quantization
multi-chip modules

Mabhalanobis distance

multiple instruction streams, multiple data streams
multiple instruction streams for multiple SIMD arrays
multilayer perceptrons

memory modules

most significant bit
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PCA
PE
PNN

RAN
RBF
RBP
RCE
REMAP
RISC
RPCL
RWC
SDM
SIMD
SOFM
SOM
SONN
SPMD
SPR
SRAM
SSC
TDMA
TFM
TLU
TRD
VLSI
WA
WDMA
WS
WTA
WUPS

principal component analysis
processing element

probabilistic neural networks

random access memory; a better term would be read and write memory (RWM)
resource-allocation network

radial basis function

recurrent back-propagation

restricted Coulomb energy

real-time, embedded, modular, adaptive, parallel processor project
reduced instruction set computer

rival penalized competitive learning
real world computing

sparse distributed memory

single instruction stream, multiple data streams
self-organizing feature maps
self-organizing maps

self-organizing neural network

same program on multiple data streams
synaptic processing rate

static RAM

superconducting super collider

time division multiple access
topological feature maps

threshold logic unit

transition radiation detector

very large scale integration

work area

wavelength division multiple access
workstations

winner-take-all

weight updates per second
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Abstract massively parallel, as has been done in some instances. In
this paper our view of architectural models is quite liberal,
encompassing heterogeneous computing environments,

Concepts such as modularity and heterogeneity are beynq \ye definitely are concerned with systems having thou-
coming important for a growing number of applications
sands of processors.

that use massively parallel computer architectures. Ap: . )
plication areas which seem to require these concepts aj  1he workshop produced discussion on a broad range of
pear in real world computing and action oriented research issues. We expand on the discussion in selected

systems. In many instances the current offerings of highareas and identify problems and research issues from those

performance, parallel, general purpose COMpUIers areyreag The nature of this paper, consistent with the work-
not well suited to these applications since they do not ac . ’ : . .
dress issues like real-time, time determinism, heterogeS'OP; IS not to report research results. It is to identify re-

neous communication, physical size, power consumptiorsearch that needs to be done. Our interest is not systems
etc. These issues are important in special systems thtargeted for general purpose, high performance computing.
can be viewed as non-conforming to general purposqt js systems that are in some ways special purpose or ap-

i i i \ H H H n H Ll H
looking Into o examples of modular and hetergenoug?lcation specific. The use of "non-conforming in the fitle
systems: high performance instrumentation systems aniS meant to indicate systems that differ in substantial ways

action oriented systems. We raise some research issufrom the commercial offerings, or that have unique re-
that need to be resolved in order for modular and heteroquirements that are not well met by current offerings. We
geneous systems to be used effectively and efficiently. pegin by defining terms and concepts.

Key words: Two important concepts in this paper are modularity
and heterogeneity. By "modular" we mean that a suitable
architecture can be achieved by combining a humber of
building blocks (modules). Each module can be a comput-
er in its own right, and in our context each module could
] be a homogeneous parallel computer module as well. "Het-
1. Introduction erogeneous"” indicates that these modules can be of differ-
ent kinds, that is, they can differ in parallelism, control, 1/0
support, and other aspects of their architecture. By having
different kinds of modules it is possible to use a module
that fits a certain part of the application very well, and by
combining modules we get a very good fit between an ap-
plication and the architecture for many applications. An
abstract view of such a system is given in Figure 1, where
there are three modules of different types which communi-
cate with each other and with the external world of periph-
eral devices, instruments, sensors, actuators, etc.

Massively Parallel, Non-Conforming Computers, Modu
lar, Heterogeneous, Embedded, Real-World Computin
Real-Time, Action Oriented Systems.

The goal of the Frontiers '92 Workshop on Processor A
chitectures was to identify problems that could be ac
dressed through research, and whose solutions wol
promote the availability and use of massively parallel pr¢
cessing. In recent years the meaning of "massively paral
processing" has broadened. In 1986, when the first Frc
tiers symposium was held, the phrase meant systems w
more than 1000 processing elements, and the architectt
model was definitely SIMD. Now it rightly includes
MIMD architectures, and variations on these two model
It is less right, however, to call systems with 32 processc
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There are several additional concepts of importancinteracting with the environment in real-time. Integrated
The notion that a system is "resource adequate" means ishould not mean that there is only one block of computa-
computational resources, including I/O, have the necessiion, instead it should be seen as a number of cooperating
power to accomplish the task in an allotted amount of timsmaller blocks. Each block is carrying out different styles
"Embedded" systems are just those in which resources of signal processing, e.g. pattern recognition, vector quan-
closely coupled to other parts of a system, such as sengization, or error correction. Many blocks are potentially
or actuators. Having the capability to configure modulaimplemented as artificial neural networks (ANN). This
heterogeneous systems means that we can achieve emimodularization corresponds very well to how the brain is
ded systems with resource adequacy, which relieves organized, where real neurons often can be found to be
from many of the real-time resource sharing problems. grouped into larger structures (hundreds of thousands of
neurons). In Section 3 we further explore the idea of action
oriented systems.

External Irputs

1.1 Demands placed on systems

The intended application areas, and the key concepts, lead
to a number of demands on these massively parallel sys-
tems. The first demand isal-time performance The im-
plication of this demand is that for each task there must
always be enough computational and I/O resources guar-
anteed. Since hardware is often cheap it is natural to use
resource adequacy as a hardware design philosophy. Dif-
ferent tasks require different computing paradigms and
system architectures. As a consequence, the final system
may be heterogeneous. Therefore, we need to find overall
system architectures in which we can still deal with, and
guarantee, the real-time demands.

The second demand iembeddedimplementations

Parallel
Module
B

Parallel
Module
A

Inter-module
communication

Parallel
Module
C

Non-Conformirgy Systam

External Ouputs Miniaturization and low power consumption are necessary
to achieve an embedding of resources. By taking advan-
Figure 1. A modular, heterogeneous, parallel system. tage of the advances made in VLSI technology and pack-

aging, e.g. multichip module techniques, the goals of both

architectures are suggested, specifically instrumentati™Miaturization agdcigw povlver fondsurtnpgpr; 'Ct? rl bde mei. In
systems for large experiments and action oriented systerm"’my cases embeading also eads fo distributed systems,

many important architectural aspects will be found. In a(Wh'Ch |n.tur.n implies that modu_lgnzatlon IS r.equ!red.
Communication needs can be critical. Processing is fre-

dition to the two areas we mention, similar problems ar i ired to be cl ¢ q el
opportunities can be found in applications originating i\qllljeln”é r;zquwe 0 gcoste c:.sensors and massively par-
manufacturing, military, medical, environmental, spacea e €comes an Important ISSue. .

The third demand is support feafety criticalfunc-

borne, and other endeavors. i d d foarsh ) t€ault tol
In major experiments, such as the new particle collide lonsand preparedness foarsh environments-autt toler-
proposed in the U.S. and Europe, data must be acquilant processor arrays and communication, and/or fault
from thousands of physically dis’tributed Sensors. Datolerant computational models are increasingly important
for applications where human safety is involved. Alterna-

rates are high and real-time processing is needed to se, . o :
tively, fault tolerance is needed when applications require

important data and reject the rest. Parallel processing ¢ i . : :
computing equipment to operate in places where condi-

be used to advantage on the images of particle tracks Etions are harsh or repair is difficult
energies. However, large packaged parallel machines | ) L
9 ge p ged p The fourth demand is the ability to function in dynam-

not very suitable since processing requirements and t. | Id . tsAdaptability to chanai
physical environment makes it necessary to modulari/¢: fea-world environmentsadaptabiiity to changing en-
vironments, and self-organization in relation to input

and embed processing resources in proximity to the se
sors. Other characteristics of this environment, and the lpatterns that have never before been encountered, are nec-
! .essary functions. An emerging technology in order to

search issues it raises, are further discussed in Section - hi h ad d behavior is th licati :
In an action oriented system, sensory, motor, and praC Ieve such advanced benavior IS the application of neu-
ral network principles. A way to cope with the complexi-

cessing parts, all possibly utilizing neural network princit. involved with ad d svst functioning i tral
pals, are seen as an integrated system capable ies involved with advanced systems functioning in natura

By studying two areas where modular and heterogenec
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environments is to use a multitude of cooperating ANNsively parallel processing. Sections 2 and 3 give examples
organized in layers and hierarchies. Support for this miof these systems and describe some unique aspects and en-
then be given in the architecture. vironments of their use. Section 4 emphasizes the research
The fifth, and final, demand that we consider here is tlissues that must be addressed for success with these special
need fornew development methods and tolstion-ori-  systems that do not conform to current commercial offer-
ented systems, as well as other systems where the envirings.
ment can not be fully modeled, must be developed throu
interaction. This interaction exists both between the systey High performance instrumentation
designer and the system, and between the system and
. ) L . systems
environment. Developing/training the system on-line, us

ing the real sensors and actuators, must be supported. ap informative example of massive parallelism in an em-
bedded real-time system occurs in the field of high energy
1.2 Contrasting system design goals physics (H_EP). Particl_e colliders like the Superconducting
) Super Collider (SSC) in the U.S., or the Large Hadron Col-
Unfortunately the problem areas mentioned above, cojjger (LHC) in Europe produce very large quantities of ex-
pled with the system demands, do not fit very well into trperimental data in very short time spans. At projected
current offerings of high performance, parallel, generizeam collision intervals of 15 ns, one of the sensing instru-
purpose computers. General purpose computers do iments for the new colliders will output data at rates in the
have the need or luxury to address the range of issuesneighborhood of 1563 bytes/s [3]. The problem is to ac-
the embedded systems we are investigating. As exampqyire interesting data from the vast quantity produced, and

of different design goals and constraints consider: then to find "events" of interest in the data such as particle
tracks and peaks of energy. These results are further pro-

General Purpose versus Embedded Systecessed to determine energy, momentum, time duration, and
other aspects that represent the physics of the events.

» Maximum performance * Resource adequat  Hierarchical and parallel configurations of computers

* Throughput oriented * Real-time, time determinisnare used extensively for data acquisition and processing in

» Size is of minor concern « Size is importantthe instrumentation systems of colliders [8]. Detectors sur-

« Standard languages like HPF » Custom programmirround the site of collisions in a physically large volume ex-

* Normal I/O capabilities * High 1/0 bandwidth tending approximately 10 meters along the beam axis and

« Standard data formats * Data transformation2 meters in diameter. In the terminology of the physicists,

the computer structure is in levels of "triggers”. For the

When the first massively parallel machines were deveLHC the first level trigger acts as a filter by identifying re-
oped each processing element (PE) was very simple, ofgions of interest within the total set of detectors. The sec-
bit-serial [4, 16, 18]. Many of the organizations that deveond level trigger typically locates particle tracks or peaks
oped such machines now have moved towards highly pof energy. It thus reduces the data but increases the infor-
allel computers where each PE is much more powerful [Imation passed to a third level where the physics of the
19]. This is partly a result of technology advances, arevents is processed. Our own work is at the second level. A
partly a reaction to the market pressure towards high mamassively parallel processing array based on the Blitzen
mum performance and general purpose usage. As a venSIMD device [5] is being evaluated for use by CERN in
put it at the workshop: "The market is only interested ithe LHC [7].
using 32-bit data".

Certainly the grand challenge problems present stroi .
motivation and incentive to architects and corporations [92'1 System properties
While all of the problems require very high computationeThis instrumentation system displays many of the proper-
rates, most do not have real-time requirements. The cties that were described in Section 1. It also provides ex-
exception is weather forecasting where response time, amples of research issues that must be addressed to realize
though real, is not short. All can be handled using hartrigger structures or comparable systems. Note that SSC
ware configured as large systems in controlleand LHC are in the early phases of development, with ini-
environments. This has left the field of real-time, embedial experiments expected in the late 1990's, and thus these
ded, and action-oriented systems without major suppoissues are current and ongoing research issues.
Many of the design goals of a general purpose highly p: If we consider the requirements of HEP instrumenta-
allel computer do not apply for this class of machines. tion, the need for modular and heterogeneous properties

This paper suggests that modular, heterogeneous sbecomes apparent. The system is real-time in that colli-
tems will play an important role in the future use of massions occur at definite time intervals and the interesting
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data for a collision must be gathered and processed, at leof the instrument and around the circumference, the three
through the second level where it is reduced such thatlevels in the processing hierarchy are also distributed.
can be saved by the third level for off-line physics calculiThere is a tree structure to the hierarchy with the first level
tions. Collisions occur at 15 ns intervals. It is the responseing the leaves. Thus modules of SIMD arrays can be
bility of the first level to determine which collisions areused for the second level, and a reduced number of MIMD
producing potentially interesting data and to pass that rmodules, or possibly just one, for the third level. Essential-
duced amount of data to the second level. A tentative gdy, the system is modular since it is necessary to use piece-
for the second level in LHC is to gather and process aiwise coverage of detectors in the collision volume. It is
100 kHz decision frequency. Thus, the real-time procesalso massively parallel due to the number of processing el-
ing interval is just 1Qus. To put this in a computer time ements needed to provide the interfaces and processing for
context, the overhead for sending one message betwthose detectors.
processors in the Intel Paragon is about25 A further characteristic of the systems we are studying
The system is heterogeneous in that different procesds that processors are embedded with other electronics and
ing technologies and architectures are used at different limechanics. This is clearly the case with instrumentation
els of the hierarchical arrangement. The general structifor HEP. It is impractical as well as unworkable to think of
is shown in Figure 2 [6]. Data rates differ dramatically, arunning 560,000 wires transferring a cumulative’ 10
do processing requirements. SIMD parallel processing imegabytes per second, as expected for the transition radia-
rays are being evaluated for the second level, but MIMD tion detector (TRD) [3], from the instrument site to a room
likely for the third level. Analog devices may be used iwith a computer system.
the first level. Within a level, the processors are homog The final characteristic for this example has been intro-
neous, but they must communicate with different types duced in the paragraphs above. There is a high bandwidth
processors in the other levels. I/O requirement. For the TRD example, the major burden
is on input with an expected bandwidth of/ 1B/s into
Trackers the first level and 7.7*FOMB/s into the second. In gener-
(Dete_ctor) (Dete_ctor) (Dete_ctor) Calorimeters al, some formatting or transformation of data may be nec-
Section Section Section ' - T .
Muon Chambers essary. For this example application it is necessary since
the instruments produce small outputs that can be repre-

I \ | sented in a few bits. The bits are gathered into 32-bit words
FIFO First Level for transmission over HiPPI channels, then must be trans-
Pipeline Trigger formed by a corner turning process for alignment with pro-

I I @ 66 MHz cessing elements.
| Figure 3 shows one SIMD module with 1024 PEs as it

Other Channels \T/ ggiz may be used for the second level trigger. Several such

\ modules are needed for the total system. A region of inter-

Multiplexer est is selected by the first level and delivered via a HiPPI

[ channel to this level. The array of PEs was sized to satisfy
I 1 Massively I/O and processing rates, and the region is mapped to the
FIFO Second LevdlParallel array. Results of feature extraction algorithms are passed

Plpellme Tnggtlar SIMD Array (4 the third level. The flow of regions of interest is continu-

| ] @ 100 kHz ous during an experiment, with a goal of|iOfor process-
Other Modules Data ing each 16 by 240 pixel region.

Y \T/ Gate All of these characteristics are described to emphasize

the need for application specific solutions rather than com-
mercially available systems. This became apparent in prac-
| tice through the process used by CERN to selectively

Event Builder

Third Level Trigger | Processor refine the choices for the final system to be used in the
and Mass Storage Farm LHC. In their process, a progressive set of evaluations is
made. They first identified candidate technologies, then
Figure 2. Hierarchical trigger structure with heteroge- specified benchmark tests. Results were presented at a con-
neous processors. ference held at CERN, in Geneva Switzerland. A candidate

The system is modular in that processors must be physiccommercial massively parallel system had effective deci-
ly near the source of data to accommodate high bandwicSion frequencies that met the desired rate. However, it
transfers from the sensors and the collision frequenc@chieved the good rate only by accumulating a large num-

Since sensors are densely distributed over the 10 m lenPer of events and processing events in parallel. This pro-
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duced long latencies for the earlier events accumulateprovides many parameters that can be exploited during a

followed by a burst of results for all events. The irreguladesign phase. Tools and techniques to assist in the mapping

bursty nature of the processing was not acceptable in icould be very useful.

overall design of the instrumentation. The lack of modula  Algorithms and data rates for high energy physics

ity in a fixed commercial system was a detriment in thistrongly imply a heterogeneous, hierarchical structure. Re-

case. Other researchers using systems with more modulsearch is needed in methods for partitioning tasks and

ty proposed adequate resources, still using a high degreccommunicating through the hierarchy. Fault tolerance and

parallelism, that more closely matched the problem size.reliability issues must be addressed since experiments are

single event could be processed using parallelism, texpensive and the system is complex.

events were not accumulated into parallel data sets. F  Real-time computing in HEP has the constraint of very

sults were produced at the uniform time interval of inptshort response or computation times. Providing real-time

data arrival for the events. for a problem with response times in the microseconds is

different from that for one with milliseconds of time. For-

. tunately, the problem does not require response to a wide

2.2 Design problems set of irregular inputs driven by interrupts. It is real-time

Application specific systems like the second level triggefrom the point of view of needing to complete a fixed rou-

described above frequently require the solution of martine and perform related I/O within a very short time span.

interesting problems. There are research issues and This is well-suited to the resource adequacy notion, assum-

search approaches to the problem solutions. We brieing sufficiently adequate devices are available.

identify some issues that relate to this example, then de  In the next section we give a second example of appli-

to Section 4 for the main discussion of research directiccations where standard parallel processing systems are not

for these non-conforming massively parallel computers. suitable. It contrasts in several ways to the instrumentation
An interesting high level design problem is mappiniexample above, but it also has similarities and presents

the application, expressed as algorithms and data propseveral of the same research needs.

ties, into an architecture. The problem exists from tw

points of view: selecting the processing resources and ct

figuring those resources. The richness of devices and arc

tectural arrangements of those devices into solutiol

Region of Interest 240 pixels
¢ 16 132 pixel

[22)

1 1
pixels<«—> | | L 1

= I~ 32
_____ -~/ " T[|PES_V " _

Virtual

Processing\[L
Array 32 PES
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Physical O[] |PE
Processing 1| | Plane
Array —

Figure 3. Mapping detector data to a processing array in the second level trigger.
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3. Action oriented systems In Section 1.1 most of the demands of an AOS were
summarized. But besides issues mentioned there, the close
An action oriented system (AOS) is used as the second interaction with sensors and actuators will need attention.
ample of an application area where modular and hetero(This closeness makes it desirable to have the computations
nous computers will be needed. Here these aspects take place in the sensors/actuators in a massively parallel
combined with embeddedness, real-time responses, higkashion. Another issue is development methods for appli-
O and internal communication bandwidth, etc., which g€lcations using AOSs. As |earning instead of programming is
erates a need for non-conforming massively parallel premphasized, the possibility to develop/train the system on-
cessing systems. line or in-the-loop (using the real sensors and actuators)
The concept of action oriented systems (or computinseems desirable. Still the system must support ways to
has been developed by Michael Arbib for many years ahandle timing constraints in a natural way. Future develop-
is often called "sixth generation computers” by Arbib himment environments for AOS should probably be graphical-
self [1]. That particular term has become more approprialy based, using domain specific symbols (hierarchically),
since the introduction of the MITI real world computingand time attenuations [14, 17]
(RWC) program in Japan [10], which replaces the muc  After looking at one early example of an AOS in Sec-
debated fifth generation project. This is because many tion 3.1, we will discuss suitable architectures for AOSs in
the goals of the RWC program are focused on expandiSection 3.2. Following that, we find that not only will AOS
the knowledge in the field of action oriented systems!  influence research in non-conforming computers, but also

Many of the ideas of action oriented systems are dravthe research in the field of artificial neural networks.
from the organization and function of the human brair

The key-concepts of action oriented computing are: . . .
- Cooperative computing 3.1 Application areas for action oriented
Using the brain as a model, we find a number of cooSystems

erating areas instead of a large homogeneous informatirhg 4reas where action oriented systems first will be intro-
processing facility. Each area is, of course, highly parally,ceq are in manufacturing, robotics, autonomous vehi-
and can for now be approximated as hOmOGeneous cieg and the control field in general. As these areas already
structure. This makes it very natural to suggest a heteroi, e action oriented and modular (but not necessarily ANN
neous modular computer for simulating action orientéyaseq) it is not hard to realize that ANN based AOSs are
systems. As each module communicates with many otfineresting. Often the problems are complex enough to
modules in a massively parallel way, this structure pupaed the complexity of multiple ANNSs.
strong demands on intermodule communication. One recent example of an action oriented system is
- Perceptual robotics COLUMBUS [20], an autonomous mobile robot devel-
_ An AOS generates its knowledge about the surroungpeq 4t CMU. This robot's single goal is to maximize its
ing world by exploration. The system interacts with the efintormation of the initially unknown environment. The
vironment through a process of Perception -> DeCision qiact has so far concentrated on the algorithms to be used
Action. The perception can be sensors for images, SPe€;n not so much on the computer architecture to run the al-
tactile information, etc. As these sensors are massive, '”‘gorithms. COLUMBUS uses a mixture of different algo-
act, and many times incomplete, the system must be_higlrithms (as could be expected of an AOS). There are two
parallel, robust and fault tolerant. And as real-world infolgenarate ANNS for sensor interpretation and confidence es-
mation is volatile, the system must work in real-ime. imations. This information is then used to enhance an ex-
- Learning . ploration map at a higher level. By means of a modified
_ In cqntrast to the computers of today_ which nee_d exadynamic programming algorithm this map is used to de-
instructions (rules or programs) to function, an action of¢jye on an action. The decision is based on where there are
ented system will base much of its actions on learning. T‘unexplored areas and where there are obstacles.
sygtem should be fable to self-organize_ the information Although it appears that the implementors of COLUM-
gains from exploration of the world, and integrate informeég ;5 have not concentrated on the architecture, they have
tion from many different sources to create an internal Moy oq,ced a modular and distributed implementation, using
el of the world. From past experiences incorporated in tlgeyeral SUN SPARC workstations in parallel. As the pro-
internal model, it should be able to make decisions on Wrcessing power is not embedded (on the robot) a transmis-
actions are appropriate. Much of this learning will be iMgjon of sensor and control information by a radio link to
plemented as artificial neural networks, but certainly ar,n4 from the robot is needed. By dropping some sensor in-
univer_sal or domair_1 knowledge can and should be incorpformation, and modifying the dynamic programming algo-
rated in advance (like the laws of Newton). rithm used for planning, it has been possible to reach close
to real-time performance (each action taking from 3 to 12
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seconds). Even if the authors indicate that they are satisf "Channelsalso need to adhere to time-determinism and
with this performance, we feel that a different kind of arat the same time give as high communication bandwidth as
chitecture could help to speed up parts of the system by ipossible to the communicating nodes. We expect fiber-op-
dressing the problem of embeddedness, 1/0 performantics to be used, together with time division multiplexing. If
and parallelism used. this type of multiplexing is not enough, frequency multi-
plexing may be considered in addition.

32 Archi . . Local real-time databasesre needed to store the

) rchitectures for action oriented shared data from other nodes and are updated cyclically
systems from the channels. The data stored in the database reflects
The best architecture for an AOS is still an open researthe best available information for its node at a certain time.
question. An architecture we suggested in [17] views tt  Figure 4 shows an implementation of this architectural
system as a number abdesthat communicate through concept. Four Operating Nodes, some incorporating mas-
logical channels The real-time concept is supported by desively parallel /O and each with a processor array (PE ar-
manding time-determinism for all parts in the system. Bray) connected to a local real-time database (LRTDB), are
time-determinism we mean that it should always be posshown. The Operating Nodes are cyclically controlled by
ble to determine the execution or cycle time for each corcontrol units (CU). Channels between the nodes are estab-
putation and communication. To accomplish timdished using time and/or frequency multiplexing on the
determinism we suggest thatal real-time databasese- shared fiber-optic medium.
tween the nodes and the channels be introduced. The trThe figure also shows a Development Node which is con-
main concepts of this architecture are described below: nected both to the network of operating Nodes and to a Lo-

Nodescan be either an I/O interface or a computationical Area Network (LAN) of workstations (WS) running the

entity, or function as a combination. Each node can diffidevelopment system. The Development Node may be a PE
in functionality, and communicate with other nodes via tharray (as shown) but may also be another type of computer,
logical channels. The computation is cyclic [11, 12] anput with the same interface to the shared medium. The
time-deterministic (no interrupts). We expect many of thL AN can be removed without affecting the running sys-
nodes to be implemented as SIMD computers. tem.
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Figure 4. An architecture implementing a modular, heterogenous, parallel system for action oriented computing.
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A more detailed description of this architecture conce|VLSI design issues, even though those also have an impact
can be found in [14, 17]. To test these ideas and explcon processor architecture.
possibilities in the design of the nodes, an experimeni In previous sections we have given examples of modu-
system has been built using field-programmable logic dlar and heterogenous computers. In each example, general
vices. Experience from this project, called REMAP [2]purpose highly parallel computers were not capable of
will lead to a VLSI design of modules that can be the basolving the problems within certain performance con-
for building non-conforming computers, especially in thstraints. Instead we found that a special purpose heteroge-
areas of AOSs. The architecture is intended to be open nous architecture using homogeneous modules was
the emerging technologies like analog ANN VLSI chipmnecessary to generate more effective solutions. But before
that can do much of the computations close the sensorssuch special systems can become readily available as solu-
extremely high speed. tions for a broad class of problems, there are a humber of
research issues that have to be addressed. Our discussion is
representative rather than exhaustive. We highlight some
3.3 AOS Influence on ANN research specific issues at the system and processor levels, and then
During the last ten years a formal explosion of artificicindicate other areas with open research issues.
neural network research has lead to a number of differe
models. Most of the models are naturally parallel and c: .
easily be implemented on highly parallel computers. In4'1 Configurable systems
study it has been found that for most ANNs a highly paraSystems issues are the global concerns that cannot be re-
lel SIMD computer with simple communication (broad-solved by considering one PE in isolation, yet they affect
cast) is enough [15]. But when it comes to a number each PE's architecture. The systems of interest in this paper
cooperating ANN modules relatively few experimentare by definition different from those which can be pro-
have been done, and there is no hardware around with duced in quantity in a commercial manufacturing setting.
capacity to do real-time simulation of multi-ANN system<They are special in some ways and have unique properties.
big enough to be interesting. Many aspects of multi-ANIThe challenge is to provide the tools, techniques, and
are unclear at this time, leading to a need for flexibility imethodologies that can lower the cost and improve the
the systems that implement them, to cope with changesquality of systems configured for special applications.
models etc. From the starting point of a problem specification or an al-

Some aspects of ANNs in AOS that need to be agorithm, coupled with acceptance criteria, how does one
dressed are influenced by the real-time aspects. New Alarrive at a good system that satisfies the criteria.
models need to be developed since real-time createsan  An important aspect is that, in the kind of systems we
for models that can learn continuously, which is not thdiscuss, the modules need not be as much general purpose
case for one of the most popular ANN models (back-proas processor arrays for "traditional" massively parallel
agation learning). And as learning methods using relacomputers. We accept that some modules very strictly fol-
ation or structural adaptation are not time-deterministic, low the SIMD paradigm to be very efficient on some types
will be hard to use such models for real-time AOS as weof computations (and worse on others). For more irregular
Real-time also means that some types of parallelism in tcomputations, other paradigms (SPMD, MIMD,...) are
ANN models [15] can not be used. That is, the training eused in the modules. That is, we accept heterogeneity in
ample and training session parallelism are batch orientthe system. Assuming that our problem is sufficiently large
and simply are not viable for continuous learning. (Wthat parallelism becomes advantageous, several more spe-
should use the parallelism in weights and nodes insteacific issues can be identified:
Other aspects of ANNs in AOS that need more research i
those of planning and creating useful internal world moc
els.

4. Research issues

Very early in our workshop session it became apparent tt
we could not discuss processor architecture in isolatic
from the other three workshop topics. They are interrele
ed. Thus some of the topics below stray from narrow pr
cessor issues. Even so, the broader topics all have
impact on processors and must be considered in arriving
processor architecture decisions. Our topics do not inclu
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How is the overall problem partitioned into modu-4.3 Communications and I/O

2
lar parts? As seen in Figure 1, there are communication paths be-

Which style of parallelism (SIMD, MIMD, combi- tween the system and the external environment, and be-
nation) is appropriate? Can we know from probleryyeen modules of the system. If individual modules are
parameters? parallel processors there is also intra-module communica-
Which devices, preferably commercially availabletion. Since interconnection networks is the subject area of
provide the best fit with the problem? one of the other workshops, we mention here only the as-
How do we size a system to provide resource adPects that seem especially important. In.general, the prob-
quacy? lems are all concerned with high bandwidth movement of
data between different types of modules with different I1/O
mechanisms and structures. In many cases, processing is
required to be close to sensors or actuators, which may
Can we logically rearrange resources due to lastirgea| with analog signals. Efficient methods for data format
changes in the environment or the task to achie\;onyersion and corner turning are needed. Interfaces for
more generality? HiPPI and other high speed channels must be developed
How can we specify benchmarks such that thefor continuous modes of operation.

provide the desired insight to design alternatives?

Can custom configurations be developed quickl4_4 Fault Tolerance

for evaluation? . N .
. . : Systems to be used in safety critical and/or harsh environ-
How is the evaluation process controlled, given th L
.ments need to be fault tolerant. Many new possibilities of

richness of possibilities with parallel architectures ‘fault tolerance have emerged with ANN models. This, to-

gether with a multi-modular structure of ANN, raises many

Does an architecture scale from prototype to fu
size?

4.2 Processor architectures research issues on how to combine the fault tolerance in
- . : ANN structures with fault tolerance in the hardware struc-
Individual processor issues are more directly related to tture

processing power and flexibility of each processor. An a ) _
chitectural decision affecting a processor will co-influenc  + How do we retain the inherent fault-tolerance char-

system decisions such as array size. Thus, to do a gt acteristics of ANNs when we map them onto a pro-

processor design, one can not look only at maximum MIF cessor array?

or FLOPS, but must look at the whole system's perfo . What are the methods to distribute fault detection

mance and the environment in which the system is su and correction over a large number of modules?

posed to operate. Several specific issues are: - How can one reason about correctness in time as
What functional capability is given at each proces well as values, in an action oriented framework?
sor?

Redundancy and reconfigurability can be used to increase
What application oriented features for artificial neuchip yield as well as provide reliability. This becomes in-
ral networks, associative processing, signal prccreasingly important as VLSI technology allows more pro-

cessing, etc. are needed? cessors per chip and die size increases. Research is needed
What local control features should be implementeto investigate reconfiguration methods for various inter-
for SIMD processors? connection schemes.

How is massively parallel /O incorporated?
How is memory capacity and access balanced wi4.5 Software development paradigms

processing resources? As mentioned in Section 3 new development paradigms
What processing granularity is best, from bit-sericare needed for non-conforming massively parallel comput-

processors to full 64-bit widths? ers. This is especially apparent for AOSs where an on-line
What interprocessor communication granularity ior in-the-loop application development method is needed.
best? Some key-concepts for new paradigms will be: graphical

interface, data visualization, data parallelism, incremental
development on a running system, and software compo-
nent reuse. All of these concepts need more research, espe-
cially concerning their use in systems such as we are
describing.

In order to achieve maximum performance pe
watt, what trade-off should be made between cloc
speed and number of PEs per chip?
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4.6 Artificial neural networks

There are still many challenges for ANN researchers b
fore large modular ANN (AOS) can be built and its func
tion understood. Some of the research issues are state
Section 3, and many more can be found in the article |
Kahaner describing the MITI's real world computing pro
gram [10], many of the research issues regarding mu
ANNSs are listed. For example, the aspects of how the AC
should handle information, its representations, storing al
recalling information, integration of multiple information
sources, etc. Other research aspects are concerned witr
ways learning and self-organization are best carried o
The results of this research have great influence on b
system and module architecture of the computing platfor

5. Final comments

Identifying research topics has the problem of knowin
where to start, and then, where to stop. Given the gene
area of processor architectures for massively parallel sy
tems, we have chosen to emphasize systems which

unique or special in some way. We refer to these systel
as non-conforming since they differ from commercial of
ferings. The advantage is that they provide a rich enviro
ment, one with many degrees of freedom, and perha
some difficult constraints, for architectural and related r
search. Two quite different system examples were prese
ed. They were intended to show that massive parallelis
can be used in various application areas and to show -
need for further research to achieve the desired end resu
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During the past 10 years the fields of artificial neural networks
(ANNSs) and massively parallel computing have been evolving
rapidly. In this paper we study the attempts to make ANN algo-
rithms run on massively parallel computers as well as designs of
new parallel systems tuned for ANN computing. Following a brief
survey of the most commonly used models, the different dimen-
sions of parallelism in ANN computing are identified, and the
possibilities for mapping onto the structures of different parallel
architectures are analyzed. Different classes of parallel architec-
tures used or designed for ANN are identified. Reported imple-
mentations are reviewed and discussed. It is concluded that the
regularity of ANN computations suits SIMD architectures per-
fectly and that broadcast or ring communication can be very effi-
ciently utilized. Bit-serial processing is very interesting for ANN,
but hardware support for multiplication should be included. Fu-
ture artificial neural systems for real-time applications will require
flexible processing modules that can be put together to form
MIMSIMD systems. © 1992 Academic Press, Inc.

1.0. INTRODUCTION

This paper is intended to provide a survey of the use
and design of massively parallel computers for artificial
neural networks (ANNSs) and to draw conclusions based
on reported implementations and studies. The simple
control structure that characterizes massively parallel
computers can be SIMD (Single Instruction stream, Mul-
tiple Data streams) or a highly restricted form of MIMD
(Multiple Instruction streams, Multiple Data streams)
that we call SCMD (Same Code for Multiple Data
streams).

We try to identify the architectural properties that are
important for simulation of ANNs. We also emphasize
the importance of the mapping between algorithms and
architecture. ANN computations are communication in-
tensive, a fact which may put strong demands on the
communication facilities of the architecture. Moreover,
the requirements vary with the ANN model used and the
mapping between the algorithm and the architecture.

* Also at Centre for Computer Science, Halmstad University, S-
30118 Halmstad, Sweden.

The paper is organized into three parts: The first part
(Sections 1 through 7) is ANN-oriented. It concentrates
on ANN models and those characteristics of the models
that are of interest when considering parallel implementa-
tion. In this part we first go through the basics of artificial
neural networks and ANN algorithms. We then discuss
some general computational topics that are relevant for
the implementation of any ANN model, such as the pre-
cision of the calculations and the opportunities for paral-
lel execution. We conclude the ANN-oriented part with a
discussion of different measurements of speed for ANN
computations.

The second part (Sections 8 and 9) is architecture-
oriented. Here we define different classes of parallel
computer architectures and give a review of the types of
ANN algorithms that have been implemented on com-
puters of these classes.

In the final part of the paper (Section 10) we.analyze
what experiences can be drawn from the reported imple-
mentations and try to determine what requirements will
be placed on massively parallel computers for ANN sim-
ulation in the future—in batch processing, in real-time
applications, and in action-oriented systems. In real-time
applications, the speed of the input data flow and the
requirements for output data are set by the environment.
In action-oriented systems, sensory, motor, and process-
ing parts, all possibly utilizing neural network principles,
are seen as integrated systems capable of interacting with
the environment. These systems are sometimes called
‘‘sixth-generation computers’’ [2, 3].

2.0. THE BASICS OF ARTIFICIAL NEURAL NETWORKS

In this section we describe the basic properties and
terminology of biological neurons and networks. We also
show some simple models of these biological structures.

It should be noted that ANNSs are often far from being
good biological models. Instead they may be seen as bio-
logically inspired algorithms. Studying ‘‘the real thing”’
will give perspective on how simple our models are and
how complex the brain is.
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FIG. 1.

Cell body

Dendrites
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Synapses

The principal components of a basic neuron. The input comes to the neuron through synapses on the dendrites. If there are enough

stimuli on the inputs there will be an activation (impulse) through the axon which connects to other cells via synapses.

2.1. The Biological Neuron

The basic building block of the brain is the nerve cell
(neuron). In humans there are about 10'2 neurons. Neu-
rons come in many varieties. They are actually all differ-
ent but can be grouped into at least 50 types of cells.

The principal components of a neuron are shown in
Fig. 1. There is a cell body, a number of dendrites (input),
and an axon (output). The axon splits and connects to
other neurons (or muscles, etc.) The connections func-
tion like a sort of chemical resistor and are called syn-
apses. Thus the complexity of the brain is not limited to
the vast number of neurons. There is an even larger num-
ber of connections between neurons. One estimate is that
there are a thousand connections per neuron on average,
giving a total of 10" connections in the brain.

Neurons can often be grouped naturally into larger
structures (hundreds of thousands of neurons). It has
been established that some groups/areas of the brain are
organized in a way that reflects the organization of the
physical signals stimulating the areas, i.e., topological
order. The result is that nearby areas in the brain corre-
spond to nearby areas in signal space. This order is ac-
complished even when the fibers that are transporting the
signals do not exhibit any apparent order. The order
seems also to be achieved without any guidance as to
what is right or wrong. The resulting maps are therefore
often called self-organizing maps. Examples are visual
and somatosensory cortex. Each of these structures of-
ten connects to other structures at a higher level.

2.1.1. Adaptation and Learning

The brain would not be as interesting, nor as useful,
without its ability to adapt and to learn new things. There
are basically two ways in which adaptation takes place,
by changing the structure and by changing the synapses.
The first has the nature of long-term adaptation and often

takes place only in the first part of an animal’s life. The
second, changes of synapses, is a more continuous pro-
cess that happens throughout the animal’s entire lifetime.

2.1.2. Information Processing

The information processing in a neuron is done as a
summation or integration of information fed into it. The
information is represented as brief events called nerve
impulses.T The interval or frequency conveys the infor-
mation. According to Hubel [50] the impulse rates may
vary from one event every few seconds or even slower to
about 1000 events per second at the extreme upper limit.
The normal upper limit is often cited to be 100 to 200
impulses per second. The ‘‘speed’’ of the impulses along
the axon is around 0.1 to 10 m/s. The length of an axon
varies from less than a millimeter to more than a meter.

2.2. The Artificial Neuron

The first and very simple model, however much used,
is the model in which information is contained as levels/
values corresponding to the impulse frequencies. Then
the integration of pulses is done as a summation. The
synapses are represented as weights, w;, multiplied by
inputs i;. To make the model more powerful, a nonlinear
function, f, is applied to the sum, and the result, o =
f (ijij), is sent to the neurons connected to it (Fig. 2).

As with their biological counterparts the artificial neu-
rons are not very interesting by themselves. A large num-
ber of artificial neurons are necessary for interesting
computations. By changing the structure of the connec-
tions and adaptation rules it is possible to radically
change the type of computations made by the network.
Some of the models used are described in Section 3.0.

t This is not true for all neurons: There are, for example, neurons in
the retina which have ‘‘graded’’ response. See e.g. [50] or [100] for
more on this topic.
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— " f(x)

S

FIG. 2. The simplest model of a neuron. It can be seen as a model of
Fig. 1. The output has the form o = A2w;i)).

2.3. Layered Models

In many models there are layers of neurons; see Fig. 3.
There has been some confusion about how to count the
number of layers. One method is to count the node layers
including the input layer, and another method is to count
weight layers (or node layers excluding the input layer).
In this paper we use the word ‘‘node’’ or ‘‘weight’’ in
front of the word ‘‘layer’” when it is needed to avoid
confusion. When we count layers we use weight layers,
since this is the most relevant method when considering
the computational effort. This method of counting im-
plies that one (weight) layer is the smallest network pos-
sible. This single-layer network corresponds to the con-
cept of perceptrons [109]. Node layers which have no
connection to input or output are called hidden layers
e.g., in Fig. 3 there are two hidden layers.

A compact way of giving the size of a multilayer net-
work is to present the sizes of the node layers with an
*“X”’ in between. For example, 203 X 60 X 26 states that
the input node layer has 203 nodes, the hidden node layer
has 60 nodes, and the output node layer has 26 nodes.
Between each layer a fully connected weight layer is as-
sumed. Thus, we consider this a two-layer network.

3.0. SOME OF THE MOST COMMONLY USED ANN
ALGORITHMS

- During the past 10 years the artificial neural networks
area has developed into a rich field of research. Many
new models or algorithms have been suggested. Not all
these models have been implemented on parallel com-

puters. This is not to say that some of them are not suit- °

able for parallel execution. On the contrary, a common
characteristic of all neural network algorithms is that
they are parallel in nature. For the purposes of this paper,
however, we review the most common ANN algorithms
only, in order to be able to discuss their implementation
on parallel computers.

The models are characterized by their network topol-
ogy, node characteristics, and training rules [76]. We de-
scribe some frequently used and discussed models.

1. Multilayer feedforward networks with supervised
learning by error back-propagation (BP), also called gen-
eralized delta rule [110]. The feedforward back-propaga-

~ tion model is used as a pattern classifier or feature detec-

tor, meaning that it can recognize and separate different
features or patterns presented to its inputs.

2. Feedback networks (also referred to as recurrent
networks). Different variations in node topology and
node characteristics have been proposed:  symmetric
connectivity and stochastic nodes: Boltzmann machines
[41, 42, 50]; symmetric connectivity and deterministic
nodes: Hopfield nets [47, 48, 49, 95] and mean field the-
ory [95, 96]; and nonsymmetric connectivity and determi-
nistic nodes: recurrent back-propagation (RBP) [1, 99].
The feedback models can be used as hetero- or autoasso-
ciative memories, but also for solving optimization prob-
lems. Using an ANN as an autoassociative memory
means that whenever a portion or a distorted version of a
pattern is presented, the remainder of the pattern is filled
in or the pattern is corrected.

3. Self-organizing maps (SOM), also called self-orga-
nizing feature maps (SOFM) or topological feature maps
(TFM), developed by Kohonen [62, 63]. This is one of the
more frequently used models with unsupervised learning.
SOM, with its learning vector quantization variations
(LVQI1-3), is used for vector quantization, clustering,
feature extraction, or principal component analysis [63].

4. Sparse distributed memory (SDM) suggested by
Kanerva [58], who argues that it is biologically plausible.
The SDM model has been used, for example, in pattern
matching and temporal sequence encoding [57]. Rogers

- [107] has applied SDM to statistical predictions, and also

identified SDM as an ideal ANN for massively parallel
computer implementation [106].

3.1. Feedforward Networks: Back-Propagation Learning

A feedforward net with three weight layers is shown in
Fig. 3. The network topology is such that each node (neu-

Input Nodes Hidden Nodes Hidden Nodes Output Nodes

Layer 1 Layer 2 Layer 3
(Hidden)
FIG. 3. A three-layer feedforward network.
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ron) in a layer receives input from every node of the
previous layer. As in most models each node computes a
weighted sum of all its inputs. Then it applies a nonlinear
activation function to the sum, resulting in an activation
value—or output—of the neuron. A sigmoid function,
with a smooth threshold-like curve (see Section 4.3), is
the most frequently used activation function in feed-
forward networks, but hard limiters are also used.

In the first phase of the algorithm the input to the net-
work is provided and values propagate forward through
the network to compute the output vector, O. The output
vector of the network is then compared with a target
vector, T, which is provided by a teacher, resulting in an
error vector, E.

In the second phase the values of the error vector are
propagated back through the network. The error signals
for hidden units are thereby determined recursively: Er-
ror values for node layer | are determined from a
weighted sum of the errors of the next node layer, [ + 1,
again using the connection weights—now ‘‘backward.”’
The weighted sum is multiplied by the derivative of the
activation function to give the error value, 8.

Now, finally, appropriate changes of weights and
thresholds can be made. The weight change Aw; 0 in the
connection to unit { in layer [ from unit j in layer / — 1 is
proportional to the product of the output value, o;, in
node layer / — 1, and the error value, §;, in node layer /.
The bias (or threshold) value may be seen as the weight
from a unit that is always on and can be learned in the
same way. The algorithm is summarized in Algorithm 1.

Algorithm 1. Back-Propagation Training Algorithm

1. Apply input 0O = I. 7

2. Compute output o’ = f(net{® + »?), where net’ =
2wPol™V for each layer.

3. Determine error vector E = T — O.

4. Propagate error backward. -
If node j is an output node then the jth element of
the error value vector D is
8,(’) = oj([)(l - oj(-’))(tj(’) - o](-’)) = 0](’)(1 - ol(l))e}l)
else
50 = 0f(1 — off) 3,50 Nyl
Here we have used the fact that the sigmoid func-

" tion f(x) = 1/(1 + e™*) has the derivative f’ =
Sa=5n.
5. Adjust weights and thresholds:
Awd = 3D o,
AbY = 18P,
6. Repeat from 1.

By remembering between iterations and adding a por-
tion of the old change to the weight it is possible to in-
crease the learning rate without introducing oscillations.
The new term, suggested by Rumelhart and McClelland
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[110], is called the momentum term and is computed as
w,(-})(n +1) = wﬁ,D(n) + Awl(})(n) + aAwﬁjD (n — 1), where «

_is chosen empirically between 0 and 1. Many other varia-

tions of back-propagation exist and some of them have
been studied by Fahlman [23].

3.2. Feedback Networks -

A feedback network consists of a single set of N nodes
that are completely interconnected; see Fig. 4. All nodes
serve as both input and output nodes. Each node com-
putes a weighted sum of all its inputs: net; = 2 w;o0;.
Then it applies a nonlinear activation function (see Sec-
tion 4.3) to the sum, resulting in an activation value—or
output—of the node. This value is treated as input to the
network in the next time step. When the net has con-
verged, i.e., when the output no longer changes, the pat-
tern on the output of the nodes is the network response.

This network may reverberate without settling down to
a stable output. Sometimes oscillation may be desired,
otherwise oscillation must be suppressed. o

Training or learning can be done in supervised mode
with the delta rule [111] or back-propagation {1], or it can
be done unsupervised by a Hebbian rule [111]. It is also
used ‘“‘without” learning, where the weights are fixed at
start to a value dependent on the application. :

3.3. Self-Organizing Maps

Relying on topological ordered maps and self-organiza-
tion as important concepts, Kohonen developed the
SOM [62, 63] which form mappings from a high-dimen-
sional input space into a low-dimensional output space.
These maps have been used in pattern recognition, espe-
cially in speech recognition, but also in robotics, auto-
matic control, and data compression. The SOM algo-
rithm proceeds in two steps: (i) the network node whose
value is closest to the input vector is identified, and (ii)
the nodes belonging to the neighborhood of this node (in
the output space) change their values to become closer to

FIG. 4. A seven-node feedback network.
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the input. These two steps are repeated with ever-
decreasing neighborhood size. The resulting nodes or
neurons will develop into specific detectors of different
signal patterns.

Described below is the ‘‘shortcut version’ of the basic
SOM algorithm. This version is motivated by the reduc-
tion of the computational effort compared to the original
one.

Algorithm 2. The SOM Algorithm “‘Shortcut Version”

1. Find the node (or memory) m, closest to input x.

[x(@#) — me(@) = min [x(te) — mi@)|.

2. Find the neighborhood N.(z;).
3. Make the nodes in the neighborhood closer to input.
m(tre1) = mlty) + a(t)[x(t) — m;(t)]
fori € N.(1;)
 m(tk1) = mdty) otherwise.
4. Repeat from step 1 with ever-decreasing N, and «
(neighborhood and gain sequence).

With a small change in the update equation (step 3 in
Algorithm 2) we can use the same framework for Learn-
ing Vector Quantization (LVQ), where the map functions
as a clustering or classification algorithm.

3.4. Sparse Distributed Memory

SDM developed by Kanerva [58] may be regarded as a
special form of a two-layer feedforward network, but is
more often—and more conveniently—described as an
associative memory. It is capable of storing and retriev-
ing data at an address referred to as a ‘‘reference ad-
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dress.”” A major difference compared to conventional
Random Access Memories (RAMs) is that, instead of

. having, e.g., 32-bit addresses, SDMs may have 1000-bit

addresses. Since it is impossible to have a memory with
21000 Jocations, SDMs must be sparse. Also, data are
stored in counters instead of 1-bit cells as in RAMs

The SDM algorithm has a comparison phase, in which
the sparsely distributed locations that are closest to the
reference address are identified, and an update (write)
or retrieval (read) phase, in which a counter value in each
of these locations is used (see Fig. 5).

Algorithm 3. The SDM Algorithm

Training the network (i.e., writing to the memory):

1. The address register is compared to the location
addresses and the distances are calculated.

2. The distances are compared to a threshold and
those below the threshold are selected.

3. In the selected rows,
where the data-in register is 1 the counter is incre-
mented, ‘
where the data-in register is 0 the counter is
decremented. :

Recall from the network (i.e., reading from the mem-
ory):

1. The address register is compared to the location
addresses and the distances are calculated.

2. The distances are compared to a threshold and
those below the threshold are selected.

Data-in register

Address register
S T GLolal [o[1]
ompare .
pare | Dist el | Store
¥ |_1011...011 97 | |0] 1] ol 1] o). -]o 2|,
0101....111 15 | |1 1| o| 3] -]+ |11
0110....101 78 | 10| of 2| 1] of- 30
Location 0111...011 102 | | 0] 11 0] 1] 5 0 [0 |Up-down
Addresses | 1101....101 u2 | |1 4] 1] 0 1 |-1 |counters
0111...111 128 | | 1] o[ 1] o[ 1] -[2]1
1011...010 109 | | 0] 0] -3 00l -jofo
Select Retrieve
Sums | 24| 6| 2] 1] [-54]7]
Data-outregister [1 [0 | 1] 1]. -Jo] 1]+

FIG. 5. The organization of a Sparse Distributed Memory as an array of addressable locations. Note that the address as well as the data can be
of hundreds of bits in length, and yet there are only a small number (like thousands) of memory locations.
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3. The selected rows are added columnwise.
Where the sum is greater than zero the data-out
register is set to one, else it is set to zero.

4.0. COMPUTATIONAL CONSIDERATIONS

The computations involved in neural network simula-
tions show great similarities from one model to another.
In this section we discuss some topics that are of general
interest and not specific to one single model.

4.1. Basic Computations

For feedforward and feedback network algorithms the
basic computation is a matrix-by-vector multiplication,
where the matrices contain the connection weights and
the vectors contain activation values or error values.
Therefore, an architecture for ANN computations should
have processing elements with good support for multiply,
or even multiply-and-add, operations and a communica-
tion structure and memory system suitable for the access
and alignment patterns of matrix-by-vector operations.

Assuming N units per layer, the matrix-by-vector mul-
tiplication contains N2 scalar multiplications and N com-
putations of sums of N numbers. The fastest possible way
to compute this is to perform all N? multiplications in
parallel, which requires N? processing elements (PEs)
and unit time, and then form the sums by using trees of
adders. The addition phase requires N (N — 1) adders and
O(log N) time.

The above procedure means exploitation of both node
and weight parallelism (defined later). For large ANNs
this is unrealistic, depending on both the number of PEs
required and the communication problems caused. In-
stead, most of the implementations that have been re-
ported take the approach of basically having as many PEs
as the number of neurons in a layer (node parallelism)
and storing the connection weights in matrices, one for
each layer. The PE with index j has access to row j of the
matrix by accessing its own memory. Referring to Algo-
rithm 1, a problem appears in step 4 relative to step 2.
While step 2 corresponds to the matrix—vector operation
WO, step 4 corresponds to W§. This means that we need
to be able to access WT as efficiently as we can access W.
This introduces a mapping problem which we will return
to in Section 6. Regardless of the mapping chosen, multi-
ply-and-add is the basic operation in these calculations.

The first step of the SOM algorithm, using an inner-
product as distance measure, can also be seen as a ma-
trix-by-vector multiplication, where the matrix is com-
posed of the weight vectors of the nodes and the vector is
the training vector. Another distance measure used for
the first step is a Euclidean metric which cannot be de-
scribed as a matrix—vector operation. Still the basic oper-
ation in both metrics is multiply-and-add. Discussion on
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the two different distance measures can be found in [63,
88]. From the resulting vector a maximum or minimum
must be found. The efficiency of this operation is strongly
dependent on the communication topology, but may also
depend on the characteristics of the PEs. In a later sec-
tion we will demonstrate how bit-serial processors offer
specific advantages. After a maximum (or minimum)
node is found its neighbors are selected and updated. The
selection time will depend on the communication topol-
ogy, and the update time on the length of the training
vectors.

Also in SDM the first step is a matrix-by-vector multi-
plication. But as both the matrix and the vector are bi-
nary valued the multiplications are actually replaced by
exclusive-or and the summation by a count of ones. The
counters are thereafter compared with a threshold. In all
active positions the up-down counters are updated.

Thus, to be efficient for ANN computations computers
need to have support for matrix-by-vector multiplica-
tions, maximum finding, spreading of activity, count of
ones, and comparisons. In some of the implementations
that we review these matters have been solved on exist-
ing parallel computers, in others new architectures have
been devised, targeted at computations of this kind.

4.2. Numerical Precision

In order to optimize the utilization of the computing
resources, the numerical precision and dynamic range in,
e.g., the multiply-and-add operations should be studied
with care. ‘

With optical, analog, or bit-serial computers it is not
very attractive to use 32- or 64-bit floating-point numbers
for weights and activation values. The issue of weight
sensitivity becomes important; how sensitive are the net-
works to weight errors? Unfortunately, one of the most
used algorithms, back-propagation, is very sensitive to
the precision and number range used [39]. This is due to
the existence of large flat areas in the error surface, in
which the BP algorithm may have difficulty in determin-
ing the direction in which to move the weights in order to
reduce the error. To make progress from such areas high
numerical precision is needed. If the neural network cal-
culations are run on a computer which has advanced
hardware support for floating-point calculations the re-
quired accuracy does not raise any problem. On the other
hand, for many tasks of integer type, like low-level vision
problems, the use of floating-point numbers will lead to a
more complex architecture than necessary.

Using ordinary back-propagation with low precision
without modifications will lead to instability and the net
will often be unable to learn anything. There are modifi-
cations to back-propagation which seem to improve the
situation somewhat [13, 21, 78, 116], and there are exper-
iments in which different precision is used at different
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stages of the algorithm [86]. By using high precision at
the beginning of the training and lessening the precision
as the network trains, the number of bits needed for
weights in the fully trained network can be very low (a
few bits). Without too large modifications, 8—16 bits per
weight seems to be sufficient for most problems [11, 21,
85, 135]. More exact calculations of the sensitivity to
weight errors and the precision needed can be found in
[21, 121, 122, 123].

By some authors [39, 135] weights have been found to
need a large dynamic range, implying floating-point rep-
resentation. However, the use of weight saturation, i.e.,
limiting the weights to a certain- limit, may remove the
need for floating-point numbers [85].

Low precision is also attractive for ANNSs as it makes
the algorithms more biologically plausible [131]. An up-

_ per limit of the accuracy that the brain needs for its calcu-
lation could be estimated to 7-8 bits; i.e., neurons have a
““‘dynamic range’’ of about 100 levels. The calculations
are also fault tolerant. That is, if one neuron fails to fire,
the computation is still carried out in the right fashion.

Finally, it should be noted that there is probably a
trade-off between using few weights (nodes) with high
precision and using many weights (nodes) with low preci-
sion.

4.3. Sigmoid

In many of the algorithms, e.g., BP and Hopfield net-
works, a sigmoid function like f(x) = 1/(1 + e *) needs to
be calculated; see Fig. 6. To do this efficiently many
implementations use a table lookup instead of direct cal-
culation (typically with 8 bits precision). Others try to
approximate the sigmoid with a piecewise linear function
[11] like(e) in Fig. 6. Also, an approximation based on
power of 2 calculations has been proposed, with digital
computers in mind [94], (¢) in Fig. 6.

A combination of table lookup and power of 2 calcula-
tion was tried in [136] for the GF11 computer, but in the
end only table lookup and interpolation were used.

Table lookup on SIMD computers without local ad-
dress modification seems difficult but is possible by-a
cyclic rotation and comparison. It takes n steps to do »
table lookups using n PEs connected in a ring [132].
Other ways to distribute the lookup table have been dis-
cussed by Marchesi et al. [80].

In [115] e* was calculated by means of range reduction
techniques. The total number of operations required to
calculate the sigmoid was five add/subtracts, one logical,
two divisions, two shifts, and three multiplications.

In the backward phase the derivative f(x) is to be cal-
culated. The much used sigmoid f(x) = 1/(1 + e™*) has
the “‘nice’’ derivative given by f'(x) = f(x)(1 — f(x)).

Some networks and training situations have turned out
to benefit from a sigmoid function between —1 and 1

Sigmoids between 0 and 1
14 ) Approximations
C)f(x) _ { 1-0~ @+ L g
PGP
0. "
2
X
x>0
o S| F@ = { 1+
0 x<0
-1 -2 2
0.000976 x<-5 «
The most common ones x+5 8 '
— -5<x<-1
D) : o 16
f@ == fo =1 2
b)
)f(x) {1 x>0 2L 1crss
0 x<0 099902 x5
Sigmoids between -1 and 1
1 A) .
f@) =7 E
B) 1- e—2x
Ff(x) = tanh(x) =
;s n 1+

)f (x) = T%atan(nx)

0 -1

FIG. 6. Some of the used activation functions of sigmoid type.

instead of the usual 0 and 1. Some are given in Fig. 6. The
function (A) has the useful property that is does not in-
volve any transcendental functions.

4.4. Data Representation

When real and/or analog inputs to the ANN are used,
the data representation must be studied carefully. For the
binary code the problem is that Hamming distance (HD)
is not a valid measure of similarity; see Table I. The so-
called thermometer code, or the simple sum of ones,
solves the problem with the HD but is wasteful of code
bits, and thus stands in contrast to the requirement of
using as few bits as possible.

Penz [93], referring to Willshaw et al. [134], has sug-
gested a modification to the thermometer code, called the
closeness code. This code has as few active positions as
possible; i.e., it is optimally sparse, but still retains the
HD as a similarity measure. The number of ones in an N-
bit vector is log, N. ‘

There is a denser (with respect to code word length)
version of a closeness code suggested by Jaeckel [56, 59]
which could be called a band-pass code. The name re-
flects the fact that the thermometer code may be seen as a
set of low-pass filters but Jaeckel’s suggestion may be.
seen as a set of band-pass filters. Both a closeness and a
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TABLE I
Different Ways to Encode Data: Binary, Thermometer, Closeness, and Band-Pass Codes
Binary Thermometer Closeness Band Pass
Decimal

value Code HD Code HD Code HD Code HD

0 000 0 0000000 0 11100000 00 0 11000 0

1 001 1 1000000 1 01110000 00 2 11100 1

2 010 1 1100000 2 00111000 00 4 01100 2

3 011 2 1110000 3 00011100 00 6 01110 3

4 100 1! 1111000 4 00001110 00 6 00110 4

5 101 2 1111100 5 00000111 00 6 00111 5

6 110 2 1111110 6 x0000011 10 5/4 00011 4

7 111 3 1111111 7 xx000001 11 4/2 10011 3

10001 2

11001 1

11000 0

Note. All but the binary codes have Hamming distance (HD) as the measure of similarity. Closeness
and thermometer codes are wasteful of code bits, but the closeness code has fewer active bits. Band
pass has good code density while keeping the HD as the measure of distance.

band-pass code can be extended to a circular code as
shown below the dashed lines in Table I. A circular code
is useful when coding things like angles.

When coding sets of mutually unrelated items, like let-
ters in an alphabet, it is important rot to introduce order
or similarities that do not exist. Coding a, b, c, ... as 1, 2,
3, ... introduces a similarity between adjacent letters
which has no relation to their use in language. Instead, 26
nodes of which only one is active, may be used.

4.5.

Many of the massively parallel processors use bit-
serial PEs. For the majority of operations, processing
times on these computers grow linearly with the data
length used. This may be regarded as a serious disadvan-

Bit-Serial Calculations

tage (e.g., when using 32- or 64-bit floating-point num-
bers), or as an attractive feature (use of low-precision
data speeds up the computations accordingly). In any
case, bit-serial data paths simplify communication in
massively parallel computers.

4.5.1. Multiplication Done Bit-Serially

In simple bit-serial processors the multiplication time
grows quadratically with the data length. However, bit-
serial multiplication can actually be performed in the time
required to read the operands (bit by bit, of course) and
store the result. The method, based on the carry-save
adder technique, requires as many full adders as the
length of one of the operands. Figure 7 shows the d651gn
of such a multiplier circuit.

FA

FIG. 7. Design of a two’s-complement bit-serial multiplier. It is operated by first shifting in the multiplicand, most significant bit first, into the
array of M flip-flops. The bits of the multiplier are then successively applied to the input, least significant bit first. The product bits appear at the
output with least significant bit first.
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This design was proposed but not implemented in the
LUCAS project [27], and will be used in the continued
project, REMAP? (Reconfigurable, Embedded, Mas-
sively Parallel Processor Project). A similar multiplier
design has also been proposed for ‘‘Centipede,’’ a further
development of the AIS-5000 concept [135].

4.5.2. Floating-Point Calculations Done Bit-Serially

Floating-point calculations raise special problems on

SIMD computers with bit-serial PEs. Additions and sub-
tractions require the exponents to be equal before the
operations are performed on the mantissas. This align-
ment process requires different-PEs to take different
actions, and this does not conform with the SIMD princi-
ple. The same problem appears in the normalization pro-
cedure.
- However, these problems may also be solved by a
fairly reasonable amount of extra hardware. Ahlander
and Svensson [140] propose the addition of stacks in the
PEs to hold the mantissas during alignments and normal-
izations. This arrangement allows floating-point opera-
tions to be performed as fast as data can be provided bit-
serially from the memory.

4.5.3. Search for Maximum or Minimum Done
Bit-Serially

Some operations benefit from the bit-serial working
mode and can be implemented very efficiently. Search
for maximum or minimum is such an operation. Assum-
ing that one number is stored in the memory of each PE,
the search for maximum starts by examining the most
significant bit of each value. If anyone has a one, all PEs
with a zero are discarded. The search goes on in the next
position, and so on, until all bit positions have been
treated. The time for this search is independent of the
number of values compared; it depends only on the data
length (provided that the number of PEs is large enough).

5.0. PARALLELISM IN ANN COMPUTATIONS

For implementation on a parallel computer, parts of
the algorithm that can be run in parallel must be identi-
“fied. Unfolding the computations into the smallest com-
putational primitives reveals the different dimensions of
parallelism.

5.1. Unfolding the Computations
A typical ANN algorithm has the following structure:

For each training session
For each training example in the session
For each layer (going Forward and Backward)
For all neurons (nodes) in the layer

For all synapses (weights) of the node
For all bits of the weight value

* This shows that there are (at least) six different ways of
achieving parallelism:

Training session parallelism
Training example parallelism
Layer and Forward-Backward parallelism
Node (neuron) parallelism
Weight (synapse) parallelism
Bit parallelism

5.2. The Dimensions of Parallelism

Here follows a discussion on each of the different ways
of achieving parallelism. Which of the dimensions of par-
allelism are chosen in any particular implementation will
depend on the constraints imposed by the hardware plat-
form and by the constraints of the particular algorithm
that is to be implemented.

5.2.1. Training Session Parallelism

Training session parallelism means starting different
training sessions on different PEs. Different sessions may
have different starting values for the weights, and also
different learning rates. Using parallel machines with
complex control makes it even possible to train networks
of different sizes at the same time.

5.2.2. Training Example Parallelism

The number of training examples used is usually very
large, typically much larger than the numbér of nodes in
the network. The parallelism of the training set can be
utilized by mapping different training examples to differ-
ent PEs and letting each PE calculate the outputs for its
training example. The weight changes are then summed.

Doing the weight update this way (batch or epoch up-
dating) means that it is not done exactly as in the serial
case. Back-propagation is known to perform gradient de-
scent if update of weights takes place after processing of
all the training data [110, 119]. Empirically it is found that
updating after each pattern will save CPU cycles, at least
on a sequential computer.

Training example parallelism is easy to utilize without
communication overhead. Thus it gives an almost linear
speedup with the number of PEs. However, a corre-
sponding reduction in training time (time to reduce the
total error to a specific level) should not be taken for
granted. Even if this method gives a more accurate gradi-

ent it does not necessarily allow more weight updates to -

occur. Therefore there is a limit on the amount of actual
training time speedup that is achievable using this
method of parallelism. Parker [92] has shown that on a
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30 x 30 X 10 network and 4156 training examples the
- optimal batch size was only 18. Beyond that level the
refinement of gradient was wasted. This means that the
use of extensive number crunching circuitry in order to
utilize training example parallelism, although giving high
CUPS (Connection Updates Per Second) performance,
does not guarantee a corresponding reduction of training
time.

Training example parallelism also demands that the
PEs have enough memory to store the activation value of
all the nodes in a network. With a 256-kbit memory per
PE and 32-bit floating-point number representation, only
about 8000 nodes can be simulated [119]. On the other
hand, any sparsity of the network connections can be
fully exploited with this type of parallelism.

5.2.3. Layer and Forward—Backward Parallelism

In a multilayer network the computations may be pipe-
lined; i.e., more than one training pattern is going
through the net at the same time. If the model has a
backward pass, like BP, it is also possible to ‘“fold’’ the
pipeline back again.

5.2.4. Node (Neuron) Parallelism

The parallel processing performed by many nodes in
each layer is perhaps the most obvious form of parallel-
ism in an ANN. Each node computes a weighted sum of
all its inputs. This form of parallelism corresponds to
viewing the calculations as matrix operations and letting
each row of the matrix map onto a processor.

Most of the layered models only send their activation
values forward after all nodes have been calculated in a
layer. This means that the maximum parallelism is avail-
able for the widest node layer (excluding the input layer).
If this degree of parallelism is fully utilized, all layers
with less nodes cannot fully utilize the computer.

5.2.5. Weight (Synapse) Parallelism

At each input to a neuron the arriving activation value
is multiplied by the weight of the specific input. This can
be done simultaneously at all inputs to the neuron. The
subsequent summation of all the products may also be
parallelized using a suitable communicationstructure.

5.2.6. Bit Parallelism

Utilizing the full degree-of bit parallelism (i.e., treating
all bits in a data item simultaneously) is often taken for
granted. However, giving up this form of parallelism, and
treating data bit-serially, increases the possibilities of us-
ing some of the other forms.
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5.3. The Degrees of Parallelism

The typical degree of parallelism varies widely be-

-tween the six different kinds, as the table below shows.

As an illustration, the degrees of parallelism of the well-
known NETtalk application (see section 7.2.1) have been
given as well.

Parallelism Typical range NETtalk
Training session 10-103 100
Training example 10-107 5000
Layer and Forward-Backward 1-6 1
Node (neuron) 100-106 120
Weight (synapse) 10-10° 203
Bit 1-64 32

The table gives an indication of what dimensions should
be utilized in a massively parallel computer. Such a com-
puter is capable of performing at least thousands of ele-
mentary operations simultaneously. Hence an ANN im-
plementation that is to utilize the computing resources
efficiently must utilize at least one of the following di-
mensions: '

Training session parallelism
Training example parallelism
Node parallelism

Weight parallelism

The use of the two first-mentioned types is of interest
only in batch processing situations in order to train a
network. In real-time applications where the ANN is in-
teracting with the outside world, training session and
training example parallelism are not available. In those
cases, node and/or weight parallelism must be chosen,
maybe in combination with, e.g., bit and layer parallel-
ism.

6.0. COMMUNICATION

A high degree of connectivity and large data flows are
characteristic features of neural computing models.
Hence the structure and bandwidth of internal and exter-
nal (i.e., I/0O) communication in the computer to be used
are of great importance. Depending on what dimension of
parallelism is chosen the demands on the communication
will be different. We review the major communication
principles and comment on their use in ANN implemen-
tations. .

6.1. Communication by Broadcast

In most parallel computers the most efficient way to
communicate is to broadcast, since so many destinations
receive information simultaneously. In fact, in SIMD
computers broadcast is also used to distribute control
information. As shown above, training example parallel-
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FIG. 8. ‘Mapping of node parallelism into a processor array.

ism has a very large amount of possible parallelism. Since

‘the basic communication needed with this form of paral-
lelism is broadcasting it is a good choice if the maximum
speed (CUPS) is to be obtained. If the batch or epoch
type of weight updating cannot be used, node or weight
parallelism must be used. With the required communica-
tion patterns in those forms of parallelism it is less obvi-
ous how broadcast can be used, and therefore it is harder
to obtain maximum performance.

Using node parallelism, perhaps the most natural way
to map the forward pass of a BP calculation on a proces-
sor array is to see it as a matrix—vector multiplication and
map each row of W into one PE; see Fig. 8. In each step
of the multiplication process, one PE broadcasts its node
activation o; to all other nodes. Each PE then multiplies
the value with a weight value from the corresponding
column of W and adds the result to a running sum net;.
After all activation values have been sent and multiplied,
each PE holds one element of the resulting vector. In the
backward phase, summation is required across the PEs
instead of within each PE. This is slow unless another
communication structure is added, e.g., an adder tree as
proposed in [124]. Mapping in this way may also intro-
duce inefficiency problems if the layers are of very differ-
ent sizes. It is also difficult to utilize any sparsity in the
connections with this method.

6.2. Grid-Based Communication

A natural way to arrange the communication required
for weight parallelism is grid-based communication suit-
able for two-dimensional arrays of PEs. The PEs of the
top edge, say, correspond to the source node layer, and
the PEs of the right edge, say, correspond to the destina-
tion node layer. The weight matrix is distributed over the
rest of the PEs. The input layer nodes at the top send
their values down over the matrix by vertical broadcast.
Then there is a horizontal summation phase. This is then
repeated for the next layer, first horizontally and then
vertically. :

L

This scheme has been used or suggested by, e.g.,
Singer [120] and Fujimoto and Fukuda [33].

6.3. Communication by Circulation

One way to solve the communication when node paral-
lelism is used is by a ‘‘systolic’’ ring structure [52, 70-72,
100]; see Fig. 9. In the forward phase (upper part of the
figure) the activation values are shifted circularly along
the row of PEs and multiplied with the corresponding
weight values. Each PE accumulates the sum of the prod-
ucts it has produced. In the backward phase (lower part
of the figure) the accumulated sum is shifted instead.

This scheme shares the possible inefficiency problems
with the broadcast-based scheme (see end of Section
6.1).

6.4. Communication by General Routing

Some massively parallel computers, e.g., the Connec-
tion Machine, provide support for general routing by
packet switching. Utilizing this facility is a straightfor-
ward method on these computers, but, since general
routing normally is much slower than regular communi-
cation, the ANN computations will be communication
bound, maybe with the exception of sparsely connected
networks. '

An implementation of directed graphs on computers
lacking general routing capability has been suggested by
Tomboulian [128]. It relies on SIMD computers with very
modest communications facilities. Sending a value or a
message between two nodes amounts to routing the mes-
sage from PE to PE. A send is divided into time slots
where each node knows if or where it should pass the
current incoming message. There are means to extend
the communication pattern dynamically which makes it
very attractive for networks that use structural adapta-

tion, like Fahlman and Lebiere’s ‘‘Cascade Correlation’”

[24] or Kassebaum et al.’s [60] and Tenorio and Lee’s
self-organizing neural network (SONN) algorithm [125,
126].
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FIG. 9. Forward (top) and backward (bottom) phase of a BP calculation on a systolic ring processor.

Tomboulian’s method has for dense networks been
found to consume a great deal of PE memory for its ta-
bles [128]. For sparse networks the time and memory
requirements are proportional to the product of the aver-
age number of connections per neuron and the diameter
of the array.

6.5. Comments on Communication

For all communication strategies except the general
routing methods, sparse connection matrices will lead to
underutilization of the computer’s PE resources. Lawson
et al. have addressed this problem with their “SMART”’
(sparse matrix adaptive recursive transform) machine
[73]. By using tables and special hardware they can make
use of zero-valued connections to reduce simulation size
and time. The communication is based on a ring structure
together with a bus. However, Lawson’s solution is not
directly applicable on a massively parallel SIMD com-
puter. '

The massive flow of data into and out of the array,
which will be the case in practical real-time applications
and also in out of core calculation (very large simula-

tions), places specific demands on the communication
structure. In the design of a massively parallel computer
for ANN, the PEs should be optimized for the typical
operations, in order not to make the processing computa-
tion bound. Furthermore, the interconnection network
should be optimized for the computational communica-
tion pattern, in order not to make the processing com-

munication bound. Finally, the I/O system should be op-.

timized to suit the needs of the application, in order not
to make the system I/O bound. So far not very much
attention has been paid to the latter problem complex,
but it is certainly very much connected with the commun-
ication matters.

Training example parallelism is the form of parallelism
that puts the weakest demands on communication. How-
ever, it is not interesting in real-time applications or in
pure recall situations.

7.0. MEASURING THE SPEED OF ANN SIMULATIONS

In order to compare different implementations, some
kind of standard measuring procedure is needed. The
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number of multiply-and-add operations per second of
which the computer is capable might be considered for
such a measure, since this operation was identified as the
most important one in most of the algorithms. However,
it can serve only as an upper limit for performance; i.e., it
marks the lowest speed that the computer manufacturer
guarantees will never be exceeded. The utilization of this
potential may-be very different for the various ANN
models and for different problem sizes.

Some of the commonly used'in,dications of speed will
be given below. They are of two kinds: first, there are
general speed measurements, similar to the multiply-and-
add performance measure. In order for these to be of any
real value, the ANN model and problem size for which
they were measured should always be given as additional
information. Second, there are benchmarks, i.e., com-
monly implemented applications of specific size. The
area is still too young (i.e., in the present ‘‘wave’’) for
bénchmarks to be very well developed.

7.1. Measurements

Some measurements commonly used in the ANN com-
munity are the following.

7.1.1. CPS or IPS—Connections (or Interconnections)
per Second '

Each time a new input is provided to an ANN, all
connections in the network must be computed. The num-
ber of connections per second that the network can per-
form is often used as a measure of performance. When
measuring CPS, computing the nonlinear thresholding
function should be included. Comparing the CPS mea-
sure to the multiply-and-add measure roughly indicates
how well the specific algorithm suits the architecture.
When comparing CPS values for different implementa-
tions, the precision of calculation is important to con-
sider. Other things which may influence the CPS measure
are the problem size and the choice of nonlinear
thresholding function.

7.1.2. CUPS or WUPS—Connection (or Weight)
Updates per Second

The CPS number only measures how fast a system is
able to perform mappings from input to output. To indi-
cate the performance during training a measurement of
how fast the connections can be updated is given as a
CUPS figure. In a back-propagation network both the
forward and the backward passes must be computed.
Typically the CUPS number is 20-50% of the CPS num-
ber. .

For self-organizing maps CUPS have been used as the
number of connections in the network multiplied by the
number of network updates per second, despite the fact
that very few connections are actually updated when us-
ing small neighborhoods at the end of a training session.

7.1.3. Epochs

An epoch is defined as a single presentation of each of
the examples in the training set, in either fixed or random
order. The concept is well-defined only for problems with
a fixed, finite set of training examples. Modification of

‘weights may occur after every epoch, after every pattern

presentation, or on some other schedule.

The epochs concept is sometimes used when measur-
ing the number of times one must run through the training
set (one run is one epoch) before some predefined condi-
tion is met. This is used to compare different versions of
an algorithm or different algorithms. When doing this one
should be aware of the fact that the computational effort
to go through an epoch may vary considerably from one
algorithm to another. Even if an algorithm learns in half
the number of epochs it can still take longer time because
the calculations are more complicated.

An epochs per second measure may also be used as an
alternative to CUPS to indicate the speed of learning. It
gives a number that is easier to grasp than the CUPS
number. Of course the measure is strongly related to the
problem and training set used.

For problems where an epoch is not well defined,
learning time may instead be measured in terms of the
number of individual pattern presentations.

7.1.4. CPSPW—Connections per Second per Weight
(or SPR—Synaptic Processing Rate)

A measure that indicates the balance between process-
ing power and network size (i.e., number of weights) has
been introduced by Holler [46]. His argument for the im-
portance of this measure is the following: Biological neu-
rons fire approximately 100 times per second. This im-
plies that each of the synapses processes signals at a rate
of about 100 per second; hence the SPR (or, to use Hol-
ler’s terminology, the CPSPW) is approximately 100. If
we are satisfied with the performance of biological sys-
tems (in fact, we are even impressed by them) this num-
ber could be taken as a guide for ANN implementations.
Many parallel implementations have SPR numbers which
are orders of magnitude greater than 100, and hence have
too much processing power per weight. A conventional
sequential computer, on the other hand, has an SPR num-
ber of approximately 1 (if the network has about a million
synapses); i.e. it is computationally underbalanced. It
should be noted that Holler’s argument is of course not
applicable to batch processing training situations.

7.2. Benchmarks

There are some commonly used problems that may be
considered benchmark problems. They are used in a
number of different ways, e.g., to measure learning
speed, quality of ultimate learning, ability to generalize,
or combinations of these factors. Thus their use is not
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restricted to speed comparisons. On the contrary, most
of the benchmarks have been introduced to compare al-

gorithms and not architectures. This means that most of

the benchmarks should not be used to compare suitability
of architectures for the simulation of ANNs. Among such
benchmark problems are the XOR problem, the Parity
problem, and the Two Spirals problem [22]. They are all
small problems intended for qualitative comparison of
algorithms.

7.2.1. NETtalk

A larger and more realistic application is known as
NETtalk, a text to phoneme translation solved by a back-
propagation network, described by Sejnowski and Ro-
senberg [114]. The task is to train a network to produce
the proper phonemes, given a string of letters as input.
" This is an example of an input/output mapping task that
exhibits strong global regularities, but also a large num-
ber of more specialized rules and exceptional cases. It is
often used as a benchmark.

The experimental setup used by Sejnowski and Rosen-
berg [114] described by Fahlman in [22] was the follow-
ing: The input to the network is a series of seven consec-
utive letters from the training text. The central letters in
this sequence is the ‘‘current’” one for which the phone-
mic output is to be produced. Three letters on either side
of this central letter provide a context that helps to deter-
mine the pronunciation. Of course, there are a few words
in English for which this local seven-letter window is not
sufficient to determine the proper output. For the study
using this ‘‘dictionary”’ corpus, individual words are
moved through the window so that each letter in the word
is seen in the central position. Blanks are added before
and after the word as needed. Some words appear more
than once in the dictionary, with different pronunciations
in each case; only the first pronunciation given for each
word was used in this experiment.

A unary encoding is used. For each of the seven letter
positions of the input, the network has a set of 29 input
units: one for each of the 26 letters in English, and three
for punctuation characters. Thus, there are 29 X 7 = 203
input units in all. The output side of the network uses a
distributed representation for the phonemes. There are
21 output units representing various articulatory features
such as voicing and vowel height. Each phoneme is rep-
resented by a distinct binary vector over this set of 21
units. In addition, there are 5 output units that encode
stress and syllable boundaries. Typically 60 to 120 hidden
units have been used.

In the absence of very large benchmarks, we will some-
times use figures on NETtalk to compare architectures (if
they have been reported). Otherwise we will report the
implemented network structure and training method to-
gether with the performance measure given.
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8.0. CHARACTERIZATION OF COMPUTER
ARCHITECTURES

As the structure of ANN algorithms is naturally paral-
lel it is relatively easy to make use of a very large number
of PEs. Computers with a very large number of PEs are
often called massively parallel. Being massive should
mean that the structure gives an impression of being
solid. That is, the number of units should be so high that
is impossible to treat them individually; they must be
treated en masse. By definition then, each PE must be
told what to do without specifying it individually. This is

~actually the concept of the SIMD or SCMD computer

(defined later). ‘

The lower bound for massive parallelism will then be
set by the largest computer in which each PE is treated as
an individual with its own instruction flow (MIMD). We
think that for the moment 212 = 4096 is a suitable limit.

An interesting extension to massively parallel is the
concept of continuously parallel. This should mean the
limit of massively parallel as the number of processing
elements becomes infinite [77].

It is useful to have characterizations also of the lower
degrees of parallelism. To get a reasonable ‘‘definition”
with a nice symmetry we suggest a rough division be-
tween highly parallel, moderately parallel, and barely
parallel. By defining the limits to 212, 28, 24, 20 we have an
easy-to-remember scheme for the characterization.
When appropriate, in the future the limits may be moved
upward. Summarizing this we get the following *‘defini-
tions’”> which will be used in this paper (N stands for the
number of PEs):

Continuously parallel N—>
.Massively parallel N =21
Highly parallel 28 <N <2
Moderately parallel H=N<2
Barely parallel V< N<24

This characterization is completed with an ‘‘orthogonal”’
one describing the computational power of the PEs. The
power or complexity can of course be measured in many
ways but as a coarse measure we use the bit-length of the
natural data type for the processing elements. These two
characterizations result in the diagram shown in Fig. 10.

We will concentrate on the massively and highly paral-
lel architectures in the next section. But we will also, for
comparison, include some moderately and even barely
parallel computers like Warp systems with more complex
control. This is because the use of these computers has
given interesting results with respect to algorithms and
ways of mapping ANNSs to a parallel computer. It should
be noted that many of those algorithms do not use the
powerful control, but instead use a SIMD or SCMD
structure.
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FIG. 10. Classifying architectures for ANN by dividing according to
the number of and complexity of the processing elements that are used.

Equally important as the degree of parallelism is the
organization of the computer. The much used character-
ization due to Flynn [28] divides the computers into
groups according to the number of instruction streams
and the number of data streams, Of interest for ANN
computations are the groups with multiple data streams:
SIMD (Single Instruction stream, Multiple Data streams)
and MIMD (Multlple Instruction streams, Multiple Data
streams).

To characterize a MIMD computer used as a SIMD
architecture, SCMD (Same Code for Multiple Data
streams) is suggested and used in this paper.

8.1. Division of SIMD

The SIMD category in itself shows great architectural
variations. We briefly review some of the major groups.

8.1.1. Systolic Arrays

Systolic arrays represent a general methodology for
mapping high-level computations into hardware struc-
tures. Developed at Carnegie Mellon by Kung and others
[68], the concept relies on data from different directions
arriving at cells/PEs at regular intervals and being com-
bined. The number of cells in the array and the organiza-
tion of the array are chosen to balance the 1/O require-
ments.

Systolic architectures for ANN have been proposed
by, among others, Hwang et al. [52] and Kung and
Hwang [70, 71]. They have found that a ring structure or
cascaded rings are sufficient (cf. Section 6.3 on communi-
cation by ‘circulation).

8.1.2. Linear Processor Arrays

In this group are the processor arrays with the simplest
structure, the linear (one-dimensional) arrays. The linear

structure is often combined with the ring structure and '

the bus structure (i.e., broadcast). Actually, the arrays in

;E data length -
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this group are typically not massively parallel due to the
limitations of the communication structure. Some of the
arrays can be scaled to at least a few thousand proces-
sors. They can however be strung together with similar
arrays and form a multiple SIMD array which can be
much larger than any single SIMD module.

8.1.3. Mesh-Connected Processor Arrays

In silicon the planar structure of the connecting me-
dium will tend to favor planar communication networks.
Therefore, it is natural to build the communication on a
mesh or a grid; i.e., each PE has four (or eight) neigh-
bors. Even the computers with multidimensional com-
munication have included mesh connections for faster
local communication. Examples of mesh-connected ar-
rays are DAP (Distributed Array Processor) [51], MPP
[101], and BLITZEN [9].

8.1.4. Multidimensional Processor Arrays

Multidimensional architectures like hypercubes allow
a more general communication pattern than any of the
previous arrays. That is, no PE is further away than log,
N steps, where N is the number of PEs.

It has been found that general communication is used
mainly for transfers between ‘‘parameter spaces” (e.g.,

' image — edges — corners). None of the efficient imple-

mentations of ANN algorithms on any of the studied ar-
chitectures used/needed multidimensional communica-
tion.

9.0. PARALLEL COMPUTERS DESIGNED OR USED FOR
ARTIFICIAL NEURAL NETWORKS

~ Placing some of the parallel computers used for ANN
into the diagram of Fig. 10 results in the map shown in
Fig. 11.

We will now give brief descriptions of these machines
and review the reported ANN implementations. We cer-
tainly do not cover all the massively and highly parallel
machines but our selection should be representative. The
order of presentation is alphabetical within each group.

9.1. Massively Parallel Machines with Simple PEs

9.1.1. AAP-2

AAP-2 [132] is:a two-dimensional (2D) mesh-con-
nected computer enhanced with bypasses and ripple
through operations. It contains 64K (256 by 256) bit-serial
PEs featuring a simple 1-bit ALU and a 144-bit register
file. There is also a 15-bit control register which can con-
trol each PE individually in a primitive way.

BP has been implemented in a node and weight paral-
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FIG. 11. A way of classifying architectures for ANN. A corre-

sponds to massively parallel machines with simple PEs in Section 9.1, B

‘to highly parallel machines with simple PEs in Section 9.2, C to highly

parallel machines with complex PEs in Section 9.3, and D to moderately
parallel machines with complex PEs in Section 9.4.

lel fashion using an interesting circular way to perform
table lookup of the sigmoid function. Using 26 bits for
weights and activations and a 256 X 256 X 256 network
18 MCUPS was achieved. When different sizes of the
layers were used the efficiency decreased.

9.1.2. Associative String Processor (ASP)

The ASP is a computer designed and built by Univer-
sity of Brunel and Aspex Ltd. in England, with Lea as the
principal investigator [74]. The computer consists of sim-
ple PEs (1-bit full adder, n + a-bit comparator) which are
strung together into ‘strings’’ of more ‘‘complex’’ types
such as 32-bit integers. Each processor has a 96-bit data
register and a 5-bit activity register. Each string is linked
by a communication network and there are data ex-
changes and buffers to support high-speed data I/O. The

-architecture is expandable up to 262,144 processors ar-

ranged as 512 strings of 512 processors each. A 16K ma-
chine has been built and a 64K machine is to be com-
pleted by the summer of 1992.

Krikelis and Grozinger [67] have implemented Hop-
field net and BP on a simulator of the architecture. In the
Hopfield net one neuron is mapped onto each PE as long
as the internal memory is sufficient (1800 nodes). At this
maximum, the real machine should be able to run at 1600
MCPS.

The BP network 1mplementat10n also uses node and
weight parallelism simultaneously. On a 63 X 45 x 27
network 4323 PEs are utilized, but in some time instances
there are only 46 PEs actively taking part in the calcula-
tion. The weights are represented by 16-bit fixed-point

numbers. A thresholded picture (1 bit deep) is used as
input and the activation in the other nodes is represented

by 12 bits. The sigmoid is approximated with a group of

conditionals. The simulation indicates a performance of
12 MCUPS on the real machine.

9.1.3. Connection Machine (CM, CM-2)

The Connection Machine [40, 127] manufactured by
Thinking Machines Corporation (TMC) is for the moment
the most massively parallel machine built (from 8K up to
64K processing elements). In addition to its large number
of processors, two of its strong points are its powerful
hypercube connection for general communication and
the multidimensional mesh connection for problems with
regular array communication demands. In the CM-2
model TMC also added floating-point support, imple-

- mented as one floating-point unit per 32 PEs. This means

2048 floating-points units on a 64K machine, giving a
peak performance of 10 GFlops.

CM-2 is one of the most popular parallel computers for
implementing ANN algorithms. Most of the implementa-
tions: so far concern BP, but within this model different

- forms of parallelism have been utilized in different appli-

cations.

Rosenberg and Blelloch [108] constructed an algorithm
in which each neuron is mapped onto one PE and each
weight (synapse) is mapped onto two PEs. This unusual
mapping is chosen in order to use some special communi-
cation features of the Connection Machine. Their map-
ping could be seen as a general method for mapping di-
rected graphs onto a computer with ‘‘copy scan,”’
“‘send,”” and ‘‘plus-scan’’ operations. The resulting per-
formance, limited solely by communication, was 2.8
MCUPS for NETtalk and around 13 MCUPS maximally.
Forward-backward parallelism was mentioned but not
implemented.

Brown [12] compared two different ways of paralleliz- -
ing BP. One method used node parallelism with one PE
per neuron and the other was the method (node plus
weight parallelism) suggested by Rosenberg and Blelloch.
Brown found that the latter had better performance.

Zhang et al. [139] combined training example and node
parallelism plus good knowledge of the CM-2 communi-
cation and computational structure to achieve high per-
formance on quite different sizes of ANNs. On NETtalk
using 64K PEs they could get around 40 MCUPS (and 175
MCPS).

Using Zhang et al.’s approach on a much larger prob-
lem (280.5 megabyte of training examples) Diegert [19]
reached 9.3 MCUPS on a 16K PE machine. With 64K
PEs the estimated performance is 31 MCUPS. This is
good in comparison with the NETtalk performance
above, when considering that the training data are moved
in and out of the secondary storage all the time.
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Singer’s implementation of BP [118, 119], which is the
fastest implementation on the CM-2, uses training exam-
ple parallelism. He reports a maximum of 1300 MCPS

and 325 MCUPS on a 64K PE machine when usmg 64K

training vectors.

Deprit [18] has compared two 1mplementatlons of re-

current back-propagation (RBP) on the CM-2. First he
used the same mapping as Rosenberg and Blelloch (R&B)
with a minor modification to include the feedback con-
nections. The second mapping was node parallelism with
the communication method suggested by Tomboulian
[128]; see Section 6.4. The basic finding was that the
Ré&B method was clearly superior for densely connected
networks, such as that used in NETtalk. Note that the
R&B implementation is still communication bound, indi-
cated by the fact that the simulation time changed almost
imperceptibly when software floating point was used in-
stead of the hardware units.
" Obermayer et al. have implemented large SOM models
on the CM-2 [91]. Node parallelism with up to 16K PEs
(neurons) was used. The input vector length (input space
dimension) was varied and lengths of up to 900 were
tested. The same algorithm was also implemented on a
self-built computer with 60 T800 (Transputer) nodes con-
nected in a systolic ring. In addition to algorithmic analy-
sis the two architectures were benchmarked. The conclu-
sion was that the CM-2 (16K PEs) with floating-point
support is equal to 510 Transputer nodes for the shortcut
version of SOM. As a 16K CM-2 has 512 Weitek FPUs,
each with approximately the same floating-point perfor-
mance as one T800, it can be concluded that the shortcut
method is basically computation bound. In a ‘‘high-com-
munication’’ variant of SOM, a 30-node Transputer ma-
chine would run at one-third of the CM-2 speed.

Rogers [105] has used CM-2 as a workbench for explor-
ing Kanerva’s SDM model. Rowwise mapping (node par-
allelism) is used for the selection phase (steps 1 and 2 in
Algorithm 3), but for the store/retrieve phase weight par-
allelism is used (as many PEs as there are counters). As
the number of physical PEs in Rogers’ implementation is
of the same order as the number of counters in one
column he actually uses node parallelism and rowwise
mapping, letting the CM-2 sequencer take care of the
looping over each column. Implementing this in *Lisp on
an 8K CM-2 results in a performance of only approxi-
mately 3 iterations per second (256-bit address, 256-bit
data, 8192 locations). Using a pure rowwise mapping in
C* one of the present authors has been able to achieve
between 30 and 70 iterations per second on a CM-2 of this
size. The difference is probably due to some unnecessary
but expensive communication needed in going from 1D to
2D representation.

The still relatively poor performance of SDM on CM-2
is found to depend on at least three factors: PEs are
underutilized during the select/retrieve phase using node

parallelism where as few as 0.1-1% of the total number of
PEs are active; the natural rowwise mapping demands
time-consuming sum-reduction across PEs; the ‘‘opti-
mal’’ mixed mapping [89] (see Section 9.2.5) is hard to
implement efficiently with the current sequencer.

9.14. DAP

The Distributed Array Processor—produced by ICL
(International Computers Limited) and AMT (Active
Memory Technology Ltd.) [51]—is a series of 2D SIMD
computers with different sizes and different hosts. The
sizes range from 1024 to 4096 PEs. The processing ele-
ments are simple and bit-serial. To overcome the short-
comings of the ordinary 2D array (its long distance com-
munication performance) row and column ‘‘highways’’
have been included. A 4K DAP gives 32-48 Mflops and
computes 8-bit multiplications at 250 Mops and 8-bit mul-

tiplications by scalar constant at 600 to 1200 Mops. In a

forthcoming machine there will be some support for mul-
tiplication in each PE. It will then give 560 MFlops maxi-
mally for a 4K PE machine.

Forrest et al. [29, 30] report the use of the ICL DAP to
implement Hopfield net, BP, Elastic net (applied to trav-
eling salesman problems), etc. They also use Transputers
for similar tasks. However, no performance figures are
given; it is more of a feasibility study. The authors de-
scribe and use four of the various types of parallelism:
node, weight, training example, and training session.

Ninez and Fortes [90] have used the AMT DAP to
implement BP, recurrent BP, and mean field theory. The
calculations are treated as matrix operations, which with
our terminology results in a combination of weight and
node parallelism. For activation distribution the DAP
broadcast highways are utilized in a way similar to the
grid-based communication method. On a 4K machine
with 8 bits used for weight and activation the perfor-
mance is 100-160 MCUPS for BP. With 16 bits used
instead, the figures are 25-40 MCUPS. A NETtalk (203
X 64 X 32) implementation on the 1K DAP using 8 bits
resulted in 50 MCUPS.

9.1.5. MasPar (MP-1)

MasPar MP-1 [8, 15, 87] is a SIMD machine with both
mesh and global interconnection style of communication.
It has floating-point support, both VAX and IEEE stan-
dards. The number of processing elements can vary be-
tween 1024 and 16,384. Each PE has forty 32-bit regis-
ters, a 4-bit integer ALU, floating-point ‘‘units’’ to hold
Mantissa and Exponent, an addressing unit for local ad-
dress modifications, and a 4-bit broadcast bus.

MP-1 has a peak performance, for a 16K PE machine,
of 1500 MFlops single-precision [87]. It is programmed in
parallel versions of Fortran (MasPar Fortran) or C (Mas-
Par C) or a C-derived language (MasPar Application Lan-
guage) for more direct contact with the hardware [15].
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Chinn et al. [14] and Grajski et al. [35, 36] have imple-
mented BP and SOM using floating-point arithmetic. Es-
timating the performance of a 16K PE machine from the
figures of a 2K, 4K, and 8K machine gives approximately
10 MCUPS with BP on a 256 x 128 X 256 network,
utilizing node and weight parallelism. The mapping of
SOM into MP-1 is one PE to each SOM node. It was
measured to give 18 MCUPS on a 4K machine when 32-
dimensional input vectors (or larger) were used.

9.2. Highly Parallel Machines with Simple PEs

9.2.1. AIS-5000, Centipede

AIS-5000 [113] manufactured by Applied Intelligent
Systems Corp. has up to 1024 bit-serial PEs arranged as a
linear array. The PEs are similar to those of CM, DAP,
and BLITZEN. The basic problem when using AIS-5000
for ANN is the lack of support for multiplication and the
difficulties in performing the backward phase of back-
propagation (BP). Both of these difficulties have been
addressed in [124] for other linear processor arrays. In a
new generation using the new Centipede chip [135] better
support for multiply-and-add is incorporated and table
lookup is also possible.

AIS-5000 is intended mainly for image processing ap-
plications like inspection, but Wilson [135] has shown a
neural network implementation of feedback type (Hop-
field). Despite the difficulties mentioned, between 19 and
131 MCPS (depending on the precision used) is achieved
using node parallelism.

9.2.2. Connected Network of Adaptive ProcessorS
(CNAPS)

CNAPS, manufactured by Adaptive Solutions, Inc., is
one of the first. architectures developed especially for
ANN. Called X1 in the first description by Hammerstrom
[37], it is a 256-PE SIMD machine with a broadcast inter-
connection scheme. Each PE has a multiply (9 X 16 bit)-
and-add arithmetic unit and a logic-shifter unit. It has 32
general (16-bit) registers and a 4-kbyte weight memory.
There are 64 PEs in one chip. The user may choose 1, 8,
or 16 bits for weight values and 8 or 16 bits for activation
values.

With 16 bits for weights and 8 bits for activation the
peak performance is 5 GCPS for a feedforward execu-

“tion, and 1 GCUPS using BP learning. For NETtalk 180

MCUPS is achieved using only one chip (64 PEs).

The performance of CNAPS on SOM was reported by
Hammerstrom and Nguyen [38]. The figures are based on
a 20-MHz version of CNAPS. With 512 nodes/neurons
and a 256-dimensional input vector, best match using a
Euclidean distance measure can be carried out in 215 us,
using 16-bit weights. Making their CUPS figure compara-
ble to others, the performance is about 183 MCUPS.

9.2.3. Geometric Arithmetic Parallel Processor (GAPP)
GAPP is a mesh-connected SIMD systolic array. On

“one chip there are 72 PEs (6 X 12), each with 128 bits of

RAM. Designed for image processing and working bit-
serially, it runs at a clock speed of 10 MHz. The process-
ing element is very simple, basically a full adder. The
chip was developed by Holsztynski of Martin Marietta
Aerospace Corp. and manufactured by NCR Corp [16]. It
was the first commercially available systolic chip.

Brown et al. have used GAPP to implement BP [11].
As there is no floating-point support on GAPP they use
fixed-point numbers. Ten bits precision is used for the
activation values and 15 bits (4 + 11) for the weights. The
sigmoid function is approximated by a stepwise linear
function. Both weight and node parallelism are used. No
performance figures are reported.

Barash and Eshera [5] have also used GAPP to imple-
ment feedforward networks with BP learning. Using a
variation of communication by circulation described in
Section 6.3 they combine weight and node parallelism.
With a 40K GAPP and 8 bits for weight and activation
values they estimate a performance of 300 MCUPS. The
major bottleneck is reported to be the calculation of the
sigmoid function.

9.24. L-Neuro

The Laboratoires d’Electronique Philips (LEP), Paris,
have designed a VLSI chip called L-Neuro. It contains 16
processors working in SIMD fashion. In association with
these chips Transputers are imagined as control and com-
munication processors. .Weights are represented by
two’s-complement numbers over 8 or 16 bits, and the
states of the neurons are coded over 1 to 8 bits. The
multiplication is done in parallel over 16 or 32 weights but
bit-serially over the weight values, and as only one out-
put node at the time is calculated (in one chip) it can be
considered a weight parallel implementation. The node
activation value must go outside the chip for distribution
to other nodes, and no support for the calculation of the
sigmoid function is needed/implemented inside the chip.
Duranton and Sirat [20, 21] have described implementa-
tions of SOM, Hopfield, and BP networks using this chip
as a building block.

9.2.5. REMAP?

REMAP? is a cooperative research project between
Luled University of Technology and Halmstad Univer-
sity, both in Sweden. The project is aimed at obtaining a
massively parallel computer architecture put together by
modules in a way that allows the architecture to be ad-
Jjusted to a-specific application. This suggests that a cer-
tain architecture may be ‘‘compiled’’; thus a modification
of each module and adjustments of the connections be-
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tween the modules are enforced. The intended applica-
tion area in a broad sense is embedded industrial sys-
tems. A multimodule system is well suited for
implementing a multiple-network artificial neural system.

A small prototype of a software configurable processor
array module with bit-serial processors has been imple-
mented [75] and a larger system consisting of several
modules is in the process of being designed. Different
variations can be realized by reprogramming. An archi-
tecture tuned for neural network computations, 1nclud1ng
a fast bit-serial multiplier, has been designed. Ahlander
and Svensson [140] describe how support for floating-
point calculations may be embedded in the bit-serial
working mode if needed, resulting in impressive floating-
point performance when implemented with VLSI.

The mapping and performance of some common ANN
models (BP, Hopfield, SOM, SDM) have been reported
[124, 88, 89]. As an example, a 4K PE machine reaches
953 MCPS or 413 MCUPS on BP when running at 10
MHz and using 8-bit data. A node parallel version of BP
is used. For 16-bit data, 546 MCPS or 219 MCUPS is
achieved. An SDM model running 30 iterations per sec-
ond on a 8K CM-2 can run at speeds above 400 iterations
per second on a 256-PE REMAP? (10 MHz) with
counters. The implementation uses a ‘‘mixed mapping’’
of the SDM model: rowwise mapping for the selection
phase and columnwise for the store/retrieve phase.

9.3. Highly Parallel Machines with Comple,x‘PEs

9.3.1. GF11

‘GF11 is an experimental SIMD computer built at IBM
Research Laboratory. [7]. It has 566 PEs running at 20
MHz and a peak performance of 11 GFlops (as the name
implies). It is intended primarily for quantum chromo-
dynamics (QCD) predictions. Each PE has two floating-
point adders, two floating-point multipliers, and -one
fixed-point unit. Table lookup and selection are the only
data-dependent operations available.

. The memory is organized as a three-staged hierarchy
of progressively larger and slower memories. The com-
munication is done via a three-staged Benes network.
The machine is programmed in conventional C with calls
to special-purpose procedures. This generates, after an
optimization step, large blocks of microcode. Using a
very simple controller the code is sent to all processors
(there is also an address generator/relocator).

- Witbrock and Zagha have been able to use this com-
puter, before it was completed, to run ANN algorithms

[136]. They implemented BP and benchmarked it with the

NETtalk text-to-speech benchmark, achieving a speed of
900 MCUPS on a 356-processor computer. Because of
the memory hierarchy they needed afew trlcks to obtain
this high speed.

Witbrock and Zagha discuss various ways to parallel-
ize BP and finally choose training example parallelism.
When all the weight changes are added, log, N steps are
required. They also-discuss in detail how to compute the

sigmoid function and how to implement Recurrent BP-

because this model is their main interest. They conclude
that a sophisticated communication network is not neces-
sary if processor-dependent addressing is available.

9.3.2. Hughes Systolic/Cellular Architecture

The Hughes machine is a mesh-connected SIMD archi-
tecture made for image formation of synthetic aperture
radar (SAR) pictures. The prototype used has 256 PEs,
each with seven function units working on 32-bit fixed-
point data (two multipliers, two adders, a divider, a nor-
malizer, and a sorter), 24 memory registers, and a small
local memory.

On this computer Shams and Przytula have imple-
mented BP [115]. Training example parallelism was used
in one ‘““dimension”’ of the mesh and node parallelism
with communication by mrcula‘uon in the other dimen-
sion. Benchmarking with NETtalk resulted in a perfor-
mance of 100 MCUPS, including loading and unloading
operations. For recall only the result was 240 MCPS.

9.3.3. UCL Neurocomputer

Treleaven et al. have set out to construct a general-
purpose ‘‘neurocomputer’’ [129]. Each PE is a 16-bit
RISC (16 instructions) containing an on-chip communica-
tion unit and on-chip local memory. For communication
a ring structure and a broadcast bus are used. Each PE
has a unique address to support a more general type of
logical communication. The ALU can add and subtract in
one clock cycle but it only supports multiplication with a
multiply step. This means that the performance of each
PE will be low on ANN problems that have many multi-
phcatlons .

The 5- MHz 1.5-um CMOS chip which was ready in
1990 could contain only two PEs and have a maximum
CPS rate of 156 kCPS/PE or 312 kCPS/chip. It looks like
the complex control part of the chip made it difficult to
include a more powerful ALU with a one-cycle multiply-
and-add. The UCL approach should be compared with
the CNAPS approach in which emphasis is placed on the
basic computation of ANNs and the controller is shared
between all the PEs (SIMD).

9.34. T ransputers

‘The Transputer [54, 133] is a single-chip 32-bit micro-
processor. It has support for concurrent processing in
hardware which closely corresponds to the Occam [10,
53, 55] programming model. It contains on-chip RAM
and four bidirectional 20 Mbits/s communication links.
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By wiring these links together a number of topologies can
be realized. Each Transputer of the T800 type is capable
of 1.5 MFlops (20 MHz) and architectures with up to 4000
Transputers are being built [133].

The next generation of Transputers, called T9000, will
provide around 10 sustained MFlops and have 16 kbyte
of cache memory on chip. The communication has also
been improved to support through-routing without pro-
cessor involvement. This will be an even better building
block for highly parallel computers for the nineties.

Back-propagation has been implemented by Hwang et
al. [52, 71] and Petkov [98] using node parallelism and
communication by circulation. Forrest et al. have imple-
mented the Hopfield, BP, and Elastic net models on both
DAP and Transputers [29, 30]. No figures of performance
have been given, but Transputers with their relatively
low communication bandwidth (relative to their compu-
tational capabilities) are more efficiently used if small-
grain partitioning can be avoided. That is, node and
weight parallelism should be avoided, espec1ally if they
are described as general graphs.

The SOM of Kohonen has been implemented by
Hodges et al. [45] and Siemon and Ultsch [117]. Both
implementations just distribute the nodes over the PEs
and use ring communication to distribute the input vector
and to find the global minimum. As long as the neighbor-
hood is larger than the number of PEs this mapping is
quite efficient. Good performance will be achieved also
for high input dimension. Siemon and Ultsch state a per-
formance of 2.7 MCUPS on a 16 Transputer machine
applied to a network sized 128 X 128 using 17 input di-
mensions. Hodges et al. presented an equation for the
performance but no concrete implementation.

A more general implementation framework, called
CARELIA, has been developed by Koikkalainen and Oja
[66]. The neural network models are specified in a CSP-
like formalism [64—66]. The simulator is currently run-
ning on a network of Transputers and some of the models
implemented are:SOM, BP, and perceptrons. The perfor-
mance of the simulator has not been reported.

The European PYGMALION project [130] is, like
CARELIA, a general ANN programming environment
which has Transputers as one of its target architectures.
Its ANN programming languages are based on C++ and

- C; this together with a graphical software environment

and algorithm libraries makes it a complete ANN work-
bench. Performance figures or an indication of how to use
massively parallel computers as targets are unfortunately
not glven :

9.4. Moderately Parallel Maclﬁnes with Complex PEs

9.4.1. DSP (Digital Signal Processor) Based

Because the current -generation of DSPs and some of
the RISC chips have outstanding multiply-and-add per-

formance it is easy to conceive of them as building blocks
for an ANN computer. There are at least five suggested
architectures using i860, TMS320C40, or TMS320C30.

9.4.1.1. Sandy/8. Building Sandy/8, Kato et al. at
Fujitsu [61] intend to use conventional processors or sig-
nal processors for the calculations and simple ring struc-
tures for communication. The system is projected to uti-
lize 256 TMS320C30. The expected maximal
performance using BP is above 500 MCUPS. Only 118
MCUPS is expected on NETtalk (203 X 60 X 26) as the
mapping can utilize only 60 PEs.

- 9.4.1.2. Ring Array Processor (RAP). The RAP is a
multi-DSP system for layered network calculations de-
veloped at the International Computer Science Institute,
Berkeley, California [6, 83]. Each PE consists of a
TMS320C30 connected to other PEs via a bus interface
into a ring network. The 4-PE computer (one board)
which has been implemented runs at maximally 13.2
MCUPS [82, 83]. A 16-PE system is estimated to run at
46 MCUPS.

9.4.1.3. GigaCoNnection (GCN). Hiraiwa et al. [43]
at Sony Corp. are building an ANN computer called
GCN in which each PE consists of a processor similar to
the core of 1860, 2 FIFOs, and 4 Mbyte RAM. Each PE
will fit into a single chip (by 1992). The PEs are connected
into a 2D mesh with wraparound. The ANN algorithm is
mapped on the architecture using node parallelism in one
direction (systolic ring) and training example parallelism
in the other. The expected BP performance when running
128 PEs at 50 MHz will be above 1 GCUPS for a 256 X
80 X 32 network. The training data are then distributed
into 32 groups.

9. 4 1.4. TOPSI. TOPSI is a computer archltecture
built at Texas Instruments [31]. Each PE or module can
be said to consist of a TMS320C40 and a 32-bit general
processor like MC68040 together with support for com-
munication. There are two complementary communica-
tion structures, one general reconfigurable inter-PE net-
work and one hierarchical bus for broadcasting
information. Only the latter is needed for the implemen-
tation of Hopfield and BP networks. A 100-module com-
puter will run BP ata maximum speed of approximately
150 MCUPS, and a 1000 module computer at approxi-
mately 1.4 GCUPS.

9.4.1.5. PLANNS (Planar Lattice Architecture for
Neural Network Simulations) and TLA (Toroidal Lattice
Architecture. PLANNS is an improved version of the
TLA, both suggested by Fujimoto and Fukuda [32-34].
They use node and weight parallelism with grid-based
communication.- Load balancing is achieved by first
mapping the computations onto a virtual TLA and then
splitting the work to suit a physical TLA. The physical
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processor array must be able to support mesh communi-
cations.

A 16-PE Transputer array has been used as a prototype

TLA resulting in 2 MCUPS on a feedforward network
using BP. The authors claim an almost linear speedup
with the number of PEs when their load balancing
scheme is used. By using a more powerful PE like i860
and a larger number of nodes (some 30,000) they are
planning to reach 10 GCUPS in a future implementation.

9.4.2. Warp

Warp is a one-dimensional array of 10 or more power-
ful processing elements developed at Carnegie Mellon in
1984—-1987 [69]. Each cell/PE has a microprogrammable
controller, a 5-MFlops floating-point multiplier, a 5-
MFlops floating-point adder, and a local memory. Com-
munication between adjacent cells can be conducted in

.parallel over two independent channels: a left-to-right X

channel and a bidirectional Y channel. In 1991 Intel re-
leased a single-chip version of the Warp concept called
iWarp [97]. Systems with up to 1024 iWarp chips can be
built and can give a theoretical performance of 20
GFlops. Implementing a computer with these chips will
at least double the performance figures given for Warp
below. ,

Back-propagation was implemented by Pomerleau et
al. [100] trying both node and training example parallel-
ism. They found that with training example parallelism
they could simulate much larger networks and/or at
higher speeds. On NETtalk the 10-PE Warp reached 17
MCUPS.

An implementation of Kohonen SOM has been de-
scribed by Mann and Haykin [79]. Using training exam-
ple parallelism between 6 and 12 MCUPS was achieved.
Some minor problems with the topology ordering process
when using training example parallelism were reported.
The authors suggest that either the network start at some
order instead of at random state or the network be trained
sequentially for the first 100-1000 steps, after which the
training example parallelism is ‘‘turned on.”

9.5. Other High-Performance Architectures
9.5.1. Vector (Super) Computers

For the sake of comparison with well-known powerful
computers of a more conventional kind, some figures
from implementations on a couple of, so-called, super-
computers are given.

9.5.1.1. CRAY X-MP. The performance on a Cray X-
MP was given in the DARPA neural networks study [17]
to be 50 MCPS. It can be compared to the theoretical
maximal performance of 210 MFlops [44]. Even though
the 50 MCPS performance is often cited, it is difficult to
draw any conclusions from this, as the network size, the

training algorithm, and even whether or not training is
included are unknown.

9.5.1.2. NEC SX-2 and SX-X. NEC’s SX-2 is a con-
ventional supercomputer with four general vector pipe-
lines giving a peak performance of 1.3 GFlops [44]. On
ANN its performance is 72 MCUPS on NETtalk and its
maximal performance on BP is 180 MCUPS [4] via [61].

9.5.2. VLSI Implementations

Even though the intention of this paper primarily is to

review more complete computers, there are a few border-

line cases like L-Neuro, UCL neurocomputer, and
CNAPS. There are many other interesting suggestions
and realizations of chips for ANN. More material and
surveys can, for instance, be found in [17, 46, 84, 103,
112]. To review only the digital ones would lead to an-
other paper of this length. Here we mention a few of the
digital realizations:

9.5.2.1. Faure. Faure and Mazare [25, 26] have sug-
gested an asynchronous cellular architecture which con-
sists of a 2D mesh of size 65 X 65 for ANN. -Each PE has
a routing and a processing part running at 20 MHz. The
routing is intended to control up to four message trans-
fers in parallel. Using 16 bits for weights and an array
configured for NETtalk the designers claim 51.4
MCUPS. Basically, node parallelism is used but each
node is distributed over two PEs.

9.5.2.2. Hitachi. Masaki et al. and Yasunaga et al. at
Hitachi have developed a wafer scale integration (WSI)
neural network [81, 137, 138]. On one 5-inch silicon wafer
they can have 540 neurons, each having up to 64 weights
(the 64 largest values are chosen). Node parallelism is
used, and the neurons communicate through a time-
shared digital bus. Each PE has an 8 by 9-bit multiplier
and a 16-bit accumulator. The measured time step is 464
ns. The performance of a wafer is then 138 MCPS. They
intend to build a system out of 8 wafers and could then
theoretically achieve 1100 MCPS. No on-chip learning is
available.

9.5.2.3. SIEMENS. Ramacher and his colleagues at
Siemens [102-104] have suggested and built parts of a 2D
array composed of systolic neural signal processor mod-
ules. The basic components of their MA16 chip are pipe-
lined 16-bit multipliers together with adders. In this re-
spect the design is similar to CNAPS. However, the
Siemens architecture does not use broadcast-based com-
munication, but instead uses a systolic data flow (parti-
tioned in groups of four). Each chip has a throughput on
the order of 500 MCPS. To get a complete system, 256
MAI16 chips are concatenated, which should give a maxi-
mum performance of 128 GCPS. No estimated learning
rates have been given.
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10.0. DISCUSSION AND CONCLUSIONS

10.1. ANN and Parallel Computers

Practically every powerful, parallel computer will do
well on ANN computations that use training example
parallelism. It is the kind of computation that even brings
the performance close to the peak performance. This is of
course interesting for people who do research on training
algorithms or do application development where the
training of the system can be done in batch. However, for
training in real time, this form of parallelism cannot be
applied; the user is obliged to use node or weight parallel-
ism instead. This places other demands on the architec-
ture, resulting in lower performance figures.

This is clearly illustrated by the various BP implemen-
tations made on the Connection Machine: Singer, relying
entirely on training example parallelism, achieves 325
MCUPS. Zhang et al., only partly utilizing training exam-
ple parallelism, reach 40 MCUPS. Rosenberg and Blel-
loch, finally, who only use other forms of parallelism, end
up with a maximum performance of 13 MCUPS. The
latter implementation is so heavily communication bound
that it does not even matter if bit parallelism is utilized or
not!

However, if the architecture meets the communication
demands, near peak performance can be reached also in
real-time training. The vertical and horizontal highways
of the DAP architecture seem to be the key to the good
performance reported for this machine [90]. On a com-
puter where the maximum number of 8-bit multiply-and-
add operations per second is 450-700M, 160 MCUPS (8
bit) implies a very little amount of communication over-
head.

A major conclusion from this survey is that the regular-
ity of ANN computations suits SIMD architectures per-
fectly; in none of the implementations studied has a real
MIMD division of the computational task been required.

‘The majority of ANN computations following the most
popular models of today can be mapped rather efficiently
onto existing architectures. However, some of the
models, for example, SDM, require a highly or massively
parallel computer capable of performing tailored, but
simple, operations in parallel and maintaining a very
large amount of storage.

10.2. Communication

Broadcast and ring communication can be very effi-
ciently utilized in ANN computations. In highly parallel
machines, broadcast or ring communication alone has
proved to be sufficient. For massively parallel machines
it is difficult to use only broadcast without using training
example parallelism. This is due to the fact that the num-
ber of nodes in each layer, or the number of inputs to
each node, seldom is as large as the number of PEs in the

machine. On a two-dimensional mesh machine, broad-
cast in one direction at a time may be used and node and
weight parallelism may be combined. Thus, broadcast is

‘an extremely useful communication facility also in these

machines. The ‘‘highways’® of the DAP architecture
serve this purpose. -

10.3. Bit-Serial Processing

Bit-serial processor arrays are very promising host ma-
chines for ANN computations. Linear arrays, or arrays
with broadcast, are suitable for utilizing node parallelism.
In mesh-connected arrays node and weight parallelism
may be used simultaneously, if desired. Multiplication is
the single most important operation in ANN computa-
tions. Therefore, there is much to gain in the bit-serial
architectures if support for fast multiplication is added,
as shown in Centipede and the REMAP? project.

As an illustration of this we can compare the perfor-
mance figures for the implementations of BP on AAP-2
and REMAP3, respectively. On the 64K PE AAP-2 ma-
chine, which lacks support for multiplication, 18 MCUPS
using 26 bits data are reported on a network that suits the
machine perfectly. The same performance can be
achieved on a 512-PE linear array REMAP? implementa-
tion, in which bit-serial multipliers are used. AAP-2 also
lacks a fast broadcasting facility, but this is of minor im-
portance compared to the slow multiply operations.

10.4. Designing a General ANN Computer

A fruitful approach when designing a massively or
highly parallel computer for general ANN computations
is to start with a careful analysis of the requirements that
are set by the low-level arithmetic operations and design
processing elements which meet these demands. Then an
architecture is chosen that makes it possible to map the
computations on the computational structure in a way
that makes processing and communication balanced.

It seems that broadcast communication often is a key
to success in this respect, since it is a way to time-share
communication paths efficiently. The approach has been
used in both the CNAPS and the REMAP? design pro-
cesses, both resulting in “‘only’’ highly (not massively)
parallel modules with broadcast, the former with bit-
parallel processors, the latter with bit-serial ones. Nei-

. ther design utilizes all the available parallelism; instead

they leave weight parallelism to be serialized on the same
processor. Both reach near peak performance on a vari-
ety of algorithms.

10.5. Implementing Artificial Neural Systems

The real challenge for computer architects in connec-
tion with the neural network area in the future lies in the
implementation of Artificial Neural Systems, i.e., sys-
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tems composed of a large number of cooperating modules
of neural networks. Each of the modules should be al-
lowed to implement a different network structure, and
the modules must be able to interact in different ways and
at high speed. This implies that heterogeneous systems
composed of homogeneous processing arrays must be
developed, and that special attention must be paid to the
problem of interaction between modules and between pe-
ripheral modules and the environment. The role of
MIMD architectures in neural processing probably lies in
this area, actually meaning that MIMSIMD (Multiple In-
struction streams for Multlple SIMD arrays) architec-
tures will be seen.

These new computer architectures are sometimes re-
ferred to as ‘‘sixth-generation computers,” or ‘‘action-
oriented systems’’ [2, 3], since they are capable of inter-
acting with the environment'usinglvisual, auditory, or
tactile sensors, and advanced motor units.

So far these matters have not been addressed by very
many computer architects (nor by artificial neural net-
work researchers). We believe that flexible, massively (or
maybe only highly) parallel modules are important tools
in experimental work aimed at bulldmg such systems for
qualified real-time pattern recognition tasks.
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ABSTRACT

A new system-architecture, incorporating highly parallel, communicating processing modules,
is presented as a candidate platform for future high-performance, real-time control systems.
These are needed in the realization of action-oriented systems which interact with their envi-
ronments by means of sophisticated sensors and actuators, often with a high degree of parallel-
ism, and are able to learn and adapt to different circumstances and environments. The use of
artificial neural network algorithms and trainability require new system development strategies
and tools. A Continuous Development paradigm is introduced, and an implementation of this,
in the form of an interactive graphical tool, is outlined. The architectural concept is based on
resource adequacy, both in processing and communication. Learning algorithms are cyclically
executed in distributed nodes, which communicate via a shared high-speed medium. The suita-
bility of SIMD (Single Instruction stream, Multiple Data streams) processing nodes for ANN
computations is demonstrated. An implementation of the system architecture is presented, in
which distributed SIMD-nodes access their data from local real-time databases, updated with
data from the other nodes via a shared optical link.

Keywords: Parallel processing; learning systems; neural networks; action-oriented systems,
control system design, real-time computer systems.

1 INTRODUCTION

“Action-oriented systems”, as described by Arbib [Arbib, 1989], interact with their environ-
ments by means of sophisticated sensors and actuators, often with a high degree of parallel-
ism. The ability to learn and adapt to different circumstances and environments are among the
key characteristics of such systems. Development of applications based on action- oriented
systems relies heavily on training, rather than progamming of the detailed behaviour.

Response time requirements and the demand to accomplish the training task point to mas-
sively parallel computer architectures. A network of homogeneous, highly parallel modules is
foreseen. The modules perform perceptual tasks close to the sensors, advanced motoric con-
trol tasks close to the actuators, or complex calculations at “higher cognitive levels”. The new
system-architectural concept that we introduce for the implementation of this kind of highly
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parallel real-time systems is based on the principle of resource adequacy [Lawson, 1992b] in
order to achieve predictability. This means that enough processing and communication
resources are designed into the system and statically allocated to guarantee that the maximum
possible work-load can always be handled.

Not only do these trainable control systems require new architectural paradigms, they also
require the acceptance of new system development philosophies. The traditional application-
development model, characterized by a sequence of development phases, must be replaced by
an interactive model based on training.

Both the system development model and the architectural paradigm are first presented on the
conceptual level and then examplified by describing implementations meeting the demands of
typical advanced real-time control tasks. Specifically, this paper points to the possibilities
based on multiple SIMD (Single Instruction stream, Multiple Data streams) arrays on which
static allocation of processing tasks is made and on the power and appeal of graphical applica-
tion-development tools.

We have shown, by own implementations and detailed studies, as well as by reviewing the
implementations of others, that typical neural network algorithms used today map efficiently
onto SIMD architectures [Nordstrom and Svensson, 1992]. Based on this, and the discussion
above, a hypothetical architecture for Artificial Neural Systems (ANSs) would look like the
one shown in Figure 1.
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Figure 1. A multi-module architecture for an action-oriented system

Different modules (SIMD arrays) typically execute different Artificial Neural Network (ANN)
models, or different instances of the same model. Full connectivity may be used within the
modules, while the communication between modules is expected to be less intensive
(although we will also devise solutions that satisfy the potential demand for tighter connec-
tions between pairs of modules).

The work is part of REMAR the Real-Time, Embedded, Modular, Action-oriented, Parallel
Processor Project, partly funded by STU/NUTEK, the Swedish National Board for Technical
and Industrial Development, under contracts No. 9001583 and 9001585.
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2 LEARNING ALGORITHMS AND MODULE ARCHITECTURE

Studies of the brain indicate that adaptation takes place in basically two ways: by changing the
structure and by changing the synapses (connection strengths in the structure). The first one
has the nature of long-term adaptation and often takes place in the first part of an animal's life.
The second one, the changes of connection weights (the synapses), is a more continuous proc-
ess and happens throughout the animal's entire lifetime.

Modeled after this, the design of an action-oriented system should first be concerned with the
process of selecting and connecting (possibly adapting) ANN structures and other signal
processing structures. Later, the system moves into a tuning phase and a state of continuous
learning. The two stages described may also be interleaved in an iterative fashion, which calls
for some kind of incremental or circular development model as will be described later.

Only very few of the most used ANN models are found in the context of continuous learning,
but with minor modifications most of them can be turned into a continuous learning model.

The mapping of ANN algorithms onto highly parallel computational structures has been
widely investigated. A summary is provided in [Nordstréom and Svensson, 1992], where proc-
essor arrays of SIMD type are pointed out as the major candidate architecture for fast general
purpose neural computation.

A basic SIMD processor array is outlined in Figure 2. We have performed detailed studies of
the execution of the predominant ANN models on this kind of computing structures [Gustafs-
son 1989, Svensson 1989, Svensson and Nordstrom 1990, Nordstrom 1991a, Nordstrom
1991b]. The mappings of the models and the results obtained are summarized in the subse-
guent subsections. A major conclusion is that broadcast or ring communication among the
Processing Elements (PEs) of the array can be very efficiently utilized and actually provides
the necessary means for communication within the array. Multiplication is the single most
important operation in ANN computations. In bit-serial architectures, which have been our
primary target, there is therefore much to gain if support for fast multiplication is added. In
some of the ANN models, for example Sparse Distributed Memory (SDM), tailored hardware
to support specific PE operations pays off very well.

Control Unit

Paralle
I/0

Serial @ Memory PE’s
110

Figure 2. SIMD Module

The system architecture, described later, permits two or more modules to be linked together to
form a larger module, if necessary. This linking may be done either over the communication
medium, in which case the intermodule communication shares time with all modules of the
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system, or over a separate medium. In the latter case the cooperating modulesldistar a
with more available bandwidth for internal communication. Special “dual-port” nodes form
the interface between the cluster and the main medium.

2.1 Parallelism in ANN Computations

As described more thoroughly in [Nordstrom and Svensson, 1992], six different dimensions
of parallelism can be identified in neural network computatidoste parallelismandweight
parallelismare the two most important for consideration in a parallel implementation for use
in real time. Node parallelism means treating all, or several, nodes in a layer simultaneously
by several PEs. Weight parallelism means treating all, or several, inputs to a node simultane-
ously. The two forms of parallelisms may be combined. In typical ANN applications the
degrees of these two forms of parallelism are usually very high (hundreds, thousands,...). The
same, or even higher, degrees are availabteabying-sessiorandtraining-example parallel-

ism, but these forms are not available for use in real-time training situations, thus are of minor
importance in action-oriented systerhayer parallelism(treating all layers in parallel and/or

going forward and backward simultaneously) ditdparallelism (treating all bits in a data

item in parallel) complete the picture, but the degrees of these are seldom greater than the
order of ten.

In the architectures and mappings described in subsequent sessions we find it practical to refer
to the different dimensions of parallelism as defined above.

2.2 Feedforward Networks with Error Backpropagation

The mapping of feedforward networks with error backpropagation on highly parallel arrays of
bit-serial PEs is described in [Svensson, 1989] and [Svensson and Nordstrém, 1990]. Node
parallelism is used. A quite simple bit-serial multiplier structure using carry-save technique
[Fernstrom et al. 1986] is added to the basic PE design. By this, multiplication time is equal-
ized to addition time. When performing multiply-and-add operations, which is the dominating
operation in this algorithm, both units work in parallel. Connection weights are stored in
matrices, one row of the matrix per PE module.

In REMAP?, PE arrays along these lines are being developed. Figure 3 shows the design of
one such PE.

e e
U C > d -
O _—
Mi 1 )% . Eg R > »
in >
ol L | ] [
| Ll Or (M ™
Xor [N X
Ul* g > Add | = X Broadcast
D—» >IN X
D ,| N P
Br.Cast Ul T
»| Multiplier 15
T Control Soms,.
Someln < SelectFir

Figure 3. Sample PE from REMAP3
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An interesting result is that the computations do not require the PE array to have a very rich
communication structure. The facilities needed are the ability to broadcast a single bit from
any processor to all others, a means for selecting processors in order, one by one, and a bit-
serial adder tree to add the values of a field. As an alternative to broadcast, ring communica-
tion may be provided; in that case the adder tree is not needed.

A typical module (about the size of one small printed-circuit board using common state-of-
the-art technology) would be a 1024 PE array of bit-serial processors incorporating a bit-serial
multiplier. Such an array is capable of training at 265 MCUPS (Million Connection Updates
Per Second) or recall at 625 MCPS (Million Connections Per Second) using 8-bit data at 25
MHz. A four-layered feedforward network with 1024 neurons per layer would run at the speed
of 85 training examples or 200 recall examples per second.

2.3 Feedback Networks

As reported in [Gustafsson, 1989] and [Svensson and Nordstrom, 1990], a simple PE array
with broadcast or ring communication may be used efficiently also for feedback networks
(Hopfield nets, Boltzmann machines, recurrent backpropagation nets, etc.). The MCPS meas-
ures are, of course, the same as above. On a 1024 PE array running at 25 MHz, 100 iterations
of a 1024-byte input pattern takes 106 ms.

2.4 Self-Organizing Maps

[Nordstrém, 1991b] describes different ways to implement Kohonen’s Self-Organizing Maps
(SOMs) [Kohonen, 1990] on parallel computers. The SOM algorithm requires an input vector

to be distributed to all nodes and compared to their weight vectors. This is efficiently imple-
mented by broadcast and simple PE designs. The subsequent search for minimum is extremely
efficient on bit-serial processor arrays. Determining the neighbourhood for the final update
part can again be done by broadcast and distance calculations. Thus, also in this case, broad-
cast is sufficient as the means of communication. Node parallelism is, again, simple to utilize.
Efficiency measures of more than 80% are obtained (defined as the number of operations per
second divided by the maximum number of operations per second available on the computer).

2.5 Sparse Distributed Memory

Sparse Distributed Memory (SDM), developed by Kanerva [Kanerva, 1988], is a two-layer
feedforward network, but is more often — and more conveniently — described as a computer
memory. It has a vast address space (typical®°pdssible locations) which is only very
sparsely (of course) populated by actual memory locations. Writing to one location influences
locations in the neighbourhood (e.g. in the Hamming-distance respect) and, when reading
from memory, several neighbouring locations contribute to the result.

The SDM algorithm requires distribution of the reference address, comparison and distance
calculation, update, or readout and summation, of counters at the selected locations. Nord-
strom [Nordstrom, 1991a] identifies the requirements for these tasks and finds a “mixed” map-
ping (switching between node and weight parallelism in different parts of the calculation) that
is especially efficient.
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A counter in the place of the multiplier in the bit-serial-PE based architecture described above
makes the array especially efficient for SDM. A 256 PE RER&RBIization with counters is
found to run SDM at a speed 10 - 30 times faster than that of an 8K PE Connection Machine
CM-2 (clock frequencies equalized). Already without counters (then the PEs become
extremely simple) a 256 PE REMAButperforms a 32 times larger CM-2 by a factor of 4 -

10. One explanation of this is the more developed control unit of REMARh makes the

mixed mapping possible to use.

3 APPLICATION SYSTEM DEVELOPMENT

Increased flexibility, adaptability, and the potential to solve some hard problems are the main
reasons for introducing ANN in real-time control systems. A new development philosophy,
that allows conventional control engineering and ANN principles to be mixed, is required.

3.1 Trainability in Real-Time Control Systems

The most common development philosophy today in the domain of computer-based systems
is the “sequence of phases” strategy, often referred to as the waterfall model [see, e.g., Som-
merville, 1989] (Figure 4).

Analysis

Design

Implementation

Test

Figure 4. The waterfall model.

The sequence of phases is no longer relevant when trainable systems are to be developed. A
trainable ANN system may be considered as having two parts: structure and data. The struc-
ture is the ANN algorithms and the hardware architecture. The data is the information that the
system gets from the environment and the stored information that yields the behaviour of the
system (e.g., the connection weights). In most of the models that have been suggested so far
the structure is static in the sense that it is not changed by the system itself, but there is an
interesting development going on towards dynamic structures. The stored information can be
static after a training session or dynamic meaning that the environment constantly influences
the system’s behaviour.

In a development model feasible for trainable systems, the analysis activity has similarities to
the waterfall model in sorting out the demands on the system, but turning these demands into,
e.g., functions or objects is not relevant here. In contrast to programmed systems the main
design task is to determine an adequate set of ANN-algorithms and a system architecture. This
does not give the system its function, which is an important difference to conventional sys-
tems. The function of the system is given by training, either in a special training session or by
running the system in its proper environment.
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To describe development of trainable systems we need a circular development model as illus-
trated in Figure 5.

Analysis

Design Operation

Training Verification

Figure 5. The circular development model.

In contrast to the waterfall model, where system development is considered as a project and
maintenance as a process, the circular development model incorporates development and
maintenance as two activities in the same process. The parts of this process are:.

Analysis Each instance of this activity handles a portion of the demands that the system is to
fulfil. The treated demands may have impact on the system as a whole or only a small part of
it.

Design To meet the demands, existing algorithms are tested/modified or new ones are devel-
oped. This design style can be compared to rapid prototyping to encourage the creativity of
the developer. The activity leads to a structure which includes ANN-algorithms and conven-
tional control algorithms.

Training When the structure of the system is updated, the system is given its new properties
by exposing it to environment data or a set of training data. Training may be a part of the oper-
ation activity but can also be a separate activity succeeded by verification.

Verification In most cases the updated trained structure of the system has to be verified before
letting it influence the environment. In this activity the developer can use own data or data
from the environment and structures dedicated to verification.

Operation There is no sharp distinction between operation and other activities. The behaviour
of the system might change constantly during operation due to adaptation. The system might
have only a fraction of its functionality implemented but still be a good test-bench for analy-
sis, design and training.

In control applications the security aspect is often emphasized. Letting ANN-based systems
act on the environment without special precautions could lead to severe problems. It is a major
research challenge of neural control engineering to devise solutions for handling these mat-
ters. One possible approach is to have a "security shell" which gives limits for the outputs
from the ANN algorithms.

3.2 The Continuous Development Paradigm.

To support the development model we introduce the Continuous Development Paradigm (CD-
paradigm). This paradigm can be expressed as “Development by changing and adding”. This
is a well-known approach in modern Software Engineering but in this context the aims are
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extended to include both hardware and software. A development environment to support the
use of the CD-paradigm should share the following characteristics:

» Easy to change the system structure (hardware and software) and data “on the fly”.
* Incremental Development using the running system as development platform.

* No undesired side-effects on the already tested parts of the system

» System data and structures can be viewed with emphasis on understandability.

» Developer gets immediate response to a change of the system.

» Developer can use concepts and symbols of the application domain.

3.3 An Implementation

We describe an implementation of a system development tool based on the CD-paradigm
described above.The most important features of the tool are:

» Graphical developer’s interface.

» Cyclic execution with temporal deterministic behaviour.

* Dynamic change of the running software.

» Dynamic inspection/change of data “on the fly”.

» Change of the distributed hardware “on the fly”.

» Use of symbols and concepts from the domain of control engineering and ANN.

The tool is used to develop applications running on a set of distributed, communicating nodes.

Each node is to have a cyclically executing program. The cyclical execution scheme is chosen
in order to achieve a time-deterministic behaviour. The cycles have two parts: the Monitor and

the Work Process. The Monitor (i)starts on a given time (adtdws passed), (ii) takes care

of input data that has arrived during the previous cycle and prepares output data that is to be
distributed during the present one, (iii) handles program changes, and (iv) starts the Work

Process.

A temporal view of the execution of one cycle is shown in Figure 6, where the different paths
of the Work Process are indicated. Continuous lines indicate processing that consumes time,
dotted lines show idle processing, and lines splitting up means a selection in the control flow.
The development tool guarantees that the worst case branch is within the cyaii time,

Monitor

1.

t t+dt Time

Figure 6. Temporal view of Monitor and Work Process
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3.3.1 Graphical Developer’s Interface

To support the CD-paradigm and demands of understandability the developer's interface to the
system is an interactive graphical tool. The most basic properties of the tool are outlined
below.

» All development is done on a system in operafibat is, a system operating in real time
but not necessarily affecting the system environment.

» Hierarchical way of describing the applicatiofihe levels of abstraction span from the ins-
tructions of the node control unit to the abstract concepts of the application.

» Support for reuse of system componep#st of the tool is a browser where system compo-
nents (processes, data, and connections) are stored.

» Tools for viewing dataData can be viewed in various ways, e.g. using bargraphs, dia-
grams, maps, and conditional recording.

On the highest levekystem levglthe user works with a display showing an overview of a
typed dataflow between nodes executing cyclic processes (Figure 7). This is actually a map of
the system configuration.

o }o

Process
O O
Cyclic Process

O
Data Buffer

SE—
Connection

Figure 7. System level display (left) and basic symbols.

The user may open up a process symbol to work with a graphical specificationnma¢he

level This can be repeated, resulting in a hierarchy of graphical specifications. Figure 8 shows

an example of such a display. In the Work Area (WA), surrounded on both sides by the Input

and Output areas, respectively, the designer can place symbols that specify the operation of
the node. The placement of symbols in WA has temporal meaning relative to a time scale T

that indicates the total time of the process. Every symbol in WA can be opened to move the

designer one level of abstraction lower in the system hierarchy. When the designer places a
symbol in WA, using the browser, the corresponding process will be added to the execution
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thread. The designer can then immediately use the inspection tools to verify the function of
the added process. This is indicated in Figure 8.
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Figure 8. Node level (or lower levels) display

4 SYSTEM ARCHITECTURE AND INTERMODULE COMMUNICATION

4.1 Concept

The system-architectural concept is based on the notions of nodes, channels, and local real-
time databases:

Nodes which differ in functionality, are communicating viasshared mediuminput nodes

deliver sensor data to the rest of the system and may perform perceptual tasks. Output nodes
control actuators and may perform motoric control tasks. Processing nodes perform various
kinds of calculations. 1/0O nodes and processing nodes may have great similarities but, because
of their closeness to the environment, I/O nodes have additional circuits for interfacing to sen-
sor and actuator signals.

Communication between nodes takes placekannels A communication channel is a logi-

cal connection on the shared medium between a sending node and one or more listening
nodes. The channels are statically scheduled so that the communication pattern required for
the application is achieved. This is done by the designer. Two types of data are transported
over the mediumCode changeare distributed to the nodes to allow modifications "on the

fly" of the cyclically executed programs in the nod@scessdata informs the nodes about

the status of the environment (including the states of other nodes). If the application requires

intensive communication within a set of related nodes a hierarchical communication can be

set up. The related nodes form a cluster with more available bandwidth on the internal chan-
nels.

Rather than being individual signals, the process data exchanged between the nodes is more
like patterns, often multi-dimensional. Therefore, the shared medium must be able to carry
large amounts of information (Gigabits per second in a typical system).

Every node in the system executes its program in a cyclic manner. The cyclically executed
program accesses its data fromo@al real-time databas@d_RTDB). This LRTDB is updated,
likewise cyclically, via channels from the other nodes of the system.
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The principle of resource adequacy, the cyclic paradigm and the statically scheduled commu-
nication via the LRTDBs imply the time-deterministic behaviour of the system which is so
important in real-time applications (cf [Lawson, 1992a]).

One of the nodes connected to the network is a Development Node, as shown in Figure 9. It
establishes a channel to an executing node when it needs to send program changes. Instruc-
tions along with address information are sent to the executing node where the monitor makes
the change between two executions of the Work Process.

Operating
l:| Node

" Development
System

Target System o

Figure 9. Multi-node target system and multiple-workstation development system

The Development Node is connected to a Local Area Network (LAN) of workstations (WS)
running the development system. The LAN connection can be removed without affecting the
running system.

For inspection of the LRTDB and other local data the Development Node opens channels in
the same way as when other process data is moved between nodes.

4.2 Implementation

Implementations of the processing modules have been briefly described in earlier sections (see
Figure 2 and Figure 3). Here we concentrate on the implementation of the communication
architecture. A more detailed description is given in [Nilsson et al., 1992].

An all-optical network (the entire path between end-nodes is passive and optical) is used as
the shared medium. Communication channels between SIMD Nodes are established by time-
multiplexing (TDMA) in a statical manner. In every scheduled time slot there is one sender
and one or more listener (broadcast).

If higher capacity is needed, WDMA (wavelength division multiple access) may be used
instead. Then, scheduling of communication is not required. The nodes scan the wavelength
spectrum to fill their LRTDBs. The scanning can be statically determined or a function of the
internal state of the node. As an interesting future possibility, it may also be trained.

Broadcast implies that it is important to synchronize the communication. The synchronization
Is done via a global, distributed optical clock. Alternatively, a communication slot can be sev-
eral time slots, which gives a slower communication speed.
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In the communication interface of each SIMD Node (Figure 10) a clock frequency reduction
is done by a factor k by means of shiftregisters (k is the size of the PE array, e.g. k=256). It is
important to synchronize the dataflow with the shift clock. This is done by sending the clock
and the data in the same medium. Clock and data use different wavelepgtitsy, imply-

ing that the communication interface must include two laserdiodes and two optical filters (F)
for the flow of process data.

In addition to the exchange of process data there is also a distribution of code caused by pro-
gram changes made "on the fly".

_I_T R

' ]
A%: D EiD
(3 ey
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SR SR Clock to
Global cSIMD-array and
distributed_,H . K omm. processor

clock

Figure 10. Communication interface. T is transmit, R is receive. Grey boxes indicate the optical/
electrical conversion.

Due to the high speed the communication interface must be integrated into one IC to work
properly. Today there are shiftregisters available implemented in GaAs-technology for very
high speed (some Gbit/s). The GaAs-technology also gives the possibility to integrate optical
devices with logic. The topology of the all-optical network is a star, which has a decibel loss
proportional to logN, while a bus topology has one proportional to N (N is the number of
nodes in the system) [Green, 1991].

The SIMD Module accesses data from its own local real-time database (LRTDB) reflecting
the status of the environment. The LRTDB is implemented as a dual-port memory. At one side
the SIMD Module accesses data; at the other side the control unit in the communication mod-
ule is updating the LRTDB via the communication interface. The control unit cyclically exe-
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cutes the statically scheduled send and receive commands necessary for carrying out the
communication pattern of the node (Figure 11).

Code changes > Comm.
Global clock _T_> interface
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ProcessI @ CL
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Comm. Comm. SIMD
interface  processor Module

Figure 11. A Node

4.3 REMAP Prototype Development

REMAP? is an experimental project. A sequence of gradually evolved prototypes is being
built, starting with a small, software configurable PE array module, implemented as a Mas-
ter’s thesis project [Linde and Taveniku, 1991]. With only slight modifications in PE array
architecture, but with a new high-performance control unit, the second prototype is how being
built [Bengtsson et al., 1991], almost full-scale in PE number, but far from miniaturized
enough for embedded systems.

The early prototypes rely on dynamically programmable logic cell arrays (FPGAS) [Linde et
al. 1992]. Therefore, different variations of the prototypes can be realized by reprogramming.
The FPGAs are designed for high speed. Thus, the speed and the logical size of the prototype
systems suffice for new, demanding applications, but the physical size does not allow embed-
ded multi-module systems to be built from the prototypes.

Based on the experiences from the FPGA-based prototype modules, a design for a VLSI
implemented module that can be used in multi-node systems as described above will be made.

5 CONCLUSION

This paper points to the strength of combining massively parallel architectures, trainability,
and incremental development environments. The SIMD paradigm combines single-threaded
programming with multiprocessing power and easy miniaturizing for embedded systems. We
have presented a massively parallel system architecture based on multiple SIMD processor
arrays to allow the implementation of real-time, ANN-based training using interaction-based
system development tools.

The presented system architecture and development model are intended to be used in biologi-
cally inspired design of control systems [Kuperstein, 1991; Singer, 1990], where sensory,
motoric, and higher cognitive functions are mapped onto nodes or clusters of nodes.
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Abstract. With the arrival of large Field Programmable Gate Arrays (FPGAS) it

is possible to build an entire computer using only FPGA and memory. In this pa-
per we share some experience from building a highly parallel computer using
this concept. Even if today's FPGAs are of considerable size, each processor
must be relatively simple if a highly parallel computer is to be constructed from
them. Based on our experience of other parallel computers and thorough studies
of the intended applications, we think it is possible to build very powerful and
efficient computers using bit-serial processing elements with SIMD (Single In-
struction stream, Multiple Data streams) control.

A major benefit of using FPGAs is the fact that different architectural variations
can easily be tested and evaluated on real applications. In the primary applica-
tion area, which is artificial neural networks, the gains of extensions like bit-seri-
al multipliers or counters can quickly be found. A concrete implementation of a
processor array, using Xilinx FPGAs, is described in this paper.

To get efficient usage and high performance with the FPGA circuits signal flow
plays an important role. As the current implementation of the Xilinx EDA soft-
ware does not support that design issue, the signal flow design has to be made by
hand. The processing elements are simple and regular which makes it easy to
implement them with the XACT Editor. This gives high performance, up to 40—
50 MHz.

1 Introduction

The requirements for flexibility and adaptivity to different circumstances and environ-
ments have motivated research and development towards trainable systems rather than
programmed ones. This is true especially for “action oriented systems” which interact
with their environments by means of sophisticated sensors and actuators, often with a
high degree of parallelism [2]. Response time requirements and the demand to accom-
plish the training task points to highly or massively parallel computer architectures.

In REMAP, the Real-Time, Embedded, Modular, Action-oriented, Parallel Proces-
sor Project [3], the potential of distributed SIMD (Single Instruction stream, Multiple
Data streams) modules for realization of trainable systems is investigated. Each SIMD
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module is a highly parallel computer with simple PEs tuned to efficiently compute arti-
ficial neural network algorithms.

Within the project, a series of studies have been performed [10-12, 16] concerning
the execution of neural network algorithms on highly parallel SIMD computers, with
special emphasis on architectures based on bit-serial processing elements (PEs). The
results show that SIMD is the best suited parallel processing paradigm for artificial
neural networks (ANNSs) and that arrays of bit-serial PEs with simple inter-PE commu-
nication are surprisingly efficient. As multiplication is found to be the single most im-
portant operation in these computations, there is much to be gained in the bit-serial
architecture if support for fast multiplication is added.

Using today’s relatively large field-programmable gate arrays (FPGAS), it is possi-
ble to build an entire computer using only FPGAs and memaory. Still, if a highly paral-
lel computer is to be constructed out of them, each processor must be very simple. As
shown in our studies of parallel computers for ANN, bit-serial PEs with SIMD control
suit our computational needs, which makes it feasible to use FPGAs as a means to con-
struct the first prototypes of our computers.

The computer built should not be seen as a final “product”, it is more of an archi-
tecture laboratory, in which it is possible to change the architecture of each PE rapidly.
Designing and compiling a new architecture takes about one week and downloading an
already prepared architecture takes less than a second.

2 Applications

To realize action-oriented systems, the artificial neural network (ANN) models [6, 7]
form a very important implementation class. As shown in [12] the demands on the ar-
chitecture are quite moderate for standard ANN algorithms like feed-forward networks
with back propagation, Hopfield networks, or Kohonen self-organizing maps. These
models, like most of the ANN algorithms, use a very simple model of the neuron. Typ-
ically, an artificial neuron computes a weighted sum of its inputs, a nonlinear function
is then usually applied to the sum, and the result is sent along to neighboring neurons,
see Fig. 1. The power of ANN computations comes from the large number of neurons
(nodes) and their rich interconnections via synapses (weights).

i
1w
i f (%)
20w,
I
3 H (o]
= w, ZWJ-I]- _/- -
N
n

Wﬂ

Fig. 1. The simplest model of a neuron. The neuron calculates the weighted sum

of its inputs and applies a non-linear function to i, f (2 W]-ij)

Different ANN models are characterized not only by the type of nodes, but also by
the interconnection topology, and the training algorithm used [9]. Common topologies
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are layered feed-forward networks, winner take all networks, and all-to-all (Hopfield)
networks. Common training rules are error back-propagation and self-organizing fea-
ture maps.

Parallelism can be found in many different places [12] but for action-oriented sys-
tems the parallelism in the nodes and weights are the important ones (node and weight
parallelism). As we are focusing on the ANN models in which one can count the num-
ber of nodes and weights in thousands, we will have a lot of parallelism available.
These two types of parallelism also fit the SIMD concepts perfectly.

The calculation of the weighted sum is the most time consuming calculation and
should therefore be supported architecturally by any computer intended for real-time
ANN computations. Also the communication means between different ANN algo-
rithms/modules as well as between these modules and the environment have to be
carefully designed.

Another possible application area for the architecture we describe would be low-
level image processing. As the architecture is not very different from architectures
which are known to perform well on low-level image processing problems (e.g. AlS-
5000 [14], LUCAS [5]), this problem area also fits our architecture well.

3 The REMAP Computer

REMAP is an experimental project. A sequence of gradually evolved prototypes are
being built, starting with a small, software configurable PE array module, implemented
as a Master’s thesis project [8]. With only slight modifications in the PE array architec-
ture, but using a new high-performance control unit, the second prototype has now
been built. This prototype is almost full-scale with respect to the number of PEs, but
far from miniaturized enough for embedded systems. It is the architecture of this pro-
totype that is described in this paper.

The computer consists of a number of computing modules controlled by a master
computer. Each computing module is a SIMD computer of its own. It contains a linear
array of bit-serial processing elements with memory and 1/O-circuits controlled by a
control unit, see Fig. 2.

1. A 128PE prototype has now (beginning of 1993) been completed.
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Fig. 2. Overview of the REMAP system. The PEs are implemented in Xilinx
XC4005 circuits (8 in each) and the serial/parallel 1/0 device in Xilinx XC3020
(8 parallel and 8 serial 1/0 each)

3.1 The Control Unit

The main task for the control unit is to send instructions together with PE memory ad-
dresses to the PE array. At the same time it computes new address values (typically in-
crements and decrements).

The control unit currently in use [3] has been designed around a microprogramma-
ble sequencer and a 32bit ALU (AMD 28331, 28332). The control unit is capable of
sending out a new address together with a new instruction every 100ns. The controller
is more general purpose than usually needed, but until we know what is needed it
serves our purpose. The microprograms to be executed by the control unit are stored in
an 8K words control store. The operations can either be simple field operations, like
adding two fields, or whole algorithms like an ANN computation. For the moment
only a micro-code assembler is available to program the control unit, but we intend to
develop more high level software development tools in the future. Currently we are
looking into the possibility of using/developing a data-parallel language similar to C*
[17].

3.2 PEs for ANN Algorithms

The detailed studies of artificial neural network computations have resulted in a pro-
posal for a PE that is well suited for this area. The design is depicted in Fig. 3. Impor-
tant features are the bit-serial multiplier and the broadcast connection. Notably, no
other inter-PE connections than broadcast and nearest neighbor are needed. The PE is
quite general purpose, and we are confident that this is a useful PE design also in sev-
eral other application areas. In this version it consists of four flipflops (R, C, T and X),
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eight multiplexers, some logic and a multiplication unit. The units get their control sig-
nals directly from the micro instruction word sent from the control unit.
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Fig. 3. The sample PE

In simple PEs without support for multiplication the multiplication time grows
guadratically with the data length. A method based on carry-save adders [5] (see Fig.
4) can reduce the multiplication time required to the time to load the operands and
store the result.

Fig. 4. Design of a two's-complement bit-serial multiplier. It is operated by first
shifting in the multiplicand, most significant bit first, into the array of M flip-
flops. The bits of the multiplier are then successively applied to the input, least
significant bit first. The product bits appear at the output with least significant bit
first.

As shown in [11] the incorporation of a counter instead of a multiplier in the PE de-
sign may pay off well when implementing the Sparse Distributed Memory (SDM) neu-
ral network model. A 256 PE REMAP realization with counters is found to run SDM at
speeds 10-30 times that of an 8K PE Connection Machine CM-2, (with frequencies
normalized and on an 8K problem). Already without counters (then the PEs become
extremely simple) a 256 PE REMAP outperforms a 32 times larger CM-2 by a factor
of 4-10. Even if this speed-up for REMAP can be partly explained by the more ad-
vanced sequencer, the possibility to tune the PEs for this application is equally impor-
tant.
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3.3 PE Communication

The processing element has two ways of communicating with other processing ele-
ments: nearest neighbor and broadcast communication. The nearest neighbor commu-
nication network allows each PE to read its neighbor's memory i.e. PE(n) can read
from PE(n+1) and PE(n-1). The first and the last PEs are considered neighbors. At any
time one of the PEs can broadcast a value to all other PEs or to the control unit. The
control unit can also broadcast a value to the PEs. It has also a possibility to check if
any of the PEs has the activity bit (T-flip-flop) set. If several PEs are active at the same
time and the control unit wants one PE to broadcast, the control unit simply does a se-
lect-first operation, which selects the first active PE and deselects the rest. These com-
munication and arbitration operations can be used to efficiently perform matrix
computations as well as search and test operations sufficient for many application ar-
eas, especially artificial neural networks. To be useful in real-time applications which
include interacting with a changing environment, high demands are put on the 1/O-
system. To meet these demands the processor array is equipped with two 1/0-channels,
one for 8-bit wide communication and the other for array-wide communications. This
interface has a capability to run at speeds up to 80 MHz (burst) which, for a 256 PE ar-
ray, implies a maximum transfer rate of 20Gbit/s. Due to limitations in the control unit
the 1/O-interface currently runs at 10MHz which reduces the transfer rate to 2.5Gbit/s.

4 Designing with FPGA Circuits

After a market survey we found that FPGAs from Xilinx [22] would serve our needs
best. The structure of the Xilinx circuits is shown in Fig. 5. The chip consists of a num-
ber of combinatorial logic blocks (CLB), some input-output blocks (IOB) and an inter-
connection network (ICN). These circuits are user programmable, thus enabling the
CLB, IOB and ICN to be programmed by the user. The configuration of the on-chip
configuration RAM is carried out at power up or by a reprogramming sequence. The
RAM can be loaded from an external memory or from a microprocessor, the latter is
used for REMAP. It takes about 400ms to reprogram the circuits, thus enabling the
master-processor to change the architecture of the processing elements dynamically
during the execution of programs.
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Fig. 5. Xilinx FPGA overview. The IOB connects the 1/O-pads to the ICN.
These blocks can be configured as input, output or bidirectional blocks. The
CLBs are configurable logic blocks consisting of two 16bit (and one 8bit) look-
up table for logic functions and two flipflops for state storage. These blocks are
only connected to the ICN. The ICN connects the different blocks in the chip. It
consist of four kinds of connections: short-range connections between neighbor-
ing blocks, medium-range connections connecting blocks on slightly larger dis-
tances, long-lines connecting whole rows and columns, and global nets for clock
and reset signals broadcasted throughout the whole chip.

Since one of our goals is to make a kind of hardware simulator for different types
of PE-architectures using a fixed hardware surrounding, it is required that the connec-
tions off chip like those to the memory and control unit have the same function regard-
less of the currently loaded processor architecture. As shown in [18] it is advantageous
to lock the pads so that control signals enter from the top and bottom of the chip, and
also design the processing elements so that they are laid out rowwise in the array of
CLBs. It is likewise preferable to have a dataflow from left to right in the chip i.e. input
data enters the left side and output emerges from the right side.

4.1  Using XC3090

The first prototype was constructed using Xilinx XC3090, and some frustrating experi-
ences were gained from the poor development tools for these circuits. The processing
elements in this version are only capable of running at 5MHz clock frequency. The
low speed is due to the incapability of the EDA software to handle signal flow layout
in the circuits, something which also leads to low utilization. The PEs were designed
using the OrCAD CAE-tools, enabling the designer to work with ordinary logic blocks
like multiplexers and different types of gates. The schematics are then automatically
converted to suit the Xilinx circuits. This is a fast design method but different parts of
the logic become intermixed and long delays are introduced.
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4.2  Using XC4005

The current prototype is based on the XC4000 FPGA family from Xilinx. These cir-
cuits have a more balanced performance than the XC3000 circuits which have small
routing resources compared to the number of CLBs. In the XC4000 family the CLBs
are larger, the ICN much more powerful and the internal delays shorter. The circuits
range from XC4003, which has a 10 by 10 CLB matrix, to XC4010 with a 20 by 20
CLB matrix, and even larger circuits are announced. With these circuits it is easier to
test new types of PEs, as there is more space in them. It will also be possible to in-
crease the maximum clock frequency to 20MHz, and possibly even 40MHz if more
pipelining is introduced. The greatest advantage with these new circuits is the soft-
ware; routing a XC3090 chip can take a couple of days on a 80486 machine, while the
same problem can be solved in half an hour with the new software for the XC4000 cir-
cuits.

One PE of the kind depicted in Fig. 3 occupies approximately 10 CLBs and the
eight-bit deep bit-serial multiplier 11 CLBs. Using a XC4005 with a 14 by 14 CLB-
matrix, we can get at least 8 PEs in each Xilinx chip. Considering this and the timing
demands of 10MHz operation (due to the control unit), we can easily make design
variations both in the main processor and in the multiplier (or other coprocessor). It
takes about one week to make a tested and simulated prototype with the XACT editor.
The design is of course also open for changes to PEs with other data widths between 2
bits and eight bits.

Tools

High level tools were not available when we started to develop a processing element
for the XC4005-circuits. Therefore we have not yet tested how well those tools work.
There are, however, several advantages of using the low-level XACT editor in early
stages of the design. We get good knowledge of the circuit’s limitations and possibili-
ties, and at the same time we get full control of all necessary timing. The usage of
XACT is simplified by the regular and simple structure of our design. In the first im-
plementation we aimed towards eight processing elements running at 10MHz in each
XC4005 circuit, based on the previous experiences with the XC3090 circuits. These
goals were easily achieved; the eight processing elements can run at 20MHz utilizing
75% of the XC4005 configurable logic blocks and all of its 1/0O blocks, this in the 84
pin PLCC package.

Data and Control Flow in the Circuits

The data and control flow play an important role in getting the best performance out of
the circuits, therefore we have a basic template with some of the control and data sig-
nals already laid out. This template enables the user to easily implement new types of
processing elements with minimum effort and at the same time achieve high perfor-
mance.

When designing the control flow we want to use the global networks as much as
possible. This is achieved by using 4 of the global nets and 20 of the vertical long-
lines. The memory input signal is connected to the memory output via a horizontal
long-line through the chip in order to enable a good data input distribution and allow
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write-back of unchanged data when the processing element is inactive. With these re-
strictions in signal flow the internal delays can be held very low.

CONTROL

Control signal routing areg
PE 1
Multipliers for PE1 and 2

PE 2
DATA PE 3 DATA
IN ° ouT

Xilinx XC4005

Fig. 6. Layout for PEs in an XC4005

As we have used the XC4005-PC84 which has a 14x14 CLB matrix, and the rest of
the hardware is designed for eight processing elements, the chip is divided into four
blocks of two processing elements each, occupying three rows in the matrix. Each pro-
cessing element then gets 21 CLBs, 2 I0Bs with PADs, and six IOBs with only edge
decoderX After this we have 28 unused CLBs.

Testability

From our experiences of the XC3090 circuits, which sometimes got into undefined
states when we tried to reconfigure them, we now separate programming pins to the
master processor so that we can directly see which circuit is failing. We also use the
possibility of reading back configuration and state data from the Xilinx circuits, which
can be done while the PEs are running. The master can also single-step the processor
via the control unit and read back all state variables. Two pads on each processing ele-
ment are dedicated to probing, here we can measure any internal delay simply by load-
ing a configuration with the probe outputs properly programmed (this is done
automatically by the XACT EDA software). The JTAG facilities of the XC4000 have
not been used, because the PEs, simple as they are, only require a couple of hundred
stimuli to excite all modes in them.

The full-scale prototype (256 PEs) can run in 10MHz with very comfortable timing
margins. More memory and additional communication networks can easily be added if
need arises.

1. Some of the I/O-blocks in the XC4005-PC84 have no connections to pads. However, these
blocks can be used to get a connection to their edge decoder.
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5 Other Usage of FPGAs to Run ANN Algorithms

There are other FPGA implementations of ANN models besides ours. A short descrip-
tion of some of them are given below.

A group at North Carolina State University has developed a PC-card called Any-
board [19], which in principle only contains Xilinx chips (4 XC3020s) and RAM. It is
part of a “rapid prototyping” environment, where user-specified digital designs can
quickly be implemented and tested. One early project using this card was the imple-
mentation of a stochastic ANN model called TINMANN [20]. A quite fast and dense
implementation was obtained. They used a special purpose architecture, tuned to their
algorithm.

Another project, using 25 XC3020s to implement a stochastic Boltzmann machine
ANN, was carried out by Skubiszewski [15]. In this implementation the architecture
was more like ours (identifiable PEs similar to conventional bit-serial PES), but no sup-
port for the multiplications was included.

Cox and Blanz [4] built an ANN simulator with impressive performance, out of 28
XC3090s. In contrast to the two implementations above and our implementation, they
have used a highly specialized bit-parallel approach, which implements a feed-forward
neural network of a fixed size (12x14x4).

Another, more specialized, use of FPGAs for ANN computations is made by a
group at Tampere University of Technology, Finland [13]. In this group’s hardware im-
plementation of Kanerva's Sparse Distributed Memory (SDM), FPGAs are used to im-
plement the main controller as well as more specialized computations like an adder
tree. The architecture is highly specialized for SDM and no identifiable processing ele-
ments exist.

Xilinx circuits are also used in general hardware emulators such as the Quickturn
RPM emulator [21], which emulates designs with from 10K up to 1M gates at a speed
of 1MHz. This type of emulators could of course be used to simulate all the designs
described in this paper, but with drastically lower speed and CLB utilization.

6 Conclusions and Future Directions

With the REMAP computer, we have a platform from where we can test and evaluate
different types of interconnection networks, PE complexities and architectures. This is
not restricted to simple bit-serial PEs as the one described in this text, also complex
ones such as bit-serial floating point arithmetic units and up to eight bit wide PEs can
be implemented. Floating point arithmetic for this platform has been examined by
members of the group [1], and will be included. When we have found a good PE archi-
tecture we will transfer it to silicon, this decreases the size and increases the system
speed. Our aim is to get 256 processing elements, with floating point arithmetic, on
each chip running at an internal speed of 200—300MHz.
A robot arm with 12 motors and a number of sensors all controlled in parallel from

the array-parallel interface on the REMAP computer is being developed at the Centre
for Computer Architecture, Halmstad University. A CCD camera is also planned to be
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connected to the byte-wide interface on REMAP as a further step towards a real-time
action-oriented system.

To speed up the development cycle in the future some sort of high-level description
of the PEs and their interconnections would be needed. From this description it should
be possible to generate FPGA layout, VLSI layout, a PE array simulator, and a high
level language compiler back-end. Both text-based and graphics based high-level de-
scriptions are considered.

While, in this design of a hardware simulator, we are more interested in the possi-
bilities of changing the processor architecture than to get maximum performance, we
have added (retained) the feature that design changes can be made during execution.
For example in some parts of an application we may need a counter instead of a multi-
plier. It is easily accomplished, via program control, to stop the control unit during ap-
proximately 400ms and reprogram the Xilinx circuits.
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ABSTRACT

The concept of localized learning systems (LLSSs) is introduced in this paper.
This concept makes it possible to combine many commonly used atrtificial
neural network (ANN) models into a single “superclass”. The LLS model is
a feedforward network using an expanded representation with more nodes
in the hidden layer than in the input or output layers. The main characteris-
tics of the model are local activity with respect to input space, and localized
learning in active nodes.

The principal structure is the same for all the included ANN models
whereas they differ in how locality is defined (that is, using different dis-
tance measures, receptive field forms, and kernel functions) and in the
methods used to train the free parameters. Different ways to vary the LLS
concept is studied in detail in this paper. We will however restrict ourselves
to methods that can be used in an on-line learning situation.

The connection between a number of well known ANN models and the
possible variations of the LLS model is demonstrated. Additionally, these
connections let us suggest new variants of “old” ANN models.

The LLS model (that is, the ANN models which constitute this super-
class) has been shown to perform classification and approximation tasks
very well in comparison to other non LLS models like, for example, multi-
layer perceptrons trained with error back-propagation, while needing only a
fraction of its training time. The LLS model can also easily be shown to be
suitable for implementation on parallel computers, a possibility which will
be further explored in a companion paper.

This document was created with FrameMaker 4.0.4
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1. Introduction

This is the first paper in a series of papers investigating a new class of neural network algo-
rithms which we will refer to as localized learning systems (LLSs). By the concept of LLSs
we have extracted a “superclass” of powerful artificial neural network (ANN) models which
have so much in common that it seems worthwhile to study a common hardware platform
for them. In this first paper we will characterize the LLS model and the ANN it contains. In
a companion paper [51] implementations of these models on parallel computers will be dis-
cussed. The LLS concept also allows us to find connections between a number of well
known ANN models and the possible variations of LLS model. Furthermore, these connec-
tions let us suggest new variants of “old” ANN models.

The idea of localized learning (and response) can in some respects be found in Hebb'’s
work [25], dated 1949. Many others have used this idea in the first wave of ANN, i.e., up to
the early seventies, concepts like “winner-take-all” [68], potential functions [5, 15], BOXES
[44], cerebellar model arithmetic computer (CMAC) [2, 3, 4], competitive learning and self-
organization [37, 81], were used to explore the ideas of localized learning. The development
of radial basis functions (RBFs) [61] and the revival of the ANN field during the last ten
years have resulted in a number of new models containing the idea of localized learning,
many built around the concept of RBF networks [8, 46, 47, 58, 59]. This recent interest in
ANNSs contained in the LLS class has resulted in many important theoretical results. For in-
stance, the universal approximation property shown for the commonly used multilayer per-
ceptrons (MLPs) [12, 17, 28] has also been proven [54] for RBFs and its generalizations.
This property implies that any continuous function can be approximated to a given degree of
accuracy by a sufficiently large network. One important feature found in all the LLS models
is the parallelism in the many nodes used, all using local operations, making these systems
eligible for parallel computer implementations.

In earlier studies we have analyzed how to implement ANNSs efficiently on parallel com-
puters [49, 50, 52, 77, 78]. In this and the companion paper we continue these studies by an-
alyzing the LLS model.

In the next section we will define the LLS and in the following section we will outline a
theoretical foundation for LLSs. This will primarily be based on generalized radial basis
functions (GRBFs) [59, 61], one of the most general ANN models in the LLS group. In Sec-
tion 4 — 6 the feedforward and learning phases are analyzed. In Section 7 we show the simi-
larities and differences between two different LLS variations, the GRBF network and the
sparse distributed memory (SDM) model [34, 36]. (Other ANN models are discussed in Ap-
pendix A). In this section we also discuss the similarities and differences to the much used
MLP trained with back propagation (BP) which is not an LLS model. We end with conclu-
sions and future directions to our research.
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2.  Localized learning systems (LLSs)

Using the ANN attributes suggested by Lippmann [A&jwork topologynode characteris-
tics, andlearning ruleswe define an LLS as:

- Network topologyAn LLS is afeedforward artificial neural networkvith only one

hidden layer, cf. Figure 1A. The model forms an expanded representation (ER)
[76]—the first weight layer performs a nonlinear expansion of the input space into a
high dimensional feature space, residing in the hidden layer. Cover shows in [11] that
a nonlinear mapping from low-dimensional to high-dimensional space can transform
a nonlinear separation problem to a linear one. This fact contributes to the usefulness
of ER. The output weight layer is usually linear, and can therefore often be adapted
without the local minima problem. The structure is similar to a table lookup where
the input is looking up the output value associated with the current input region.

Node characteristicdn an LLS the activity of a node is high only in a section of the
input space, that idocalized activationThis is often accomplished by a Gaussian
function, but also box-like functions are used by some models. In some of the models
(e.g., self-organizing maps) this also corresponds to locality among the nodes, but the
LLS model does not demand this.

Learning rules Only the nodes with high activity will update their parameters, thus
the localized activity will result ifocalizedlearning [45, 46]. This fact can be used

in anon-line system [76], that is, where learning must be done incrementally and in
real-time, with the results of learning being available soon after each new example is
acquired. As the title of the paper indicates, the on-line aspect is important and will
be used to select among the variations of the LLS.

. Input
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Figure 1A) The LLS model is a feedforward neural network model with localized activity at the
hidden nodes. B) shows the data flow and data organization of the LLS model (feedforward phase).
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The LLS algorithm can be divided into two phaseseedforward phaseand alearning
phase Furthermore the feedforward phase can be divided into three main steps, found in all
LLS variations.

1. Calculate the distange  between kernel centers (temptates)  and input , using a
distance measure like Euclidean distance, inner product, or Hamming distance.

2. Calculate the node outpupér;, S)  for nodes in the hidden layer, 8here  is used
to control the size and form of the receptive figitt;, S) is knowrkasreelor ra-
dial-basis functionA node with a significant output is calledsalectedor active
nodg that is, a node is in the set of active noes ¢(iif, S) > a , withO being
a constant. In many variations of the LLS mogiéi, S) is a Gaussian function with
its center located at , and a covariance matri® &f

3. Calculate the outpyt as a weighted sum of the (active) nodes, that is
y = F(x,0) = gwicb(riﬁ), (€N
iJA

where® = {w, ¢, S} :v': , are the free parameters. This equation can easily be ex-
panded to multiple outputs as well.

These three steps correspond to the first weight layer, the hidden node layer, and the second
weight layer respectively in Figure 1A. In Figure 1B we also illustrate the dataflow and data
organization of the LLS. This figure will be the starting point for the discussion in the com-
panion paper on how to map the LLS onto parallel computers.The learning phase adapts the
free parameter® . The methods for learning are much more differentiated and will only be
described in later sections.
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3. LLS framework

In this section we introduce the function approximation aspect of LLS. We also discuss
methods to formally derive the LLS concept using regularization techniques. The basic con-
cept is then expanded and in the end we show the whole class of LLS variations.

As most signal processing tasks can be seen as funttions  mapping anCingyt to
an outputy 0 S, , the function approximation aspect of LLS is of great importance. This
will be only briefly described in this section, but a more thorough analysis can be found in
[24, 59, 61, 62].

Given a seD = {d = (xp,yp) 0s’xs } , of data, WhIth is a partial specification
of a functionf belonglng to some space of ?unctlons define8 on , the function approxi-
mation problem is to recover the functibn , or its approximation, even in the presence of
noise.

If both mput and output spaceS;,, as , are real valued,S,g.~ R* and
Sout = R™, we have the gener&]nctlon approximation problerfwe sometimes simplify
the reasoning tan = 1 , without loss of generality). If, instead, the output space is binary,
e Sy = B™, we have alassification problderri\/loreover, if both input and output spaces
S,, andS_,, are binary valued, i.€5;, = B asd,, = B" ,we haBealean func-
tion approximation problem

It should be noted that the function approximation problem is ill-posed [10, 80] as there
is not enough information in the data available to find a unique solution for the fuhction
That is, in areas where data are not available nothing can be said about . By imposing some
a priori knowledge, which will make the problem well-posed, a solution can be found. Mao
and Jain present in [43] a taxonomy of regularization techniques, or ways to descabe the
priori knowledge, in the ANN field: TypeArchitecture-inherentvhich specifies network
sizes and topology; Type Rlgorithm-inherentwhich specifies learning algorithm, e.g.,
stopping criteria, noise addition; Type Ekplicitly-specifiedvhich explicitly specifies the
stabilizer based on knowledge of the underlying solution, e.g., smoothness or variance con-
straints. By smooth we mean that small changes in some input parameters determine a corre-
spondingly small change in the output.

LLSs can be derived using all three techniques, but most common auelifiecture-
inherentand theexplicitly-specifiedFor the former the structure is specifgedriori, for in-
stance, deciding on a structure like the one described in Eq. (1). With the explicitly-speci-
fled often referred to as regularization theory, we can choose between fitness to data, e.g.,

L (F(x, ©) -y ) and the degree of regularization (generalizatif?f¥(©)| . The
frade- off is controlled by a regularization parameter . In the operator P the prior informa-
tion is incorporated, and therefore P will be problem-dependent, often P is taken to be a dif-
ferential operator. P is also referred to as a stabilizer in the sense that it stabilizes the solution
F. So instead of only using data fitness error we want to minimize:

S (F(x, @) -y)* +AIPF©)|® @

The radial basis functions (RBFs) is a powerful group of function approximators which orig-
inally has been derived from function approximation theory [8, 61]. The RBF network can
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also be derived from regularization theory, as shown by Poggio et al. [58, 59]. By restricting
P to be invariant under both rotations and translations the RBF networks can be derived, and
by further specifying P, the resulting radial function can be made to be a Gaussian function.
Given these restrictions and minimizing Eq. (2) with respe@ to leads to a solution, an
RBF network, where the approximating functibfx, ©) is constructed from a 8&t of  ra-
dial functions:

F(x,©) = " ,wo(r) ®)

Asin Eq. (1),6(r)|" M is a set of kernel or radial-basis functions. The distaredx —c||
where|-| denotes'a norm, is usually taken to be the Euclidean. The centers (or templates) of
the kernels are denoted . The free parameters to be set, usually by training, are
O, = {w,c}. Typically, the Gaussiam(r) = e** is used as the radial-function. Accord-
|ng to regularization theory other radial functions, like multiqguadrafics+ a2)-1/¢ , or
thin-plate splinest2logr , are possible, but as most of them are not conforming to the local-
ity concept they will not be considered further here. This non-conformance also means that
some RBF networks are not LLSs. We also find that in regularization theory [59] it is not un-
usual to add a polynomial to Eq (3) in the form ‘P Vip(X) nsd ) wha;l|é is a
basis of the linear spacg _,(R ) of algebraic po ynomlals of degree akmdst Rf‘rom

to R, with k given. This however destroys the locality we want. It is still possible to add a
bias to Eq. (3) if needed An easy way to accomplish this is by letting one of the kernels al-
ways be equal to one.

Other variations of the LLS model are derived in a more architecture-inherent way. A
large family of LLS variations is found by varying such things as input and output spaces
(Real, Integer or Boolean); distance measures (e.g., cityblechr [Euclidean, L); recep-
tive field (e.g., sphere or elliptic); kernel function (exponential, threshold, min/max etc.);
and how to initiate and adapt the free parameters. Many of these variations are well known
ANN models by themselves, but by using the LLS concept the connection between these
models becomes clearer. In the following two Sections the LLS variations shown in Table 1
will be discussed.
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. Receptive C
Input | Distance . L Ac Aw AS Out
P Field 0 initiation
Ly . Pseudo- .
R (cityblock) 1 exp Random Fixed inverse Fixed R
L2 sl Radial Uniform Gradient Gradien{ Gradient
(Euclidean
Threshold| Subset of| Competitive | Occurrencg
B Lo S | logic unit data learning (Hebb) RCE B
Dot . . All
product dlag[sj] Min/Max data + Topology
Hamming : Incremental
distance dlag[sj] i addition
s Genetic
1j algorithm
Hierarchical
Sample/Hash

Table 1variations of LLS models. The pseudoinverse is neither local nor on-line, but is com-
monly used and therefore will be further discussed in Section 4.1

From a theoretical point of view it is interesting to note that when the desired network output
is binary and a square error cost function (or a cross entropy cost function) is minimized, the
actual network outputs are estimates of the optimal Bayesian conditional probabilities. This
is nicely derived, and demonstrated by simulations, for MLP and RBF networks by Richard
and Lippmann in [66]. Then the suggested normalized version of Eq. (3) [47]:

\%

o) = 20,
S0

becomes natural, if the node outputs are to be interpreted as true probability densities [82]. It
has no effect on the classification the network performs, but it does affect the evaluation of
the “confidence” in classification. The normalization is also sometimes found to speed up
convergence, see for instance Saha et al. [71]. Unfortunately it can also make the network
emphasize “outliers” which is clearly undesirable. More importantly, this normalization is
global in its nature and therefore does not fit into the LLS concept.

4
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3.1  Number of Kernels

Maybe the most fundamental parameter is the number of kdvhels . The original formula-
tion of RBF networks uses the same number of kernels as there is data, khat i8|

This means that if a large training set is used, the number of nodes becomes large. Another
problem is that this method is batch oriented, and therefore not suitable for an on-line LLS.
For generalizations of RBFs (GRBFs) the number of kernels is reduced to a subset and the
number is fixed. Usually this number is set prior to learning in a more @ddgsmanner.

The optimal number of kernels depends on the problem at hand, but unfortunately the prob-
lem properties are usually not known prior to training.

One possible solution is to use a method which incrementally adds new nodes to the net-
work when needed (to meet some performance criteria). These methastsueterally
adaptingin contrast to the commonly used adaptation of weights. The two basic problems
involved are: when to add a new node, and where it should be placed (possibly adjusting
other nodes simultaneously). The easiest incremental method is first checking to see if the
input is close enough to any of the previously added nodes, and if not, to add a node at the
input data position. This is similar to the resource-allocation network (RAN) suggested by
Platt [57]. RAN has later been enhanced by Kadirkamanathan and Niranjan [33]. More com-
plicated structural adaptation methods exist (e.g., with deletion) both with topology con-
straints (Tan [79]) and without (Fritzke [16]). For the Boolean approximation problems a
number of interesting structurally adapting methods can be found. One area where it is com-
monly used is the identification and classification of bacteria, see for instance the idea of cu-
mulative classification in [20, 21].

When the input dimension increases there is a problem with the “curse of the dimension-
ality”, i.e., the exponentially increasing input space, needing an exponentially increasing
number of nodes to have the same coverage of the input space. A number of solutions have
been suggested [19, 22, 59, 71, 83] to overcome the dimensionality problem. For instance;
transforming the input space, both by globally transforming the irput , and by locally
transforming the receptive fields of the nodes (see Section 4.2); distributing the centers ac-
cording to the data distribution (see Section 5.2); or pre-processing the features by any of the
dimension reduction methods available, e.g., principal component analysis.
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4. The feedforward calculations

For the feedforward phase we find three things that decide locality: distance measurement
used, receptive field size and form, and kernel function used. In the next three subsections
we will discuss them in detail, using the variations found in Table 1. In subsection 4.4 the
calculation of the weighted sum required for the network output will be discussed. In Sec-
tion 6 a simplified complexity analysis is carried out on both the feedforward phase and the
adaptation phase discussed in Section 5.

Throughout this section we will us#  as the number of inguts, as the number of
nodes,A as the set of active nodes, and  as the number of outputs.

4.1 Distance measurement

The distance or the similarity between two vectors can be measured in many ways, see for
instance [38] where Kohonen discusses the matter. There it is also noted that distance and
similarity actually are reciprocal concepts, so in principle we could call distance dissimilari-
ty. Simard et al. have suggested [72, 73] a distance measurement suitable for the LLS model
called tangent distance, which can be made locally invariant to any set of the input, and can
be computed efficiently. However, in most approximation problems yﬁmaotms with
p=12ande are used as a distance measurement. Fordinite ,-tfwerh in R’ has

the value

1/p

d
= =l = Uy el 5)

For p = 1 and 2 the j:norms can be written as:

L, (City block):r; = |x—ci| = ||X—Ci||1 = Z?:1|xj—cij|, (6)

L, (Euclidean)r; = |[x-¢| = |[x-¢|, = (Z?:l [xj—cij]z) vz, @
The L,-norm has the value

r = ||x—ci||00 = max |xj—cij|. (8)

l <i<d

with x 0B and o DB theHamming distancean be used as a distance measurement, in-
dicating how many bits (positions) of the two vectors that are different. Usually it is calcu-
lated as a sum of bits after doing an exclusive-or between c,and . It is actually equal to
both Ly and (Lz)2 distances, used with binary inputs.

For self-organizing maps (SOM) tdet-productr; = xTci = j’ 1 XC; often replac-
es the L, distance, typically after normalization &f aod  to unit Iengths which in fact
makes the dot- product proportional to the (negative), ldistance as
||x c|| = ||Ix|| + ||c|| -2 (x ¢;). The search for a node with minimurg dlistance is corre-
spondingly changed to a search for the maximum dot-product. The dot-product is also re-
garded as more “neural” than other distance measurements. The Hamming distance is the
natural distance for binary input, so it is typically used in SDM and CMAC. }i{Euclid-
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ean) distance is the commonly used distance for real-valued inputs.Ttisthnce has

been used by Prager et al. [63, 64] to extend the SDM model to integer input values. The L
distance has for instance been used for some hardware implementations of restricted Cou-
lomb energy (RCE) [48].

4.2 Receptive field

The receptive field, that is the part of the input domain which causes a significant output, is
determined by a parametgr . A general form of distance measure  can be defined as
rz2 = (x-¢)'S(x-¢) = |x—c¢|s whereS is adxd positive definite matrix. This
measure is also named Mahalanobls distance. Note that it implicitly uses the square of the L
norm, i.e.|X —¢|s=|x - c||2 s - We can identif¢  as the inverse of the covariance matrix,
given that we use a Gaussian kernel function. The special Gasediag[ s, ..., syl ,
S = sl or§ =1 are usually the receptive fields used for LLSs. The pararﬂeter deter-
mines the receptive field or the support of the funck@x) = ¢([x —c] 3 [x-¢])—-a

with a =0 being a constant In other words, the receptive field is a subset of the input do-
main such thaty([x —c;] S [x—c]) takes a value larger than a previously defined con-
stanta .

In the original version of RBF networks the receptive field pararrﬂaet;erl/o2 g ( is
the standard deviation of the gaussian) was fixed,S.&=, sl . Many times it has been set
by some heuristics, one such heuristic “global first nearest neighbor” is described by Moody
and Darken [47]. The valug? s a global average of the Euclidean distance between all
nodes and their closest neighlst = 02 = (1/M) ._1 (mjm i XJ”S) . The parame-
ter o decides the degree of smoothing that will occur. By letting the radius  approach zero
(s - =) the operation becomes a table look-up. That is, each input becomes associated with
only one node and that node’s output.

The form of the receptive field will depend on the kind of basis function used. In the case
of a Gaussian function arf§l = s, the shape is a hypersphere with a radius determined by
s,. This should be contrasted to the hyperplanes that an MLP generates. When
S = diag[s, ..., sy}, the shape will be an ellipsoid, the axes of which will coincide with
the coordinate axes of the input domain, thus a local rescaling of the input. This type of net-
work is called elliptic basis function (EBF) network and has been studied by Park and Sand-
berg [55]. If only a global rescaling of the parameters is ddre diag[ s, ..., Sy] these
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parameters will reflect the importance of each input dimension [71]. In Figure 2 we see
where different versions & fit into the feedforward dataflow.

Input S=diagl s, -, Syl
EERERNTEER
[od0bokols . | dod1 |
= s ’
( i Dist Activation
Compare | —7oe 1o+ 712 123 123 [0 2
04 0| 3[-1|« +[1[2[3] [34.7 34.7 0.03] 2.34 W
ol 15 0]- «[3[ol1 [To 19| [0.89 06
120 1] 5 130.2).4| [102 102| [0.01] 0.01
4] 1003 1 1]-1pd4 [453 453 [0.02 0.53
oI 1 oio‘4- -| | .| (22 22| [0.02 0.8 Weighted
14-3 o[ -3]. -folodhs| [48] [48] [0.25) 12] sum of
I3 -05-1]. 113|03 oo e o nodes
— H alculate node outp
§ = diag[s, ... 5] G RE I

Figure 2The data flow for the feedforward phase. While calculating the distances (Dist), the in-
puts are compared to each row in C, ustg as a weighting or receptive field. Different versions
of § are shown to indicate where in the dataflow they are used. After calculating the node outputs
(Activation) using the distances, the network outputs are calculated as a weighted sum of the node
outputs.

Complex receptive fields

Most of the time the forms of receptive fields described above will be sufficient. Still, more
powerful forms are available. One example is if non-zero off-diagonal elements are allowed,
wereS = R D;R withD; being a diagonal matrix determining the shape of the ellipsoid,
andR, bemg a rotatlonal matrix determining its orientation. As the number of parameters to
be adapted increases dramatically if a gen@ral  is used, the more specialized forms are of-
ten preferred. Therefore, while discussing the number of operations needed, the diagonal
form will be used as a reasonable “maximum” number of operations needed.

Another interesting form of receptive fields is found in the conic section function net-
work developed by Dorffner [14]. His model makes it possible to go continuously (via a sin-
gle parameter) from a linear separation (hyperplane) to a circle (hypersphere) with
intermediate types like ellipses and hyperboles. A similar thing would also be possible with
a complete second order polynomial (cf. Section 3). However, this would result in a much
larger number of free parameters. Unfortunately, it seems that this method needs global in-
formation during learning and therefore does not have localized learning.

As problems can contain both high frequency regions (requiring many nodes with small
receptive fields) and low frequency regions (requiring fewer nodes but with large receptive
fields) methods to cope with thisultiscaleproblem might be needed. Poggio and Girosi
[59] have suggested a solution based on regularization theory called HyperBF. This model
uses a hierarchy dixedreceptive fieldss, with different radii. It also makes an interesting
connection to Gabor filters and Wavelet neural networks, which some researchers have start-
ed to explore, e.g., [7].

In competitive learning, self-organizing maps (SOM), and learning vector quantization
(LVQ) [39], the receptive field is reduced to a point, that is, only one node is active (the clos-
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est one). Anyhow, a number of researchers [40, 42] have suggested hierarchical variants of
these models, both to speed up computations (on sequential computers) and to improve the
clustering.

If the input is of high dimension, and a uniform distribution of nodes is used, the number
of nodes can be very high. This often shows up in binary models where each real valued in-
put is coded using a multibit encoding. One solution commonly used for binary models like
CMAC is to map the input vector to lower dimension using a hashing function, which in fact
maps multiple input regions to the same node. Another variation on the same theme is the se-
lected coordinate method suggested by Jaeckel [30] for the SDM model.

4.3 Kernel function

As noted in Section 3, a large number of radial functions can be found using regularization
theory [59, 61]. Still the Gaussian functipfr) = e is the one commonly used. Both its
property of having a “nice” derivative, and the many results from probability theory, make
the Gaussian function a natural choice. Many of the other radial functions are global in their
nature, and can for our purpose be rejected. It can be argued that the Gaussian function really
is not local as its tail never goes down to zero. However, for most implementation the activ-
ity can be set to zero for nodes far from the input. This is also the result of many commonly
used approximations of the exponential function [51].

For the more binary oriented methods a threshold logic unit (TLU) is often used as the
kernel function. This gives the receptive field the form of a hypercube instead of a hyper-
sphere typically found in GRBF networks.

In the SOM model by Kohonen [38] the formation of localized responses is attained by
using nodes with lateral feedback, that is, a topology among the nodes is assumed. This lat-
eral interaction among the nodes is often described as a “Mexican-hat function”. To speed
up the computations needed Kohonen suggests a computationally simpler “shortcut” method
to achieve the same clustering effect. In the shortcut method the most active node (the win-
ner) is found through a global search and only this node and its topological neighbors will be
active, thus, a form of “winner-take-all”.

4.4 Network output

The network outputy is computed as a weighted sum of the hidden node outputs
y = Zi A W(r;) . This is a global reduction operation where all active nddles  in the
hidden layer contribute to the output. The degree of locality spans from the case when a win-
ner-take-all operation is used aAd  only contains one node (the winner), to the case where
a non-local kernel functiop isused aAd contains all the hidden nodes. As the amount of
update is proportional to how close a given node is to the target the latter can be seen as a
“softer” form of competition compared to the “hard” competition found in winner-take-all
models. In [53] Nowlan suggests that the “soft” competition gives better performance on
classification tasks. On a sequential computer the number of operations needed will depend
on the number of active nodes contributing to the weighted sum. Thus, the simulation can
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run faster if fewer nodes are active. This is however not necessarily true for parallel comput-
er implementations.

For parallel computer implementations reduction operations are of general concern as
they require extra communication means. Anyhow, for many LLS variations the reduction
operations seem unavoidable, and in the companion paper [51] we discuss way to support
these operations on parallel computers. Note for instance that to find the winner for a win-
ner-take-all computation a global minimum is required, that is, a reduction using the mini-
mum operation is required.

13
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5.  Setting the Free Parameters

The free parameters to be set by training@re: {w;, ¢;, S} |, , Wilere  is the number
of kernels. In the following subsections, one for each of the free parameters, we describe the
adaptation methods typically used.

Many of the methods can be used together and/or used in sequence. A typical scenario in
an off-line situation is to start with a subset of data as initiation of centers, and use a cluster-
ing method to start adapting the centers, e.g., competitive learning. After this initial cluster-
ing a “global first nearest neighbor” heuristic is used to set the receptive field sizes and the
weights are set using the pseudoinverse described below. Finally all the free parameters are
adapted using a gradient method. There are of course many other ways to combine the dif-
ferent methods of adaptation described below.

We also note that many of the methods used to speed up learning for MLPs can be ap-
plied for LLS variations that use gradient descent learning (especially GRBFs). Such meth-
ods are for instance addition of a momentum term [69], conjugate gradient learning, or other
higher-order optimization methods [24].

5.1 Adaptation of W;

To simplify the derivation of an update rule foy ~ we temporary assume thdt all  nodes
are included in the active sét Then for each training example , we canyyrite =
F(x, ©) = ZM_ W, ¢(||x -cf) = o pW, where® —[¢(||xp—cl||) ¢(||xp—cMm

andw= [wy, ..., wy]" The problem is to fing g|ven tNe simultaneous equations, that
is, solving:

Y = dw, 9

where @, = ¢(|x,—cj|) . The classical solution to Eq. (9) is to minimize the sum of the
squared error, that is

E = [ow-Y]? (10)
which is the same as Eq. (2) with the regularization pararetei0 . The gradient

0E

— =2 Y

v o (dw-Y), 11
can either be used “as is” in a gradient search method, or a closed form can be derived by
setting the partial derivative to zero. This yields the condidodw = &' y , Which has
the pseudo inverse solution:

-1

w= (0'0) 'Y = oy, (12)
where ®' is the Moore- Penrose pseudoinvers&of . If no duplicate kernels exist (i.e.,
Xp % Xq if p#q)then (CD @) is invertible. This inverse can be computeﬁ)QM3) oper-

atlons using a singular value decomposition methBdcause of the many operations (hard
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to calculate in an on-line fashion) and its non-local nature, we are interested in other meth-
ods, despite the fact that Eq. (12) is optimal in the least-square sense.

The direct gradient search method will use Eq. (11) to upglate as

0E
Wt +1) = wH)-n,5= (13)
wheren,, is the learning rate.

By updatingw after each training pattern presented, there is a deviation from the true
gradient descent ik . This method, sometimes called incremental or on-line gradient learn-
ing, is related to stochastic gradient methods [23]. For the learning to converge, special care
is needed, for instance, the learning rate should be reduced compared with the batch method,
and the order of the training patterns becomes important. Still this incremental gradient
method has been successfully used both for MLPs [69] and LLSs [23], and it is an important
concept for any on-line gradient descent method.

Using a weighted Euclidean distance measurement the per-pattern error can be written as

— 2 _ 2 _ M 2
Ep =6 = (FXu0)-y) = (Zi=1wi¢(||xp_ci”s)_yp) ' (14)
and (for scalar output) the update equation for the weights  can be written as
wi(t+1) = wi(t)—ZnWep¢(||xp—ci||S). (15)

Under the assumption that 81  nodes are included in the active set the total number of op-
erations for updating all e~ weightsa multiplications &hd  additions/subtractions.
If instead a subseA  of nodes is active Eq. (15) is only applied to those weights where
i OA, and the total number of operations for updating is reduced accordingly. Note that
the node outpub(|x,—c| ) is already calculated in the feedforward process, and that the
factor 2 can be incorporated into the learning rpte

Hebbian rule or occurrence

It is also possible to use the Hebbian learning rule described by Hebb 1949 in [25]. There he
postulates that a connection should be strengthened by any co-occurrence between input
(presynaptic) and output (postsynaptic) activities. As a special case of this rule, suitable for
the “output nodes” of an LLS, we can write

W|(t + l) = W|(t) + I”lwyptl)(")(p_Ci"§ . (16)

In the case of multiple output nodes, the weight update becomes an addition of an outer-
product matrix (the outer-product is between the vector consisting of the kernel outputs and

1. As Aho et al. [1] have shown that taking the matrix inverse is no harder than matrix multiplication,
and as Coppersmith and Winograd [9] have developed a matrix multiplication algorithm with an as-
ymptotic running time ofO(M2-379 | there must be a matrix inversion algorithm with an asymptotic
running time less thaD(M3) . However, for practical purposes, especially on parallel hardware, we
need to use an algorithm that on a sequential machine has an asymptotic running{ie of
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the output vector). In the case of binary node activity (TLU kernel function) and binary out-
puts, this update equation results in a counting of co-occurrences between node activity and
output. This update rule is used in SDM models with the modification that the output is tak-
ento be-1 and 1 instead of 0 and 1.

The Hebbian rule in its original form will lead to an unlimited growth of the weights,
which is clearly undesirable. To avoid this problem some sort of limit on the weights, or
their growth, is needed, see for instance [24] for a discussion on various methods. For the
SDM model the weights are assumed to have a soft overflow, where any attempt to incre-
ment a weight above the maximum value will keep the weight at the maximum.

5.2 Position of the kernel centers C,

Both adaptive and non-adaptive methods to set suitable centers exis.gfind informa-

tion exists, two natural methods are to distribute the centers either randomly or uniformly
over the input space. As soon as some training data is available this new information can be
used to decide better center positions. The simplest method is to use the data (or a subset of
the data) itself as center positions. In Table 2 some of the variations to initiate the position
centers are listed.

Position method ANN model
Random SDM [34], SOM and LVQ [39]
Uniform CMAC [4]
Data or a subset RBF [61], SDM [3probabilistic neural net-
works (PNN)[75]

Table 2Methods to initiate position centers used in different ANN models.

5.3 Adaptation of kernel centers

The adaptation of centers can be divided into unsupervised or supervised methods. The un-
supervised methods usually are in the formaarhpetitive learningCL), like k-means clus-

tering or SOM. All of these unsupervised methods will distribute the nodes according to the
input density (with varying success), and for many problems this will be sufficient or possi-
bly close to optimal. The SOM suggested by Kohonen [37, 39] uses a spatial topology con-
straint to aid the clustering effect of the method. Among the many variations of CL the rival
penalized competitive learning (RPCL) will later serve as an example.

If the network is to be used for classification, it is not certain that the best node distribu-
tion is the input distribution. Both clustering and principal component analysis (PCA) can
fail for cases where there is an uneven sampling of classes.

However, if training examples with desired outputs are available a supervised method
can be used. For example, methods 1@ [39] or gradient descentin Section 5.3.1 the
gradient descent method will be discussed. In [18] Ghosh and Chakravarthy show that under
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some general conditions the positions of the centers obtained by SOM are similar to those
for a GRBF network used in an unsupervised fashion (constant output), and updated with a
per-pattern gradient descent method. The clustering effect of centers using gradient descent
GRBF network have also been noted by Poggio and Girosi [58]. As discussed in Section 3.1
a number ofncremental methodsxists. For the SDM model Rogers has suggested [67] a
genetic algorithm[27] as a way to adapt the kernel centers. All the methods mentioned
above have been used by different LLS variations. References to some of them are shown in
Table 3.

Position method ANN model

Competitive Learning|| RBF [47], SDM [70], RPCL + RBF [84], SOM and LVQ [39],
Counter Propagation [26]

Genetic algorithms SDM [67]

Incremental addition RCE [6], Growing-RBF [16], RAN [57]

Gradient methods GRBF [58]

Table 3Methods to adapt position centers used in different ANN models.

5.3.1 Gradient descent
As an example of adaptation of the kernel centers we here describe the gradient descent
method. For this method the update equation for the kernel centers can be found using the
same approach as fer  in Eq. (15). The per-pattern kernel egnter  gradient update equa-
tion can be written as

ct+1) = c(t) + 4r]Cwiep(|>‘(||xp -c9S (X,—¢) 7
where¢' is the derivative af . We note tia}, —c;) aﬂng—cius are already calculated
in the feedforward phase and can be reused (if storage is available). If the kernel function is
a Gaussian function it is not even needed to calcqigfe, —cjJ) , as the derivative of an

exponential function is equal to itself. If, for instance, a diag§nal  is used the total number
of operations for updating all the  vectors @3e- 2d) M multiplicationsdivid addi-
tions. This is under the assumption thatMll nodes are included in the active set . If in-
stead a subset of nodes is active the Eq. (17) is only applied to those weights M/Bere ,
and the total number of operations for updating  is reduced accordingly.

When using gradient descent, a careful initialization of the nodes is needed. This is espe-
cially true when localized learning is used as the network might end up with many nodes too
far from any training data to become part of the learning process. One solution to this prob-
lem is to initiate the network with a selection of the data, another is to use a clustering meth-
od (like RPCL) to find good starting points.
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5.3.2 Rival penalized competitive learning (RPCL)
As an example of a CL method we have chosen the rival penalized competitive learning
(RPCL) developed by Xu et al. [84]. This expands the basic CL algorithms in two areas, it
introduces a rivalry among the winner node and the runner up, and it uses a frequency com-
pensation (conscience) to get all nodes actively taking part in the competition.

The update equations for RPCL are:

G(t+1) = ¢(t) +u (x,—¢) (18)
) B N if i = Kk such thaty,|x,—c, |, = miny;|x,—¢[, .
whereu; = %—nr if i =r such thaty |[x,—c, = min ., v;|x,=¢cj[, 19)
U 0 otherwise

fori =1,...,M and0sn,,n,<1.Usually(t)>n.(t) . Moreovey; = n;/ (Zileni)

(which is equal ton;/N ), and, is the cumulative number of occurrences®f1 . We
see that the paramete functions as a receptive field size parameter. As shown by Xu et al.
[84], this simple but powerful update rule performs very well in an LLS.

Note the similarity between Eq. (17) and (18) whete corresponds to
dnwe ¢'(|x,—c||9S - We can seeve  as the credit assignment factor missing in CL
methods an '(||Xp—Ci||5)S| as a locality assignment similarto  in Eq. (19).

The total number of operations for updating all the  vectors, which include a feedfor-
ward sequence, i (d+1) +2d  multiplications af2d + 1) M + 2d -2 additions (if
partial results are reused). This leads us to conclude that the gradient and RPCL methods use
approximately the same number of operations per pattern.

5.4  Adaptation of S

As noted in Section 4.2 the receptive field sizes can be fixed either to a scalar or a set in a hi-
erarchy. Among the adaptive methods the gradient descent method is the most common, but
also the mored hocmethod of RCE adaptation have been used as an LLS variation. These
two variations are discussed below.

Gradient descent
Using the same approach as fgr in Eq. (15)@nd  in Eq. (17) the gradient update equa-
tion for § can be written as:

S(t+1) = SO -2ngwe d'(x, =i s) Qi (20)

where¢' is the derivative dif ,ar(@lpi = (xp—ci) (Xp_ci)T is the outer-product of the
distance. IfS = diag[s;, ..., S4] then Eq. (20) can be simplified (with respect to the num-
ber of calculations needed) to

S(t+ D=5 -2ngwe d'([x, ¢ lg) (diagl (x,; —c;y) % i (Xpg=Cig) 1) @D
Likewise if § = s; we can simplify Eq. (20) to
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St+1) = S() —2r]Swiep¢‘(||xp - g) (X,—¢) T (X,—C))- (22)
If global rescaling is used we get an update such as
St+1) = SO-2nsy 1,45, (23)

where for the diagonal form we have

A = wie '([x,—cfl¢) (diagl (x5 =) oy (Xpa=C) 1), (24)

and similarly for the scalar form
. T
AS = Wiepcb (||xp—ci||a) (X,—C) (X,—C). (25)

RCE (Restricted Coulomb energy) adaptation

Another form of receptive field size adaptation is found in the RCE method [29, 65]. It is a
structurally adapting model similar to the ones discussed in Section 3.1. However, in this
method the node positions usually are fixed at input data positions, while the receptive field
sizes are adapted. Three update rules can be described, where the simplest rule applies to the
case where the input is correctly classified, and nothing needs to be done. If no node is close
enough to the input, a new node is added (with a certain radius). And in the case of incorrect
classification the radii of the conflicting nodes are reduced until they become inactive, and a
new node is added at the data position.
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6.  Complexity analysis

Due to the many variations possible a thorough analysis of the complexity is not performed
in this paper. This is also best done while discussing different mappings to parallel computer
hardware. A discussion on suitable mappings and complexity analysis is found in Part Il
[51]. Instead we give an example using a Euclidean distance, a hyperbolic receptive field
(diag[s ] ), a Gaussian kernel, and gradient learning in Eq. (3), (15), (17), and (21). This is
a common configuration and gives, as discussed earlier, a reasonable upper limit on the
number of operations needed.

Va_lrr)l/e;t;on Variation Result Operation Additions  Mult]  Other ops.
Distance lp o, (X, —Cyp) s d d
Receptive field diags;] | 1, ¢ ) S S8, d-1 d
Kernel function,  exp ¢() exp(—r?) 2-10 ops.
Output F(x, ©) > wio() m(M-1) mM
Error € Fix,0) -y m
Aw e 1+m
Aw Gradient M&,0C )
wi(t+ 1) w;(t) + Aw m
m
€ip > i-1%Wj m-1 m
Gradient o'(= r|2) 2-10 ops.
Ac (L2, exp, or2/ (dc) S (X d
diag[s;] . ) AC NeEipd ( I’2) = 1+d
c(t+1) c(t) + Ac d
Gradient: ar2/ (0S) (Xp1=C 1)3,2',9 d
AS (L, exp, AS Nsipd' (1?32 1+d
diag[s;]; )Tt + 1) S() +AS d
Table 4The number of operations needed for the feedforward phase of an LLS variation using a
Euclidean distance, a hyperbolic receptive fiediag|s,] . ), a Gaussian kernel, and gradient

Iearlr:)tml%]/I For all operations except for the gray row, the number of operations is found by multiply-
Ing Dy

Note that the node outpd{(|x,—c) is already calculated in the feedforward process, and
that the factor 2 or 4 can be incorporated into the learningmates . While upating ~ we try
to reuse as, many of the previously calculated partial results as possible, that is,
gpd’ (||xp |||s) (X, cI)T(xp ¢;), and(x,; —c;) are reused.

There areM computations of the kernel function. Depending on which type of approxi-
mation is used, and if special support for its calculation exists in the hardware, this will
translate to different numbers of primitive operations. To calculate the network output for an
LLS using a full “tail” mM multiplications are needed. Having localized activity Wwih
nodes active onlyAl/m multiplications are needed. If the normalization in Eq. (4) is used
anotherM —1 additions anél  divisions are required.
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7. Similarities and Differences Between Different LLS Variations

Within the LLS concept we have already identified a number of common ANN algorithms.
In the following subsections we will study two of these ANN models using Table 1 as a
starting point. In Table 5 and Table 6 we show the basic form of GRBF and SDM models, to-
gether with a number of their variations, all contained within the concept of LLSs. These ta-
bles show the close connection among a number of ANN models and variations. We can also
identify new variations of old ANN models. Some of the other ANN models recognized as
LLS variations are discussed in Appendix A.

The main or basic form is indicated by black ellipses and the variations are marked with
gray.

7.1 Radial Basis Function, and generalizations

In Table 5 we show the original formulation of an RBF network [61] in comparison with a
number of variations suggested by Poggio and Girosi [59]. These variations concern mainly
the initiation and adaptation of the free parameters as discussed in Section 5.

. Receptive o
Input | Distance Field ¢ initiation Ac Aw AS | Out
@ (citylE)Ilock) 1 exp Random [ R

I Uniform Gradient Gradieny gnt |
Threshold ' ompetitivéy| Occurrence
B logic unit (Hebb) RCE B
i +
product Min/Max Topology
Hamming Incremental
distance addition
Genetic
algorithm
Il RBF[61]
Sample/Hash
[l Generalizations [58, 59]

Table 5The original RBF network and the generalizations suggested by Poggio and Girosi [58,
59] The black circles are the default value or main model for each column.
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7.2 Sparse Distributed Memory

One of the binary oriented models (for the network input and output) is SDM. The binary
nature of the input makes it natural to use a Hamming distance. SDM uses a “radius of acti-
vation” (S = sl ) as receptive field, and a threshold as kernel function. The radius is chosen
to allow only a small number of nodes to be active at the same time.

The original SDM model [34] used a random, and fixed, distribution of kernel centers.
This is far from optimal if the input data is unevenly distributed. As this is common when
natural data is used a number of variations have been developed [36]. Many of the variants
are shown in Table 6. It is interesting to see that almost all the variations of SDM can be
mapped into this table of LLS variations. In [31] Joglekar suggests the usage of data or sub-
sets of data to initiate the kernel centers. As we noted in Section 4.2 Jaeckel’s selected coor-
dinate method [30] is an idea similar to the hash coding of the CMAC. Rogers [67] has
suggested using genetic algorithms, and Saarinen et al. competitive learning [70], to im-
prove the kernel positions. Pohja and Kaski [60] discuss methods to set the receptive field
sizes to force all nodes to participate an equal number of times. In [35] Kanerva heuristically
employs a global rescaling to adjust for different importances of the inputs.

. Receptive o
Input | Distance Field ¢ initiation Ac Aw AS | Out
Ly C 3( . > Pseudo-
R (cityblock) 1 exp Rando Fixed inverse R
| L2 Radial Uniform Gradient Gradient| Gradignt |
(Euclld%T 70]
reshoi f /Competitive, ,ZOccurrenty RCE
logic uni learning (Hebb)
Dot .
product Min/Max + Topology
Flamminy . Incremental
distance dlag[sj] addition67]
s Genetic
1] algorithm
Hierarchical Bl SDM [34]
[30]
‘ B SDM Generalizations

Table 6Variations of the SDM model. The black circles are the default value or main model for
each column.

Some of the natural extensions to the SDM model found by studying Table 6 are the use of
exponential kernel function, the use of topology for the competitive learning variation, the
use of local rescaling of inputy = diag[sj] ), and the use of a RCE-like algorithm to
adaptS for GRBF networks.
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7.3 Comparing LLSs to multilayer perceptrons (MLPs)

The main difference between an LLS and the much used feedforward network MLP, which
is not an LLS, is that while the LLS is computing a local approximation, the MLP computes
a global approximation. Many times the LLS variations have been shown to learn faster (two
orders of magnitude faster is not uncommon) [47], while the global approximation capabili-
ty makes the MLP a better approximator in regions where none or very few training data ex-
ist. On the other hand, the local learning seems to be better to learn disjoint regions and is
less sensitive to the order of the training patterns shown to the network during training.
When comparing the performance of these networks they seem capable of similar accuracy,
at least if both are trained correctly.

Other differences between LLSs and MLPs are that while LLSs have one hidden layer
the MLPs use one or many hidden layers; LLSs commonly use Euclidean distance while
MLPs use dot-product; and LLSs use different kinds of nodes for hidden layer and output
layer whereas MLPs commonly have the same kind of nodes for all layers. The structure of
the LLS, especially the local activity and learning concept as well as the expanded represen-
tation, seems to be more biologically “plausible” than a MLP with error back propagation
(BP).

A drawback with an LLS is that many times there are more nodes needed in the hidden
layer to achieve a certain degree of accuracy. This should not come as a surprise, since an
expanded representation is used for an LLS. This can however lead to a slower network
when (and if) the training is completed and only a feedforward phase is running (i.e., not
learning on-line), at least on a sequential computer.

Another drawback that many LLS variations suffer from (maybe even more than the
MLP) is thecurse of dimensionalityeferring to the exponential increase in the number of
hidden nodes with the dimension of the input space. This can to some degree be reduced
(some of the methods are mentioned in Section 3.1) but a universal solution to this problem
has not yet been suggested and is therefore an area needing more research.
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8. Conclusion

We have defined a “superclass” of artificial neural networks (ANNSs), called localized learn-
ing systems (LLSs), with the characteristic features of feedforward network, expanded rep-
resentation, localized activity, and localized learning. The LLS concept incorporates both
binary and non-binary input; both simple and complex receptive fields; both smooth kernel
functions and threshold units; and a number of variations on how to adapt the free parame-
ters, like competitive learning and gradient methods. It also incorporates methods that use
structural adaptation instead of weight adaptation.

One objective of this paper is to study these different variations of the LLS model in de-
tail. Additionally we show how a number of well known ANN models are connected through
the concept of LLS. Another important objective for this paper is to lay a foundation for an
analysis of parallel computer implementations of LLSs to be carried out in Part Il [51]. To
better suit applications where continuous learning is needed, the possibility to do on-line
computations has been emphasized, thus restricting the possible variations.

Our description of LLS variations also makes it easy to see and suggest new variations to
many of the constituent ANN models. One such variation would be the use of local rescaling
of input for SDM § = diag[sj] . ), another would be to use a RCE-like algorithm to adapt
S for GRBF networks. For the other ANN models in the LLS class, many new variations
can be found as well.

There are still some investigations that should be done to make the picture of LLSs com-
plete, for instance, the choice of kernel function needs to be further studied to find truly local
receptive fields while keeping the approximation performance high. Another important as-
pect to be investigated is the introduction of multi-modular networks with many cooperating
(and competing) LLS modules. One such model is the “hierarchy of experts” model de-
scribed by Jordan and Jacobs in [32]. In [13] Davis, Nordstrom and Svensson note a need for
a modular style of computer architecture to match the modular structure of these ANN algo-
rithms. We hope to return to these and other subjects regarding LLSs in a forthcoming paper.

The natural and massive parallelism found in LLSs, together with the locality of activity
and learning, and the usefulness of the constituent ANN models makes it very interesting to
find hardware suitable for LLSs. In part Il we will continue our analysis of LLSs but then the
goal is to suggest a suitable (parallel) computer architecture for this class of networks.
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Appendix A

In Section 7 we discussed two ANN algorithms in the context of LLS. In this appendix some
of the other well known ANN algorithms in the LLS class will be studied, using Table 1 as a
starting point. In Table 7 to Table 10 these ANN models are described using our LLS frame-
work.

The main or basic form of a certain ANN model is indicated by black ellipses while re-
ported variations of that ANN model are marked with various forms of gray.

A.1 Pre-RBF, RBF, and generalizations of RBF

The original form of radial basis function (RBF) networks, where every kernel is located at a

data position, is closely related to thé hocprobability density function estimation meth-

ods of Parzen windows, and potential functions [15, 56]. The difference is mainly how to de-

rive the kernel weightingy; . Specht [75] has extended the ideas of Parzen windows to a
class of neural networks called probabilistic neural networks (PNN). These models and their
different variations are shown in Table 7.

In section 7.1 we showed the original formulation of RBFs in comparison with a number
of variations suggested by Poggio and Girosi and others. These variations concern mainly
the initiation and adaptation of the free parameters as discussed in Section 5. This can be
compared to the algorithms found in Table 7 where the variations only concern the distance
measurement, the receptive field, and the radial function.

Receptive G
Field O lintiation|  AC Aw AS | Out

1 Random( Fixed ) ?nsveeurgce)_ ! Fixed I' R
nt |
B

Input | Distance

¥ sl ) Radial l Uniform Gradient Gradient| Gradig
Freshot Subset off Competitive [Bccurrencs RCE
data learning (Hebb

ogic u

Dot . . All
product dlag[sj] Min/Max + Topology
Hamming . Incremental
distance dlag[Si]i addition
Genetic .
i algorithm B Parzen window [56]
Hierarchical [l Potential function [15]
Sample/Hash
O PNN|[75]

Table 7Parzen, Potential functioprobabilistic neural networks (PNN)
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A.2 Competitive learning

Competitive learning (CL) is commonly used to update kernel positions and has been dis-
cussed in Section 4.3 and 5.3. One of the CL models, self-organizing map (SOM), has been
extended with a linear output layer which is trained in a supervised fashion, to become the so
called Counter Propagation (CP) model [26]. This model is the base model in Table 8. In this
table we have also shown two variations of structurally adapting CL, called growing cell by
Fritzke [16].

Restricted Coulomb energy (RCE), developed by Reilly [65], is another form of structur-
al adaptation where new nodes are incrementally added at data positions and the receptive
field is adapted to always classify seen data correctly, as described in the end of Section 5.4.
In Table 9 we see a description of the original RCE and two variations [48, 74] which are
generalizations of the original model. These variations are also done to fit better into a paral-
lel computer concept and will be discussed in more detail in Part Il
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ompetitiva

) Receptive G
Input | Distance| " 1 ¢ initiation Ac Aw AS | Out
@ (cityliallock) exp ‘ Randoa Fixed ?ns\?eurgz- ! Fixed I' R )
| Radial Uniform Gradient Gradignt |
B

O RCE (TI)

B L., Sil / I'.eS O. CN/Subset 4 RCE
ogic unif/ data learning
Dot . . All
dlag[sj] Min/Max data
Hamming .
distance dlag[sj] i
s Genetic |l SOM and CP [26, 39]
1) algorithm
Hierarchical [ Growing Cell [16]
Sample/Hast O Growing Cell RBF [16]
Table 8Competitive Learning
. Receptive o
Input| Distance| " ¢ initiation Ac Aw AS | Out
@ 1 exp Random Fixed Pseudo- | g @
inverse
@ sl Radial Uniform Gradient Gradient Gradie@
B ' nreshoi { Competitive [gOccurrents B
ogic uni learning (Hebb)
dlag[sj] Min/Max data + Topology
Hamming . ncrementa
distance dlag[sj] i
Genetic
SI] algorithm B RCE[65]
Hierarchical B RCE (Intel/HCE) [48]
Sample/Hash

(74]

Table 9 Restricted Coulomb Energy (RCE)
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A.3 Cerebellar Model Arithmetic Computer (CMAC).

The two models that are binary oriented (for the network input and output) are SDM (dis-
cussed in section 7.2) and CMAC. The binary nature of the input makes it natural to use a
Hamming distance. Both methods use a “radius of activation” as receptive field, and a
threshold as radial function. The radius is chosen to let only a small number of nodes be ac-
tive at the same time.

What makes CMAC unique is the method to initiate the kernel centers to be uniformly
distributed, cf. Table 10. As a consequence the large number of hidden nodes (especially for
high dimensional input) have forced the method to include a hashing function between the
“logic” kernel position and the “physical” position.

Moody [45] extends the CMAC concept by using radial functions with graded response
instead of the threshold units usually used by the CMAC method. He also suggest a hierar-
chy of receptive fields. This makes this model a precursor to the HyperBF model previously
mentioned, in the discussion of complex receptive fields, in Section 4.2.

Receptive o

C.
Field I Ac Aw AS Out

initiation
R (CityLb}ock) 1 exp[45] Random( Fixed) f’ns\fe“rgg' R
@(Emﬁiéean@ Radial Gradient Gradie@

Input | Distance

Dot . . All
product dlag[sj] Min/Max data + Topology
Fammindy i [s] Incremental
distance LSl addition
Genetic
algorithm

H CMAC[4]

B Generalizations

Table 10 Cerebellar Model Arithmetic Computer (CMAC)
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ABSTRACT

This is the second paper in a series of two analyzing localized learn-
ing systems (LLSs). Whereas the first paper concentrated on the
model, this paper will study parallel computer implementations of
this model. The LLS is a superclass of important and commonly used
artificial neural network models with many useful properties. Besides
performing classification and approximation tasks well, the LLS
model has shown promising possibilities to run efficiently on parallel
computers, a possibility which will be explored in this paper. After
analyzing the number and type of computations required we make
suggestions on how to implement the models on parallel computing
hardware.

It is established that a mapping which combines two forms of par-
allelism (node and weight) is the preferred form of mapping. To sup-
port this “mixed parallelism” a very simple structure is found to be
sufficient, consisting of a linear single instruction stream, multiple
data streams (SIMD) array using broadcast communication. In addi-
tion most variations of LLSs require extra support for reduction op-
erations. In this paper we suggest and analyze effective means to do
reduction-sum and minimum (winner-take-all) operations.Three im-
plementations of global-sum are identified and studied. It is found
that a bit-serial tree of adders gives the best performance/size ratio.
For the global-minimum operation a new bit-serial structure is pro-
posed. This new min/max network has the advantage of not needing
a global-or network as the standard bit-serial way of finding mini-
mum does. This also results in a speed advantage in most cases.
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1. Introduction

This paper is our second paper about on-line localized learning systems (LLSs). We have de-
scribed and analyzed LLSs in a companion paper, Part | [29], and we assume the reader is
familiar with that material. Here we will concentrate on the parallel computer implementa-
tion aspects of this model. LLSs can be seen as a “superclass” of artificial neural network
(ANN) models. Some of the LLS variations are sometimes referred to as kernel or basis
function networks. In essence the LLS model featdforwardANN forming anexpanded
representationlmost nodes are in the hidden layer), havowgl activity (only a subset of

nodes are causing significant output at a certain time)|ogatized learning(only active

nodes are updated). In these papers we further restrict ourselves to variations that can be
used in aron-line fashion (learning done incrementally and in real-time).

A number of ANN models can be found as variations of the LLS model. Therefore by
implementing the LLS model a number of well known ANN models will also be implement-
ed. Models found to be LLSs are generalized radial basis functions (GRBF) [33, 34], self-or-
ganizing feature maps (SOFM) and learning vector quantization (LVQ) [22], restricted
Coulomb energy (RCE) [6, 17], probabilistic neural network (PNN) [41], sparse distributed
memory (SDM) [21], and cerebellar model arithmetic computer (CMAC) [2]. All these
models are commonly used and it is interesting to look for a common hardware platform for
all these ANN models, and this is provided through the LLS concept. We hope to utilize the
natural parallelism in the many nodes, and the use of local activation and learning, to be able
to find efficient parallel computer implementations.

This paper is one paper in a series of papers [26, 27, 30, 42] studying the implementation
of ANNs on parallel computers. In our earlier studies we have found that a surprisingly sim-
ple architecture is enough to get good performance on many ANN simulations. That is, we
have found a linear array, with broadcast and support for multiplication, to be suitable for al-
most all the ANN models we have studied so far. This is also the starting point for this paper.
However, it will be found that some extra supporting hardware can be useful if improved
performance is required for LLS computations.

1.1 Types of architectures

There is always a choice between dedicated designs and general purpose designs. The high-
est performance is possible by dedicated design, but as long as the algorithmic details are not
decided, it can be risky to make a special design only to find it implementing an outmoded
algorithm. In other words, one often pays in flexibility for high performance. We have found
that many times the linear array computing in SIMD (single instruction stream, multiple data
streams) mode is a good trade-off between flexibility and performance. This style of com-
puting is also called associative array processor [12]. It is interesting to note that the LLS
model in some respects implements an associative memory, which might indicate a good fit
to this style of computing.

In [23] S. Y. Kung discusses systolic implementations of ANN, mostly multilayer per-
ceptrons (MLP) with back propagation (BP) learning. It is noted that 2-D arrays can only be
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efficiently used if training data parallelism (batch processing) is utilized. For the on-line (per
pattern) learning the “best” structure becomes a linear systolic array. In his design there is
only nearest neighbor communication, whereas we allow broadcast as well.

In the next section we shortly restate the LLS algorithm and some of its variants. Then a
general discussion on parallelism found in ANN calculation and how to map these calcula-
tions onto a parallel computer follows. Next there is a section with a detailed analysis of
each step in the LLS algorithm.

We also discuss two areas with difficult implementation aspects, the calculation of the ra-
dial function and the reduction operations. This is followed by a section where we summa-
rize the architectural support which LLSs need. After an overview of related work we

conclude the paper.
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2.  Recapture of the main aspects of LLS

In this Section we briefly summarize the main aspects of the LLS model. As noted in the in-
troduction the LLS is &eedforwardANN forming anexpanded representatiqmost nodes
in the hidden layer). The feed-forward phase can be visualized as in Figure la. In Figure 1b
the data flow and data organization of the feedforward phase are shown.

The main characteristic of the model is tbeal activity (only a subset of nodes are ac-
tive at the same time in the hidden layer), anddbalized learninglonly active nodes are
updated). We are mainly interested in variations which allow training to take place after each
new training data, that is the LLS is used irparlinefashion.

Input
b) | [l . Jol1]
Compare Distance Activation
1fo[ 1] o]+ Jof2] [o7] [1] 1Jo[ 1] 0
ARNEE SN 115 0 1] o] 3] -1
o[-2 1] o]+ -[3]0 [ 78] 1] o[-2 1] o
1] o[ 1] 5 00 102 (1] 1] o[ 1] 5
a4l o[ 1 1[1] [112] 0] 41 o[ 1

olr|e

o[ 1 o[ 1]+ -[2]1 128 o] of
o[-3 o] o[ -Jo]o 109 [1] o -
_—
Calculate node outp
Output| 24 -6] 63 1]

Figure 1a) The LLS model is a feedforward neural network model with localized activity at the
hidden nodes. b) The data flow and data organization of the LLS model (feedforward phase).

1] o] Weighted
3 o] sum of
nodes

The feedforward phase for an LLS with  nodes and multiple outputs, can be written as
Fix,©) = g W, (1)), 1)
idA

where¢(r;) isthe th node outpu, is the set of active nodes, is the input; and is
the weight connecting node with outgut . The node output will depend on the distance
measurement used to calculate the distance  to some centers (tensplates) , size and form
of the receptive fields , and type of kernel functipn . A node with a significant output is
called aselectecbr active nodethat is, a node is in the set of active nofles ¢(iif) > a ,
with a=0 bein’vg a constant. The free parameters to be set, usually by training, are
© = {w,c;, S},- ;- Anumber of variations exists and the variations discussed in this pa-
per are shown in Table 1. To exemplify we will use the Euclidean distance, a Gaussian ker-
nel function ¢(r;) = exp(—r?) , and a general receptive field, that s,
r2 = |x,—cjlg = (x-¢) 'S (x—c,), whereS can be recognized as the inverse of the co-
variance matrix.

The equations for training the free parameters of Eq. (1), usingd&Eent descentheth-
od, were developed in Part | [29]. We found that the hyperbolic receptive field, that is
§ = diag[s,, ..., ], can serve as a reasonable example (the most complex receptive field
still useful for the parallel computer implementations). Using
F(x o Q) = [Fl(xp, Q),..., Fm(xp, 0)] T as the network output vector with  elements,
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we can write the network error vector @s = F(x P Q) =Yy . Below we have the update

equations for a per pattern gradient descent using a least squares error:
wi(t+1) = wi(t)—ZnWepq)(”xp—ci"Q, @
c(t+1) = ¢(t) +4ng,9'(|x,— ¢l 9S (Xp,—C) 3)
St+1) = SO -2ng,0'(|x,—ciQ (diag[ (X3 —=Ci1) % -y (Xpg=Cig) 1) @)

fori DA ande, = S7_ e, w; .

PiTij

Not all variations update all these free parameters, and still others do not use the gradient
update at all. Another common way to update the kernel centers isd¢orapetitive learn-
ing which, in a refined form (rival penalized competitive learning [47]), becomes:

c(t+1) = ¢(t) +u (x,—¢), (5)

B N, if i =k such thay,|x,—c,, = min y;|x,— ¢,
whereuy; = B—nr if i =r such thay, |x,—c,, = min ., y|x,~¢cj|, ®)
U0  otherwise,
M

fori =1,...,M and0<n,,n,<1.Usuallyn(t)>n,(t) . Moreovey; = n,/ (Zi 1)

which of course is equal to;/N , ang is the cumulative number of occurrences of
u; = n,. Thatis to say that the node closest to the input (Rode ) is moved towards the in-
put and that the second best node (the runner up) is moved away. To involve all nodes the
distances are weighted with the number of inputs assigned to a certain node.

Many other variations exist both on how to initiate the parameters and how to adapt
them. The variations used in LLSs are shown in Table 1. We refer to Part | for a more thor-
ough discussion on the variations found in Table 1. This paper assumes fixed-point (integer)
numbers unless otherwise stated. Variations with floating-point (real) or Boolean input will
not be discussed.
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. Receptive C
Input | Distance ) o Ac Aw AS |Output
P field 0 initiation P
Ly . Pseudo- .
R (cityblock) 1 exp Random Fixed inverse Fixed R
L.2 sl Radial Uniform Gradient Gradient| Gradient |
(Euclidean)
Threshold| Subset of | Competitive | Occurrence
B Lo S ! logic unit data learning (Hebb) RCE B
Dot . . All
product d|ag[sj] Min/Max data + Topology
Hamming . Incremental
distance dlag[sj] i addition
s Genetic
1j algorithm
Hierarchical
Sample/Hash

Table 1variations of the LLS model. A large family of LLS variations is found by varying such

things as input and output spaces (Real, Integer or Boolean); distances, e.g., cityblock (L1), or Eu-
); kernel function

clidean (L2); receptive field (e.g., sphefe=_ sl
(exponential, threshold, min/max etc.); and how to initiate and adapt the free parameters.

Some of the LLS variants shown in Table 1 are not analyzed further, namely the variants

or elliffic=

diag[s;]

with genetic algorithmsample/hashor incremental addition of nodgstructural adapta-
tion), as they are not main stream LLS models. Due to the non-local naturgsétiumin-

versionmethod, and its computational demand making it hard to use in on-line situations,

the pseudoinversion method to set

is not studied either.
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3.  Types of parallelism

Because of the regular structure and repeated calculations over a large number of nodes, the
natural computer implementation will use a highly or massively parallel architecture (these
terms are defined in [30]). Before the best mapping can be found it is important to identify
the kind of parallelism found in the algorithm.

The different types of parallelism typically found in ANN algorithms [30] are:

Training session parallelism
Training example parallelism
Layer and Forward-Backward parallelism
Node (neuron) parallelism
Weight (synapse) parallelism
Bit parallelism

The training session parallelism uses the parallelism in sessions with different training pa-
rameters. The training example parallelism exploits the parallelism in the large number of
training examples available, this will however make the algorithm batch (off-line) oriented.
One example is the pseudoinverse method to detenmine . The layering (or pipelining) par-
allelism is not large and is seldom used. Both the parallelism in nodes (the many neurons)
and weights (the many synapses per neuron) are commonly used. The bit parallelism is often
taken for granted but becomes visible for bit-serial approaches. The greatest parallelism is
found in training example parallelism, node (neuron) parallelism, and weight (synapse) par-
allelism, therefore these three are the most interesting to exploit for parallel computer imple-
mentations. As this paper focuses on on-line methods, we conclude that the node and weight
parallelism are the most attractive forms of parallelism.

If we expand Eq. (1) we get, using a Euclidean distance without weighting,

Yi = 2ioaWi o), )
whered is the number of inputs, = Z‘:: 1 (Xe—Cy) 2, aNddg A  ¢(f)=za ,with
a >0 being a constant. This condition for activity can usually be written) ap , with

p =0 being a constant. Thus, each and every node needs to calculate this distance to find the
active set. A node parallel solution for this calculation udes nodes operating in parallel,
while a weight parallel solution uses  nodes. That is, the computational time for the dis-
tance calculation is proportional tb  for a node parallel solutionMaind  for a weight paral-
lel solution. As we assume that we have an expanded representation we knbiwttat ,
and we can conclude that the node parallel solution is the most efficient one for the distance
calculating phase. Using the same reasoning for the output layer, that is, Eq. (7), and noting
thatm< M, we find the weight parallelism potentially faster. This, however, will be depend-
ing on the support available to combine (sum) the weight parallel calculations. Later, in Sec-
tion 4.2, we will discuss how to implement an global-sum and other reduction operations.

A combination of the weight and the node parallelism while calculating a single layer is
of course also possible. This combination is in fact the maximally parallel solution in the on-
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line case. Inspecting Table 2 we find that a typical f%edforward phase computes subtraction,
squarln’\(z:;, weighting Wlth;kj , the su@k: Ski (_xk—_cik) , weighting W\mﬁ , and the fln_al
sum . 1Wi-¢ . For the worst case scenario, with= M , @ maximally parallel solution
for the feedforward phase only usegM + logd + ¢, steps, where  is a small constant
(=5). Similarly, updating all free parameters using a gradient method can be done in
¢, +logm+c_+cg stepswhere,, ¢, ,and, are small constams<6, and=4, respec-

tively). However, this maximally parallel solution is unrealistic due to the hardware resourc-
es it needs. For the feedforward phase alone we dikd multipHers, adder trees of
lengthd , m adder trees of lengtii , anuVi multipliers. The hardware would probably
also need to be specialized towards certain network sizes.
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4.  Detailed analysis of the LLS algorithm

Our analysis of the LLS algorithm will be based on an implementation which uses node par-
allelism for the hidden nodes and weight parallelism for the output nodes. For computations
we will use addition and multiplication as the basic operations and relate other operations to
them, e.g., we can assume that a subtraction and the calculation of an absolute value to take
the same time as an addition. In Table 2 most of the variations for the feedforward phase are
analyzed. This is followed by an analysis of the updating phase summarized in Table 3. We
will continue to used as the number of inpuis, as the number of nodes) and  as the
number of outputs.

For the different variations of distance measurements we see that the dot product is the
fastest, unless normalizations are needed. For the Hamming distance (HD) it is possible to
make use of the fact that all inputs are binary and use an exclusive-or operation followed by
counting the bits in the result. While using the Mahalanobis distance (MD) we implicitly use
an, L, distance. The shown receptive fields are special cases of the MD as longadishe L
tance is used. The large number of operations for the MD, especially for long input vectors,
makes it less interesting for high performance applications.

As a kernel function the Gaussian is much used, but the calculation of it needs special
consideration. Ways to calculate it, or approximate it, will be discussed later. To support LLS
variations using winner-take-all it is required to find the minimum or maximum across a
node parallel mapping. Likewise, a weight parallel mapping will require a global sum across
the same nodes. Different ways to support these two forms of reduction operations (marked
with gray in Table 2) will be discussed in Section 4.2.

The error can either be calculated in the host/controller or in the processor array if the
network output vectoF (x o ©) and the target vegtor are broadcast.
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V?;/%téon Variation Result Operation Additiorjs  Mult Other ops.
Ly Oy X —Cy 2d
Ly Oy (X —Cip) 2 d d
Distance Lo Oy min, (X, —C;|) 2d logd, ord
Dot produc o, X, Ciyc d
HD Oy “ (X —Ciy) 2 exclusive-or
Mahalanobis 2 _ T _ 2 _ 2
distance (MD)| i ri (% —Ci) TS(%—cyjd*+d-1 d*+d
1 r.(r2) > O d-1
Receptive field Sl r.(r?) sY 9 d-1 1
diag[s ]| r;. (r?) S SO, d-1 d
exp ¢() exp—r?) 2-10
Kernel functio TLU index ST(tA A =alli wher¢; <p 1
. ind ] ;
Min/Max '”(IZ‘) min r; , (secongr ) q, log| A
outont and exp F(x, ©) S wid( ) mlog| A m
T T | Fx, ©) S 0 Wid() miog|A [ m
. € F(x,0)-y m
Table 2The number of operations needed for the feedforward phase of the LLS algorithms for
most of the variations given in Tabled..  is the number of inp&is, the number of active nodes,

m is the number of outputs, argl  the number of bits used to represent node activity. For all oper-
ations, except for the ones in the gray rows, the number of operations is found by multiplying the
shown figure by the number of nodés . That s, this is the number of steps needed for a node par-
allel solution.

We also need to analyze the means of communication that these computations need. For
most computations the only communication needed is broadcast, thanési@amany com-
munication(broadcasting of the input vectap the radius , and the epror ). The “in-
verse” of broadcasting is a reduction operation neegiiagy to one communicatiomhis
operation is found while calculating the distangg the output-(x, @) , or finding the win-

ning node (minimum/maximum). The type of operation used for the combination of the val-
ues will determine the type of reduction, e.g., global-or, minimum, or global-sum. We note
that in a SIMD computer there already exists a broadcast from the controller to the process-
ing elements (PEs) namely the instruction.

In Table 3 we show the number of operations which are needed for the updating of the free
parameters. Note that the node outq)(mxp - ci||s) is already calculated in the feedforward
process, and that the factor 2 or 4 can be incorporated into the learning rates . While up-
datingS we try to reuse as much of the previously calculated partial results as possible, that
. , 2 T

is, €,0 (||xp—ci||s), (X,—¢) (x,—¢), and(x, —c;) are reused. The number of opera-

10
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tions needed while updatilgc aA&®  will depend on the chosen receptive field. We show
the numbers fos | diag[s] |, anﬂj . For the global versions, that is, dialg(ﬂsj] , the
S(t+1) becomesy() + Y AS with a correspondingly larger number of operations. Note
that this summation is a global-sum across the PEs.

Comparing methods to calculatec in Table 3 we see that a gradient method using
diag[s] as receptive field has a similar time consumption as the competitive learning
methods. For the gradient method more nodes are updated at the same time. For a sequential
computer we can utilize the fact that only one or two nodes should be updated, but that is not
the case for a parallel computer (at least not on the mapping suggested). As the methods are
very different (e.g., supervised versus unsupervised) it is not certain that the lesser number
of nodes updated will lead to worse performance (it could even lead to better performance in
some situations). The addition of a topological constraint leads to a larger number of nodes
being updated for each training pattern, this without taking a significantly longer time on our
suggested architecture.

To find the neighboring nodes for LLS variations that use topological constraints, the
fastest way is often to broadcast the winning nodes’ “topological position” and let all nodes
calculate their respective “topological distance” to the winning node. About three operations
per topological dimension should be sufficient.

We can also note that, as for the feedforward phase, the Mahalanobis distance (general
S; ) is not advantageous for long input vectors because @(itid operations needed.

11



TULEA 1995:02

Table 3The number of operations needed for updating the free parameters of the LLS algorithms.

For all operations the number of operations is found by multiplying the figu

by

12

Variation Variation Result Operation Additiov|1s Mult Comments
Type and other ops.
Gradient Aw N.e,0( ) 1+m
Normalization
Aw Occurrencd ~ Aw w(t) +y m is neaded
. wi(t+ 1) w;(t) + Aw m
m
€ip $|—1epJW|I m-1 m
¢'(—r?) 2-10 ops.
Gradient - = 1.d,
(Lo exp) | 9%/ (9€) S (xp—c) d2—d | “d2
Ac N0 1A 1+d
Ny (x—c )
Ac cL A for |ndex k or aIIk OA d
ACk Nk (x— Ck) d Actually local
RPCL Ac, -n, (x-c,) d to one or two
N, n, + 1 1 nodes
oL+ NN (X=¢) . Need to calcu
topolo Ac, whereN, is the topological 2d  |late the topolog
pology- distance tok ical distance
. c(t+1) ci(t) + Ac d
or2/ (0S) (Xpl_cil)T(Xpl_Cil) - -
Gradient: Y. aL
Lo, exp.S| AS nssipq)( ri)as 2
St+1) S(t) + AS 1
or2/ (09 (Xp1—Cin) ? d
Gradient: or2
Lo, exp, AS r]ssip¢'(—l’i2)a—s 1+d
As | diag[s];
"I S(t+1) S(t) +AS d
or2/ (09) |(x 1—Ci1) (Xpl cy)’ d?
Gradient: 2 aL 2
Lo 9., AS NsEip®'(—r; 1+d
S(t+1) S(t) + AS d2
Ny n.+1 1
RPCL
s(t+1) N, (1/N) 1 global 1/’ N
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Timing example
Using a Euclidean distance, a hyperbolic receptive faiay(s,] . ), a Gaussian kernel, and
gradient learning in Eq. (1)-(4), we can compute the per pattern update time (using a node
parallel mapping onto a linear array with  processors) as

Tiot= ATaqq+t AT+ (d=1) Togq+dT o + Ty + T+ MTgg+mTyyq

tot — mul

+ (1 + m) Tmul + mTadd
+(M=1) Tygq+ MTy + Ty +dT+ (1+d) T +dT g4
+ dTmul + (1 + d) Tmul + dTadd
=(4d+3m=-2) T 44+ (6d+3m+3) T, + Ty + T+ T, ®)

The timesT,_,, and ., are the lengths of time consumed by an addition and a multiplica-
tion, respectively. The time‘é¢ arTqL. are the times needed to compute the radial function
and its derivative. The timg,g is the time needed to calculate a global-sum across the lin-
ear array. The trivial solution using only local (nearest neighbor) communication will calcu-
late this global-sum inA|  (i.e., in worst caBe ) steps. This is clearly undesirable, as we
usually have an expanded representation where the number of Rdrnels  is much larger than
both the input vector lengith  and the output vector length . If an adder tree is used, as de-
scribed later, we can assume for the worst case (cf. end of Section 4.2),
Tgs = (logM) T, 44-

For a bit-parallel computer two reasonable assumptions areTthat= 2T, and
Ty + Ty = 10T,44 . Altogether these assumptions lead to a per pattern total time of

T,y = (16d+9m+logM+ 14T, . ©

With mixed parallelism and support for reduction operations the term dependiht on be-
comeslogM and the critical term fot,,  is the tet6d

Most LLS variations are used with networks using maximdlly 64 inputs; 64
outputs, andVl = 2048 nodes. This maximum gives a maxinyp = 1625T .Ifa
25MHz clock is used and an add takes one clock cycle this maximally sized network could
be updated at rate of 15000 updates/s. This is sufficient for many real-time applications, and
is very high in situations involving humans.

By introducing the concept of virtual PEs it is possible to reduce the hardware required
with the sacrifice of update speed. By virtual PEs it is meant that each PE is simulating many
virtual PEs (giving the impression of having more PEs than what is actually available). The
introduction of virtual PEs demands little or no extra support from the hardware, but re-
quires more memory to be available for each PE. For a low level of virtualization (2-8 times)
the update rate can be expected to be reduced in proportion to the level of virtualization.

4.1 Radial functions

It is well known how to implement the addition and multiplication operations [10, 18, 43].
However, for radial functions like the Gaussian, it is not as obvious which methods are
available and which one should be preferred. This is especially true if reduced precision can
be allowed as a way to achieve higher speed. A standard way to calculate an exponential

13



TULEA 1995:02

function is to use its truncated power-series as an approximation [18]. If we truncate all but
one term we get an approximation in the form:

2 0 - B O if r<qg
o,(r) = exg(—r?)= 05 Lg D B
Uo otherwise
(10)
wherer? = ||x—ci||S andq = 2.67 for best fit to a Gaussian [32]. If even lower precision
is acceptable a version with= 2  should be considered, as it makes Eq. (10) easier to cal-
culate.

The cut-off atr, <q makes the kernel function truly local, which is not true for the expo-
nential function we try to approximate. In a sense, a Gaussian kernel function does not con-
form to the LLS concept of locality, due to its infinite tail. Usually this can be resolved by
introducing a cut-off for the implemented kernel function. This “reintroduction” of locality
is especially needed if the method to do global-sum depends on the fact that there are few
active nodes.

If trigonometric calculations already are implemented, or if they are calculated faster
than the exponential, then the kernel function

O(1+cosr)/2  if r<m
o,(r) = 0O .

0o otherwise

11)

could be considered. There are actually many other types of kernel functions that could be
considered, both approximations that are close to a Gaussian, like the ones above, and others
like a triangle function. Wong [46] actually suggests that the Gaussian kernel function is
“too smooth” for some problems where there are high frequency sections to be mapped, and
that a first order spline like the triangle function is better.

Another method to quickly compute an arbitrary function is to use a table lookup. This
however needs the PEs to be autonomous enough to generate local addresses. Most SIMD
computers do not have local address maodification available for this kind of operation. For a
discussion on autonomy of PEs in SIMD computers see [8]. The CNS computer from ICSI
[4] will use a table lookup to calculate the sigmoid of the multilayer perceptrons (MLP),
which is a similar problem to calculating the exponential. This method will need memory for
the table in each PE, making strong restrictions on how long tables can be, and therefore on
the precision. (A precision of 8 bits is used in [4].)

In [30] various approximations of the sigmoid for MLPs are discussed in greater detail,
and many of the methods there can be applied to the exponential as well. It should for in-
stance be easy to generate a piecewise linear approximation.

14
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4.2 Reduction operations

For both node parallel, weight parallel, and maximally parallel implementations it is inter-
esting to find fast ways of doing reduction operations. In the following sections we will
study methods to calculate a global-sum and methods to find a global minimum (which is
needed for “winner take all” algorithms).

Global-sum

There are many possible ways to &dd  numbers together in parallel, but the most efficient
way is to use a (binary) tree structure. Here we study three variantgtiyhearallel adder

tree which uses parallel adders in all stagespdnty paralleladder tree which is sequential

over the inputs, but adds the bits in each bit-slice with parallel adders; and a conbjitetely
serial adder tree.

- The fully parallel method is the most complex, using a complete adder for each
crossing in the tree. The reduction will be completetbgiv pipelined steps, need-
ing M—1 q -bit (and larger) adders, whegie is the number of bits in the numbers to
be summed. We also nedd/ —1) /2 pipeline registers. The critical operation is a
(g +logM — D)-bit adder. This structure can easily be extended to other reduction op-
erations by modifying the arithmetic/logic unit (ALU). In [39] Raynolds et al. de-
scribed a general reduction network, similar to the one described above, capable of
all important operations including minimum.

Pipeline stages

Values to be summed

in parallel

* 24

23

Figure 2Part of a fully parallel adder tree to suvh = 256  numbers with maxintplly 16
bits each. Not shown are the pipeline registers between each layer of adders.

15
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Values to be summed

bit by bit

The partly parallel adder tree forms an accumulated sum by adding up bit-slices
from all the numbers, sent to the adder tree bit by bit. Aftetog (M/ p) steps the
sum is complete. This solution neetls’p p “ -bitleyp -bit sum” arithmetic
units, log (M/ p) — 1 adders with a length starting frdogp , and an accumulator
with the lengthg+logM . There are alsb(M/ p) pipeline registers. The critical
operation is thelgM + 1 )-bit andj+ logM  )-bit addition. The structure is inflexi-
ble and cannot be extended to other reduction operations.

Pipeline stages

Accumulator

Figure 3Part of a partly parallel adder tree to suvh = 256 numbers with maximally
g = 16 bits each. “L" is the logic to add 8 bits into a 4-bit sum. Not shown are the pipeline regis-
ters between each layer of logic or adders.
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The cheapest solution, with respect to hardware, is to bisesearial adder tree com-
pleting the sum img + 2logM  steps. This solution utilizds- 1 full adders with car-
ry-save technique, ar@l(M —1) latches. This method does not restrict the precision
of the numbers to a specific maximum, and is faster for shorter numbers (i.e., smaller
g). This structure can be extended with logic operations like global-and, global-or,
and global-exclusive-or, but faster ways of doing global-or exist. It seems difficult,
however, to directly extend a bit-serial adder tree to include reduction with minimum
(or maximum). These operations can, however, be easily implemented by other
means in a bit-serial fashion, cf. next section. If there are long wires between nodes
or if they go outside a single chip, it is possible to reuse the wires in the adder tree for
broadcast. This is accomplished by introducing backward bypasses on each full adder
(FA), like the ones suggested by Pachanek et al. in [31].

Pipeline stages

—
T RA
FA
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3 1 A
e [
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Figure 4Part of a bit-serial adder tree to sivh = 256 numbers with maxingphy 16 bits
each.

In Table 4 we have analyzed the three different variants of adder trees. The analysis has been
done for a global-sum &fi = 256 numbers with= 16 bits each. Mis 256 was
chosen as a maximum number of PEs on one chip. From the approximate analysis in this ta-
ble we see that the partly parallel solution is the slowest method and thus not very interesting
for further studies. We also note that the fully parallel and the bit-serial solution achieve sim-
ilar speed. This is under the assumption that the bit-serial adder tree pipeline can be clocked
four times faster than the fully parallel adder tree pipeline (which should be possible due to
the simplicity of the bit-serial pipeline stages). The number of gates is not a very accurate
measure of the area needed for each of the solutions, still it is an indication that the fully par-
allel solution is around 10 times larger than the partly parallel and bit-serial solutions. We
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conclude that the bit-serial adder tree is the most promising way to expand an architecture
with an adder tree. This is true even if the rest of the PEs run in bit-parallel mode, although
some fast shift registers will then be needed for the conversion of parallel to serial data.

Fully parallel Partly parallel Bit-serial
Steps to complete a global-sum 8 23 32
Most time consuming operation add 23+23 add 9+24 FA
Unit delaysA , for this operation 12 12 3
Speed (stepsA ) 96 276 96
Number of parallel adders 2556-23 bits in siZe| 31 (4-8 bits in sizp —
Other logic — 32 8 bits to 4-bit sum 255 FA
Number of gates 28930 4084 3060
Latches 4582 330 510

Table 4 Approximate analysis of the three adder tree alternatives. It is assumbdl tha256
numbers, having] = 16 bits each, are to be added. We denote the logic gate propagation delay
with A . All methods are pipelined and for parallel adders four-bit carry-lookahead adders are used
as described in [43].

Besides using the adder tree to calculate the output sum it can be used to help the LLS calcu-
lations if a normalized version of Eq. (1) is used and while using Hebbian or occurrence up-
date ofw; a normalization is sometimes required. Additionally can the adder tree be useful
if global rescaling is used (diagonal or scalar). Furthermore, an adder tree is not only advan-
tageous for LLSs, it has also been found useful [42] for multilayer perceptrons with back
propagation learning, on a SIMD processor array.

Using the local activity

An interesting prospect is to see if the local activity present in LLSs can be exploited to
speed up the reduction operations. If we assume that a reasonable maximum is 2048 nodes
(otherwise it could be split into multiple networks), then a bit-serial global-sum of 16-bit
numbers take46+ 11+ 11= 38 steps to calculate. If we assume that only 1-2% of the
nodes are active, the sum would minimally th&e- 6+ 6 = 28 steps. That is, the potential
gain is relatively small. This is true at least if we keep the mixed parallel implementation and
use an adder tree. However, in [28] it is shown that there are certain situations where the
need for an adder tree can be avoided. This is accomplished by trsingpsed mapping

where a node parallel mapping is used throughout the whole implementation as shown in
Figure 5b.
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Figure 5(a) shows a mixed parallel solution, used in this paper, while (b) shows the transposed

mapping (node parallel) useful for the SDM algorithm, cf Figure 1b. The adder tree needed in (a) is
not shown.

This was developed for the sparse distributed memory (SDM) model where no adaptation of
the kernel positions takes place. SDM is designed to have very few activel Aodes and of-
ten works as an associative memory with many outputs. These are also the reasons why the
mixed mapping works well for SDM. It becomes possible to iterate over each active node,
and the PEs will only operate on local data. GiV&h< mlog M this transposed mapping
will compute the output sum faster than a mixed parallel mapping will. If for example
|Al <0.1M, that is, we only have 10% active nodes, then gMer 128 the transposed
mapping will be faster im>2 |, and gived = 512 it will be fastenit 6

This solution needsn  additional PEs. Depending on the memory each PE needs, it
might be possible to reuse the “first layer PES” for this new task. For each new PE we need
M extra storage locations. There are also other things to consider, for example, means to
translate the active PEs to addresses for the “second layer PEs” is needed. If the “first layer
PEs” are reused for problems with few outputs then only a small number of assigned PEs
will take part in the computations, leading to low efficiency.

We can conclude that for cases where the transposed mapping is not efficient we still
want to have an adder tree available for the global-sum operation. Anyhow, means to imple-
ment transposed mapping should be provided as there is a lot to be gained from that map-
ping in certain cases.

4.3 Finding a minimum

Finding a minimum or reduction with a minimum operator is similar in structure to the other
reduction operations like global-sum or global-or. The main difference is that we are not
only interested in the resulting minimum value, but also in the index of the PE containing
that value. As mentioned before, Raynolds et al. have described a general reduction network
[39] capable of all important reduction operations including minimum. For the minimum op-
eration they have added an extra path in the tree structure to be able to send along the index-
es of the values reduced. The comparison is accomplished using a subtraction and the sign
decides which value and tag to send forward. But, in correspondence to the global-sum,
there are also bit-serial ways of finding minimum. Inspired by the bit-serial sorter by Afgha-

hi [1] we now suggest a bit-serial minimum (or maximum) circuit.
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The basic element is the bit-serial minimum or maximum filter found in Figure 6a. The
input A andB are transmitted serially, with the most significant bit (MSB) first. Figure 6b
shows the state diagram of the element. The reset signal sets the state badk to Be
state. While there is no difference on the inputs there is no change in state. However, if a dif-
ference is detected the element either goes tAthd3 ok thB state as indicated in
Figure 6b. In both these states the output transmitted will also depend on whether the mini-
mum or maximum is wanted.

These basic elements are then connected into a binary tree structure.

_ =0,B=1
M = Min/Max
A . A<B
B Min/Max — O=AM+BM
]
-

Figure 6(a) A bit-serial min/max element of a binary tree. (b) State diagram of the min/max ele-
ment.

As mentioned above the desired result of this operation usually is the index of the winning
node instead of the minimum value. This can easily be achieved just by transmitting the in-
dex after the values to be compared. A nice by-product is that an automatic resolution of ties
is also attained. The total number of steps will theq belogM (the index has a length of
logM bits). For the whole adder tré¢ —1  of these elements are needed, where each ele-
ment is not much more complex than a full adder.

Finding the runner-up, which is needed for some of the competitive learning methods, is
easy as well. We just have to use a sorter element [1] as the root of the tree. The sorter has
the same states as the min/max element but has two outputs: high and low.

Another way to find the maximum (which easily can be converted to finding the mini-
mum) is described in [30] where a global-or network is used. The search starts by comparing
the most significant bit for all values. It determines if any PE has a one using a global-or op-
eration, in that case all PEs with zeros are turned inactive. For the case that all PEs show a
zero, the search just continues to the next bit without changing the activity of any PE. The
search continues in the next bit position and so on, until all bit positions have been treated.
The time for this search is, in principle, independent of the number of data compared; it de-
pends only on the data lenggh . The computation of the global-or will however depend on
the number of data, and there is also a need for a select-first network [12] to resolve multiple
maxima which will also depend on the number of data used. The total number of steps for
the worst case is them(T;,+1) + Tg+logM , whefg,  is the time to do global-or,
Tge is the time to do select-first, atmhM is the index length in bits.
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Comparing the two bit-serial methods to search for a minimum we find that the first bit-seri-
al method is to be preferreddfT;,+ Tg->logM . As this is true under most circumstances

(note thatT,, is sometimes even equaldgM ) the first method is promoted. This meth-
od also seems to put less demand on the controller.
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5.  Architecture requirements (summary)

In this Section we summarize the arithmetic and memory demands LLSs have on the pro-
cessing elements (PEs). We also summarize our findings regarding communication net-
works, and also discuss what type of control is needed. An overview of the connection
between different parts of the architecture is found in Figure 7.

Control Unit
Address and > <« — Broadcast bus
PE Instruction
PE
Memory
Adder tree and
Min/Max network

PE array

Figure 7A simplified view of the suggested architecture. This is an array of processing elements

(PEs) controlled by a single controller (SIMD). Besides a broadcast bus an adder tree and a mini-
mum/maximum network have been added. Inter chip or inter module communication structures
are not shown.

Note that the fact that the architecture iimaar array is not really used while implementing
the LLS model. It could instead be considered as a set of PEs. The locality concept in the in-
put space is usually not reflected in the order of the nodes.

The number of PEs should maximally be around 2048. If more nodes are desired by the
LLS algorithm the nodes should be split into separate modules instead. If modern VLSI
technology is used 128 — 256 PEs could be fitted onto one chip, possibly even with enough
memory on-chip for some low level virtualization. This large number of PEs is easier to ac-
complish if low complexity PEs with bit-serial arithmetic are used. Fewer PEs or an off-chip
memory solution might be required if bit-parallel PEs are to be used.

Arithmetic capability for PEs

Support for multiplication and addition is essential for ANN computations in general and
that is true for LLSs as well. A useful addition would be support for absolute values. (Easily
implemented but depends on the number representation used.) If low precision is to be used
it also seems useful to have a soft overflow logic, that is, overflow should remain at max and
not “swing around”.

A general way to support the implementation of radial functions is to use a table lookup.
This solution will however require a more complex PE, and more memory per PE. This
drawback and the fact that we can usually make a good approximation using only a few (say
2-10) multiplications and additions lets us conclude that support for table look-up is not es-
sential.

The threshold logic unit operation needs a comparison which can be implemented using
a subtraction and an “if then else” control.
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Memory capacity for PEs

If we use a hyperbolic RBF (i.eliag[s,], ) we will need memory3dr+ 2m + 9 variables

per PE. And for RCPL with counterpropagation weight adaptation we need memory for
2d + 2m+ 7 variables per PE. If a momentum term is used, then the memory needed is al-
most doubled. Still the memory needed is not very high per PE. This means that we can as-
sume that the memory requirements will not be the bottleneck if we want to use the concept
of virtual PEs as discussed in the end of Section 4. This assumption is true as long as we use
external memory and do not use a very high level of virtualization (say above 32).

Communication

Besides broadcast (which is available on any SIMD computer) there is a need for an adder
tree to support global summation, and a minimum/maximum network to support winner-
take-all algorithms. These two reduction networks seem to be most efficiently implemented
using a bit-serial approach. If the processors are distributed to multiple chips the communi-
cation between the chips needs to be considered. Thus, if there is a large speed difference be-
tween on-chip and off-chip communication/computation buffers will be required together
with additional support from the controller. The more specialized approach with the trans-
posed mapping also needs some support, for instance using a select-first structure.

If general communication networks like hypercube networks or mesh networks are avail-
able an efficient way to calculate the reduction operations discussed in this paper can be
found. But for LLSs the flexibility of these networks is not needed and the extra hardware
required would be unused most of the time.

Control

We have assumed that a SIMD computer, that is, a single controller for all PEs, should be
sufficient for LLSs and found nothing to contradict this assumption. Besides the obvious op-
eration to send out instructions and addresses, the controller, assuming a mixed parallel im-
plementation, also has to:

support a broadcast of the input vectdr (  steps),

be able to receive the output sum from the adder tree (  times), calculate the differ-
ence to the target vectam( steps), and broadcast the difference to the PEs (  times);
this step can also be done as a broadcast from the adder tree to allmodes ( times)
and a broadcast of the target vector from the contratter ( times).
As mentioned in the end of Section 4 the use of virtual PEs is a desirable method to reduce
the number of PEs needed and support for virtual PEs increases the flexibility of the archi-
tecture. However, support for virtual PEs also demands more of the controller, for example,
implementation of the reduction operation over all virtual PEs.

Fine grain PEs using bit-serial arithmetics allow for a shorter clock cycle; unfortunately
this also puts higher demands on the controller. At a certain speed the controller might need
to be split into one on-chip “loop” controller section and one off-chip main (slower) control-
ler section, that is, a hierarchical control.
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As addressing autonomy is not needed (unless table lookup is to be used for kernel func-
tion calculation) the control unit will generate the PE memory addresses.

5.1 REMAP

REMAP (“Real-time, Embedded, Modular, Adaptive, Parallel processor project”) [7] is a
joint project between Luled University of Technology, Chalmers University of Technology,
and Halmstad University (all in Sweden). The first prototype has been implements using
programmable logic (FPGA) to facilitate architectural experiments [24]. This prototype
mainly uses bit-serial PEs which are organized as a linear processor array controlled in
SIMD fashion. The implemented communication structures are nearest neighbor and broad-
cast. The PEs are ordinary bit-serial PEs capable of doing addition subtraction, and, or, not,
exclusive-or, load register and a tagged store. In earlier studies we have found that in order
to support ANN computations the basic PEs need to be extended with a bit-serial multiplier
[12] (for MLP [42] and SOM [27]) or a bit-counter (for SDM [28]).

To support LLSs this basic REMAP architecture only needs to be expanded with support
for reduction operations (adder-tree and min/max network). This support for reduction oper-
ations also can be useful for multi-layer Perceptrons trained with back-propagation. In an
earlier paper [30] we suggested that temporary sums could be circulated among the PEs to
achieve the same result. But, for LLSs with many more nodes in the hidden layer compared
to the output layer, that solution is not as efficient as the solution suggested in this paper.
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6. Related work

In the following sub-sections we will discuss some of the more promising hardware imple-
mentations which can support LLS computations. Further discussions on parallel hardware
for ANN in general, and some special LLS variations like sparse distributed memory (SDM)
and self-organizing maps (SOM) can be found in our papers [26, 27, 30].

6.1 INTEL and Nestor

Intel and Nestor have developed the Ni1000 chip [16, 20], implementing variants of restrict-
ed Coulomb energy (RCE) [6] and probabilistic neural network (PNN) [41] algorithms. It
has two main parts, where the first part consists of 512 distance calculating units, and the
second is a DSP-like mathematical unit. The first part, as the name indicates, calculates a
distance between an input vector and kernel centers. They can only calculate a city-block
distance (). These units are organized in a node parallel fashion and operate at 40MHz.
Up to 1024 prototypes can be stored on the chip, each prototype with a maxima length of
256 values with 5-bit precision. The mathematical unit is used to calculate the kernel func-
tions (Gaussian or TLU) and the output sum. It uses 16 bit floating-point numbers for its cal-
culations. It can operate at 40000 patterns/s in a feedforward mode.

This chip only implements a subset of the LLS variations (e.g. only L1 distance and only
one form of receptive fields). Still, for problem areas where these restrictions can be accept-
ed the Ni1000 chip performs well.

6.2 ZISC

ZISCO036 is the first in a family of ANN chips developed by IBM [11, 19]. It implements an
LLS variation similar to an RCE network. This chip implements 36 neurons organized in a
node parallel fashion and operating at 20MHz. The chips can easily be cascaded to larger
configurations. Each node contains a prototype with a maximal length of 64 values using 8-
bit precision. Only L or L, distance measurements can be used and the kernel function is
implemented as a threshold. Means to extrackthe closest nodes are also available. Learn-
ing is done in an RCE fashion where an unrecognized input is attached to an unassigned
node and only the receptive field sizes can be adapted (actually they can only be reduced). In
ZISCO036 there is no support to implement virtual PEs.

While ZISC036 is being implemented in conservative VLSI technologynjlit does
not seem to improve much on the Ni1000 chip besides being designed to be easily extended
to large multi chip devices.

6.3 CNAPS

The CNAPS chip from Adaptive Solutions Inc. is a chip developed for ANN calculations
[13, 14] and has an architecture similar to the one suggested in this paper. It has been used
for many variants of ANN with impressing figures {9.6 GCPS and 2.3 GCUPS for multilay-
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er perceptrons (MLP) with back propagation (BP) learning, with 8 chips [25]}. It contains
64 DSP-like PEs forming a linear SIMD array, where each PE is capable of doing multiply-
and-accumulate at a rate of 25 MHz. Memory for the weights is found on the chip (4Kb/PE).

There is a global maximum selection available which is useful for the SOM implementa-
tion. There is, however, no support for a global-sum. This probably means that many LLS
variations (with more than one active node) will be difficult to implement efficiently. The
only LLS variation found for CNAPS is an implementation of SOM [15]. This implementa-
tion shows relatively poor performance [27]. Even if Pulkki [35] has almost tripled these
performance figures, we do suspect that CNAPS needs to be complemented with an adder
tree to fully support the LLS model.

6.4 Other digital solutions

There is a number of other general ANN computers that could also be efficient for LLS algo-
rithms. The most promising ones seem to be the Siemens SYNAPS (MA-16)[36, 37, 38] and
ICSI's SPERT [5] and their upcoming CNS [4]. As both ICSI's and Siemens’ designs use
off-chip memories, larger problems can be simulated on them compared to what is possible
on Ni1000, ZISC, and CNAPS. The design of SYNAPS and CNS are directed towards batch
oriented training which suggests that the Ni1000, ZISC, and CNAPS will be better for on-
line (embedded) computing.

Moreover, we note that there are general purpose computers, especially the machines
that have support for reduction operations, like CM-5 and Intel Paragon, which potentially
can achieve good performance for LLS algorithms. However, the communication latencies
in these computers indicate that they are better in off-line situations, where batch oriented
training can be used.

For binary versions of the RCE or the SDM algorithms the SPISM (standard pinout im-
plementation of smart memory) chip could be interesting [40]. But the restricted ways to
form outputs severely reduce its general usefulness.

6.5 Analog hardware.

Analog VLSI for LLS computations seems promising for the future. The high speed of ana-
log VLSI is attractive for many ANN calculations. This is also true for LLSs. Especially the
global-sum seems to benefit much from an analog implementation. But currently analog
technology has too little flexibility for most real-world usage. Better means to train on-line,
permits different LLS variations, allow higher precision when desired, and permit multi-chip
extensions are some of the things needed before analog technology can be put into practical
use. The most promising application area for analog VLSI seems to be close to the sensors
where the input can be kept analog all the way through.

Despite the problems there are some research chips manufactured to do RBF calcula-
tions. Some have concentrated on the distance calculation and the kernel function. One such
study is the analog computation of the Euclidean norm with a varying width Gaussian made
by Churcher et al. [9]. Others, like Watkins et al., have implemented a hybrid computer for
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RBF [44, 45]. They use analog technology for the first steps: calculating a Euclidean dis-

tance and a Gaussian kernel with variable width. For the (weighted) summation they use an
ordinary DSP (M56000), which is also used for learning. The computation of the Gaussian

was later moved to the DSP due to the large range of receptive field sizes the algorithm
needed. A completely analog RBF VLSI chip is described by Anderson et al. in [3].
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7. Conclusion

In this paper we have analyzed the implementation aspects of localized learning systems
(LLSs) presented in [29]. The objective has been to suggest suitable parallel computer archi-
tectures for the LLSs.

Our hypothesis that a SIMD (single instruction stream multiple data stream) computer
array should be suitable for LLSs has been reinforced in this study. As we think that an ANN
computer should support many ANN models and variations, the architecture must be pro-
grammable, either in hardware or in software. Among the reported implementations of LLSs
only our own REMAP and CNAPS combine the required programmability with high perfor-
mance on-line learning capability. Besides the obvious support for addition and multiplica-
tion the radial function calculation will need some consideration. A mixed parallel
implementation has been found to best suit the LLS algorithms as long as we demand on-
line operation. Besides broadcast communication the LLS algorithm will need support to do
global-sum and find global maximum. Three implementations of global-sum are identified
and studied. It is established that this operation can be performed bit-serially at the same
speed as bit-parallel solutions with a fraction of the hardware cost. For the global-minimum
operation a new bit-serial structure is proposed. This new min/max network has the advan-
tage of not needing a global-or network as the standard bit-serial way of finding minimum
does. This also results in a speed advantage in most cases.

Even for very large LLSsd =64n = 64, and = 2048) the suggested architecture
can accomplish update rates at many thousand updates per second, and that on a processor
array with only 256 PEs operating at 25MHz.

We had hoped to make better use of the locality aspect of LLSs than we finally could
achieve. But on the other hand we can note that the suggested architecture, especially the ad-
dition of an adder tree, makes the implementation of multilayer perceptrons with back prop-
agation learning efficient. Only in some more specialized cases we can, via a transposed
mapping, use the locality to achieve better performance than by using an adder tree.
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ABSTRACT

Sparse distributed memory (SDM) has been used to solve problems in
areas such as speech recognition, pattern matching and temporal en-
coding. It has been found to be suitable for implementation on paral-
lel computers. SDM can be described in terms of an artificial neural
network model as well as a very large computer memory.

The computer model we map SDM onto is among the simplest of
them all: a bit-serial linear array with SIMD control. A prototype,
called REMAP, is used as an example of this kind of architecture.

The implementation of a normal problem using 256 REMAP pro-
cessing elements is estimated to run 10 times faster than the normal
Connection Machine (CM-2) simulation, where 8k processing ele-
ments are used. This is due to an efficient mapping of the SDM mod-
el onto our computer, and to the possibility of configuring the
architecture especially for the type of calculations needed for SDM.

This document was created with FrameMaker 4.0.4



1. INTRODUCTION

In problem areas like vision, optimization and speech processing, humans often perform
well. Still, these problems have been very hard for ordinary computers. Inspired by the mas-
sively parallel and highly interconnected structure of the brain, artificial neural networks
(ANN) have been suggested to solve these problems.

Localized learning system (LLS) models [22] is a large group of ANN models which
have attracted interest lately. All the LLS models are feed-forward networks using an ex-
panded representation (large number of hidden nodes) [36], and having the important feature
of localized activity and learning. These properties have been shown to make efficient paral-
lel computer implementations possible [23]. Examples of LLS models are: generalized radi-
al basis functions (GRBF) [25, 26], self-organizing feature maps (SOFM) and learning
vector quantization (LVQ) [18], probabilistic neural network (PNN) [35], and cerebellar
model arithmetic computer (CMAC) [1]. This paper will concentrate on another LLS model,
the sparse distributed memory (SDM) developed by Kanerva [13]. Due to the binary nature
of SDM some special care is needed for efficient implementations.

SDM has been used in pattern matching and temporal sequence encoding [12, 13, 15]. It
can also be used as an associative memory [14, 40]. Kanerva [13, 14] has argued that SDM
is a biologically plausible model. Prager, Fallside and Clarke have used a modified version
of SDM for real-time speech recognition [5, 27, 28]. Rogers [30] stresses that sparse distrib-
uted memory is an ideal artificial neural network for massively parallel computer implemen-
tation.

In this paper we try to identify architectural properties which are important for the simu-
lation of SDM. We also estimate the performance on a bit-serial linear processor array called
REMAP. Further, we review other SDM implementations on special hardware and on the
Connection Machine. Finally, we draw some conclusions about the suitability of REMAP
for the simulation of SDM.
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2. THE REMAP COMPUTER

REMAP (Real-time, Embedded, Modular, Adaptive, Parallel processor project) and is a
long-term project addressing questions related to the usage of massively parallel, distributed
computing in embedded systems [3, 7, 19, 38]. Of specific interest is the potential of making
“action-oriented” systems [2] that interact with the environment by means of highly parallel
sensors and actuators. The project is done as a joint project between Luled University of
Technology, Chalmers University of Technology, and Halmstad University.

Within the current project, a small prototype of a software configurable processor array
module has been implemented. Different variations are possible by reprogramming. Howev-
er, this possibility has not been fully used due to the poor quality of the design tools. Still, an
architecture tuned for neural network computations, including a fast bit-serial multiplier, has
been designed [19]. Between 8 and 16 processing elements (PEs) can be configured in one
logic chip Xilinx 4005. The PEs typically have four one-bit registers for ordinary bit-serial
computations and are not very different from the PEs of array computers like DAP, Blitzen
or Connection Machine.

In this paper two models of the REMAP PEs are analyzed. One uses the basic REMAP
PE without extra supporting hardware. This PE includes a bit-serial multiplier needed for
many other ANN algorithms. However, for SDM no such multiplier is needed and for the
second model, the multiplier is replaced by a counter preceded by an exclusive-or gate. This
speeds up the selection phase by three to four times.




3.  THE SPARSE DISTRIBUTED MEMORY MODEL

The Sparse Distributed Memory (SDM) model developed by Kanerva [13] can be described

in two ways: as a computer memory or as a two layer feedforward network. By viewing
SDM as a computer memory it can be compared to the random access memory (RAM) of
conventional computers. Both SDM and RAM store data at an address accessed by a “refer-
ence address.” The difference from conventional RAM is that instead of having 32-bit ad-
dresses, SDM may have 1000-bit addresses. As it is impossible to have a physical memory
with 21090 addresses, only a small part of it can be populated, i.e. it vapdmselypopulat-

ed. Reference addresses with no physical addresses available must somehow be associated
with one or many other (physical) addresses. Different solutions exist for different types of
associative memories. SDM islstributedmemorymodel (as the name indicates), and each
reference address is associated with many physical addresses. To be able to store more than
a single data item in one location address, the data is stored in counters instead of one bit
cells as in RAM, see Figure 1.

In the basic form the physical location addresses are evenly distributed as random points
in the global address space. If the reference addresses are not evenly distributed i.e. the in-
puts are correlated, the location addresses should be distributed according to the probability
distribution of the reference address [6, 17]. This can be achieved in many ways. Danforth
[6] used a collection of selected templates, Rogers used genetic algorithms in [31] and
Saarinen et al. [34] described a method to use a version of Kohonen’s self-organizing feature
maps to let the physical addresses first “self-organize” into the probability distribution, and
after that use it in the usual way. Another way to deal with correlated data, suggested by
Kanerva [16], is to weight each bit separately in the input address to improve the separability
of patterns. All these variations fit nicely into the concept of localized learning system
(LLS), and by studying LLS many other variations can be found [22, 23]. However, in this
report only the original algorithm will be described, but we note that most of the variants can
be implemented equally efficiently on the suggested hardware.

Instead of looking for an exact match for the address, SDM will look for location ad-
dresses that are close to the reference address. By close we mean the shortest Hamming dis-
tance (i.e. the minimum number of bits that differ). Usually more than one location is
considered as close and therefore selected i.e. the memory is distributed. When reading from
the memory all the selected counters are summed and threshpki@ddrresponds to O,
>=>0 to 1). Storing is done by incrementing or decrementing the selected counters (0 corre-
sponds to a decrement and 1 to increment). The procedure is summarized in Algorithm 1.
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Figure 1The organization of a Sparse Distributed Memory as an array of addressable locations.
Note that the address as well as the data can be of lengths of hundreds of bits, still there are only a
small number (usually less than a million) of memory locations.

Algorithm 1The SDM algorithm
Training the network (i.e. Writing to the memory):

1. The address register is compared to the location addresses and the distances are
calculated.

2. The distances are compared to a threshold and those below the threshold are se-
lected.

3. In the selected rows,
where the data-in register is 1 the counter is incremented,
where the data-in register is 0 the counter is decremented.
Recall from the network (i.e. Reading from the memory):

1. The address register is compared to the location addresses and the distances are
calculated
2. The distances are compared to a threshold and those below the threshold are se-
lected.
3. The selected rows are added columnwise.
Where the sum is greater than zero the data-out register is set to one,
else it is set to zero.
The choice of radius (or threshold),and the address length in bits, , together with the
number of location addresség,will determine the performance of the memory [13]. Given
r=111a = 256N = 8192 the mean number of active positions willbe =160, and if we
instead have = 451,a = 1000N = 220t leads toA = 1124.




4.  MAPPING SDM ONTO AN ARCHITECTURE

Algorithm 1 can be mapped onto a computer architecture in many ways. There are two ma-
jor ways to map SDM onto an array of PEs: rowwise and columnwise. It will later be found
that, for some architectures, a mixture of the two is the best method of mapping.

41 The Rowwise Mapping

The rowwise mapping, in which each PE takes care of one physical location address and its
data, is probably the most natural one. It is illustrated in Figure 2.

A

Of

PE array

Sel
Figure 2A stylized illustration of the rowwise mapping, compare to Figure 1.

Using the classification, introduced by Nordstrém and Svensson in [24], for implementation
of ANN models, this mapping would be called node parallelism. Another type of parallelism
called weight parallelism would correspond to having one PE for each address and data bit/
counter. The large number of PEs and the massive communication needed makes weight
parallelism unrealistic for large SDM models. (For example, a 1000-bit address and a 1000-
bit data input field, with 1®location addresses, would need 2 P&s and a communication

fan-in and fan-out of 10)

The rowwise mapping is very efficient for the selection phase, that is, the first two steps
in Algorithm 1. In this phase all the calculations needed can be done locally in each PE. If
the number of PEs is the same as the number of location addresses the PE utilization can be
100%.

In the store/retrieve phase only a small portion of the processor array is actively taking
part in the computation, because a relatively small number of PEs are selected in the selec-
tion phase (can be as low as 0.1-1%). This inefficiency can be removed if the counter array is
transposed as described in the next two mappings.

During retrieve a summation of active PEs should be carried out across PEs (sum-reduc-
tion) and communication support for this type of operation must be available, for example,
using an adder-tree.
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4.2 The Columnwise Mapping

By “transposing” the address and counter array we get a columnwise mapping, see Figure 2.

Sel

A PE array

Figure 3A stylized illustration of the columnwise mapping

—

Using columnwise mapping for the selection phase the counting of bits (Hamming distance
calculation) must be carried out across PEs. This could be done by an adder-tree [8] but even
then the rowwise mapping is found to be more efficient for this phase.

The store/retrieve phase (which needed sum-reduction across PEs in the rowwise map-
ping) can now be carried out locally, and no special communication support is needed. The
PEs will also be utilized more efficiently. For each active position we can now update/use all
PEs. Typically we have 256 data bits and only a medh of =160 active positions. The net re-
sult for the store/retrieve phase is that we now do more work with fewer PEs!

When storing, support for doing subtraction and addition simultaneously would reduce
the update time by half. This can easily be achieved in both bit-serial and bit-parallel archi-
tectures.

It should be noted that this mapping depends on the fact that the number of address and
data register bits is often large. If this is not the case, as in the extreme case where only one
bit is used for data, the rowwise mapping is more efficient.

4.3 The Transposed Model

By “transposing” only the counter array we get a mixed row- and columnwise model as in
Figure 4. The transposed model combines the best parts of the two major mappings: row-
wise mapping for the selection phase and columnwise for the store/retrieve phase.

A

[T leearma

—

Sel

Figure 4The “transposed” method of mapping the SDM algorithm into a linear array.




For this model it is natural to have as many PEs as there are data input bits. Typically this is
between 256 and 1024 bits when using SDM as an associative memory. Thus a linear pro-
cessor array of size 256 to 1024 PEs would be sufficient.

Unfortunately we introduce some new problems that have to be solved as well.

The selection phase now has fewer PEs to utilize.

We need to be able to “move” the active positions from rowwise to columnwise
representation.

The Selection Phase Using a Transposed Model
Returning attention to the selection phase, knowing that the number of PEs for the store/re-
trieve phase is much lower than for the selection phase, we can solve the imbalance by:

having special PEs for the selection phase, or
using virtual PEs (thus multiplexing PESs), or

increasing the number of PEs until a suitable trade-off is achieved.
Each method is discussed below.

Special PE chips.
To get maximal performance on the selection phase a special purpose PE array could be con-
structed in VLSI. The array would be specialized to perform Hamming distance calculations
bit-serially. If the initial loading of location addresses is done serially there would be no
need for each PE to have its own connection to the outside of the chip. After the Hamming
distance calculation and the comparison to a radius is made an internal activation flag could
be set. Ways to move this information to the controller are described in Section 4.3.1.

Mackie and Denker discuss a special purpose chip in [21] useful for the distance calcula-
tion suggested above. The number of PEs on an®©OMOS chip is 50, each storing 128
bits. A “best match list” generator is included, so after & list of the 5 best matching
units (out of 50) is produced.

Using special PE chips for the selection phase makes the total system heterogeneous. If
we want a more homogenous computer array, virtual PEs or the addition of new arrays can
be used instead.

Virtual PEs
By simply patrtitioning the location addresses into chunks of the array size we can achieve
reasonable performance on not too large problems.

On a large problem, such as one witH ifput data bits and $0ocation addresses, the
selection phase will dominate the calculation time completely. Even if the PEs are fully uti-
lized there are a lot of unused parallelism in the selection phase, and it becomes of interest to
balance the phases.

Increasing the Number of PEs
Just adding more PEs for use in the selection phase would not gain anything for the store/re-
trieve phase, and utilization would go down. We could instead add a new array and have the
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SDM computation partitioned according to Figure 5. This partitioning can be done repeated-
ly until the mean number of active location addresses gets too low (and the utilization rapid-
ly goes down). The performance will increase with the number of modules added. The
optimum number of PEs will depend on the performance needed for the problems being
solved. The price one has to pay is to add a new controller for each new array. Each array
should have as many PEs as there are bits in the data-in field.

This way of increasing the number of PEs leads to an architecture comprising multiple
SIMD (single instruction stream multiple data stream) modules with the same or similar
code controlling each array. The difference between the arrays is that different arrays will
have different active location addresses and therefore different addresses for the counters.
The number of active locations will also differ.

A

O

Sel To the second array

Figure 5How to partition the transposed mapping into twice the number of PEs in a multi modu-
lar fashion.

4.3.1 Moving Data From Row to Column Representation

After the selection phase, using rowwise mapping, we have one bit in each location address
indicating whether the corresponding data counter is to be active (selected) in the store/re-
trieve phase. The controller could find out which counters are selected in at least three ways:

1. One hit at a time could be shifted out of the array (using nearest neighbour com-
munication). This will be done in the same number of clock cycles as there are lo-
cation addresses.

2. If there exists a serial to parallel output like a corner-turner it could be used to re-
duce the time by a factor of 8 (for an 8 bit corner-turner). This is only useful if
each PE is used for many location addresses, i.e. virtual PEs.

3. The last and quickest method is to use a select first network [8] to find the active
ones and for each one send out its processor number to the control unit. This can
be done in one or two cycles for each active location, plus the time to send the PE
identification number.

Note that the order of the counters does not need to be the same as the order of the bits in the
selection vector. The only requirement is that the same order is used from time to time and is
the same for both store and retrieve.




5.  THE TRANSPOSED MAPPING DONE BIT-SERIALLY

Many of the massively parallel processors like Blitzen [4], REMAP, and Connection Ma-
chine [10, 39] are bit-serial. That imposes some restrictions on what data types and calcula-
tions are suitable for them. By analyzing each step of the SDM algorithm we can determine
the suitability of bit-serial arithmetic for this problem.

Hamming Distance Calculation.

The difference between the reference and the location addresses is obtained by an exclusive-
or operation on each bit position. The distance is the number of ones in the difference. The
sum can be calculated in  (number of bits in the address) steps if there is support for a
counter in the architecture. If there is no counter the summation of bits can utilize the “recur-
sive” structure of the many short sums in the beginning and few long sums in the end. The
sum can be calculated #1409 steps for 256 bits as&723 steps for 1024 bits using a bit-

serial adder. (These figures are for a summation starting with three bits at the time, and later
partitioned into sums from 32 bits. Any controller overhead is not included.)

These types of calculations are very well suited for bit-serial computers compared to bit-
parallel computers. Using a conventional microprocessor like MC68030 the Hamming dis-
tance of 256 addresses with 256 bits each could be computed in about 84000 clock cycles,
using a table lookup for the bit counting. This should be compared to the number of steps
above.

Compare to Threshold

In the store/retrieve phase of the algorithm the counters are compared with a threshold (the
radius). This can be carried out bit-serially in teps, wheré is the length of the bit-
counter (typically 16-20 steps).

Moving the Selection Vector to the Controller

All methods described in Section 4.3.1 could be used in a bit-serial architecture. Each meth-
od needs some “special’ communication: nearest neighbor, corner-turner, or select/first. In
almost all bit-serial architectures at least one is present. The number of steps will depend on
what method is used to move the data and what kind of communication is available.

Add/Sub one to Selected Counters, Sum All Selected Counters
During the store phase the data-in register can be sent in parallel into the array. If no parallel
I/O channels are available the data-in register can be shifted in bit by bit or by using a cor-
ner-turner. After the data is moved each processor will have one bit each of the data-in regis-
ter. These data bits control the PE operation: add one or subtract one. This can easily and
efficiently be accomplished, as implemented in Blitzen [4] just by adding an extra register
bit controlling the addition-subtraction. Then one field of counters in the memory can be up-
dated in just @ clock cycles (wheseis the counter length).

During the retrieve phase there is no need to input the data register. Instead the values of
the active counters should be added together. For each counter the number of oycles is  +2

10
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whereo is the length of the counter arid the length of the sum. The sum will have  bits
at the start and hawe +lpgbits at the end, wherkis the number of active location ad-
dresses. Ib =8 aml= 160 we ges = 8 at the start ansl= 16 at the end, and maximally 8

+ 2(16) = 40 cycles per counter are needed. This gives a total maximum below B30 (
40).

11



6.  TIMING OF SDM USING REMAP

Using the figures in Section 5, we now estimate the performance for two different configura-
tions (with or without counters) of REMAP on two differently sized problems. We assume a
transposed mapping is used, and that a select first network (cf. Section 4.3.1) is used. For the
updates/s figures a 20 MHz clock is assumed. There is some control unit overhead for things
like address calculation and subroutine calls whictotsncluded in the figures above. This
overhead could be estimated to be between 20 and 50% for a typical controller.

- The small modeld =25& =256, =8192, ¥8111=> A=160) using 256 PEs.

Separate phases With counter Without counter

Selection 17152 58240
Store 5696 5696
Retrieve <9600 <9600
Total |
Storing
Total cycles 22900 63900
Updates/s 875 310
Retrieving
Total cycles <27000 <68000
Updates/s 740 290

The large modelq =1024 =102H, 2920 =12,r=451=> A =1124) using 1024
PEs.

Separate phases With counter Without counter

Selection 2.1M 8.0M
Store 53k 53k
Retrieve <89k <89k
Total |
Storing
Total cycles 2.2M 8.0M
Updates/s 9.0 2.5
Retrieving
Total cycles <2,2M <8.0M
Updates/s 9.0 2.5

For very large SDM models, like the latter model above, the selection phase is totally domi-
nating and adding new PE arrays as suggested in the end of Section 4.3 would have a large
positive impact on the computation time. For the first hundred arrays an almost linear speed-
up could be expected. As an example, using 16 modules of SIMD arrays the performance on
the above model would be well above 100 cycles per second (using Hamming distance
counters).

12
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7.  STORAGE REQUIREMENTS

The storage requirements will depend on the number of address bits, , daia bits, , loca-
tion addresses (physical addressis), , and the size of the comnters, . The total memory re-
quirements (in bits)M , can then be expressedJas: aN + adN . Having PEs we need
m = M/ n bits of memory per PE.

For very small SDM modelsa( =256, =258, =8192) both total and per PE memory
requirements cause no problems, but for the large model ( =8024, =X02%) the2e
are few computers with the required amount of memory (2 - 4 GByte). If the number of PEs
is small, a very large amount of memory is needed in each PE (20-40 Mbit). If we instead
have many modules each bit-serial PE can have a normal amount of memory for typical ap-
plications (e.g. 1-4 Mbits). It is again worth noting that the use of modules also increases the
general performance of the architecture.

13



8.  OTHER IMPLEMENTATIONS

The SDM algorithm has been implemented both on commercial machines and some special-
ly built hardware. A discussion on their performance and suitability for SDM calculations
follows below.

8.1 Connection Machine (CM, CM-2)

The Connection Machine [11, 39], manufactured by Thinking Machines Corporation, is for
the moment the most massively parallel machine built (8k up to 64k processing elements).
Its strong side is the powerful hypercube connection and the sheer number of processors.
Besides the hypercube there is a mesh connection network. For the second generation (CM-
2) floating point support was added, arranged as one FP unit per 32 PEs. This means 2048
FP units on a 64k machine, giving a total of 20 Gigaflops.

Rogers [29] has used CM-2 as a workbench for exploring Kanerva’s SDM model. For
the selection phase he used rowwise mapping. But for the store/retrieve phase he used
weight parallelism (as many PEs as there are counters). As the physical number of PEs was
of the same order as one column of counters he implicitly used node parallelism and row-
wise mapping, letting the CM-2 sequencer take care of the looping over each column. Im-
plementing this in *Lisp gave a performance of orB iterations per secondx( =256,
5=256,N =8192). Using a pure rowwise mapping in C* the present author has been able to
achieve between 30 and 70 iterations per second. The difference is probably due to some un-
necessary but expensive communication needed going from 1D to 2D representation.

It should be noted that floating point values should be used for the counters using the
rowwise mapping of SDM onto a CM-2. This seems inefficient at first but for the retrieve
phase when a summation across the PEs (sum-reduction) is carried out, the performance us-
ing a float iseighttimes better than when using integers. It seems that the way the routers
can utilize the floating point chips doing sum-reduction will make it more efficient to use
floating point counters instead of integer counters!

For the CM-2 the transposed mapping is hard to use as the conditional processing must
be done in the host (as one can not program the sequencer to do that, or at least it is not very
well documented), and the communication between the processor array and the host is not
very efficient. Neither is there any support to do addition and subtraction at the same time in
different PEs.

14
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8.2 Hardware Implementations

STANFORD

Flynn et al. have, in a collaboration between RIACS and Stanford University, designed a
prototype for SDM [9]. They chose to use columnwise mapping and pipelining between the
two phases (select and store/retrieve). An ordinary MC68030 computer is used for the con-
trol module that implements a SCSI interface for the prototype. No identifiable processors
are used in the module for the select phase, instead an adder-tree together with a comparator
performs all the needed computation. It is realized using PLAs and EPROMSs. The up/down
counters are contained in a separate module operated by another MC68030. The design can
use up to 256-bit addresses and 8k to 128k location addresses. Using 8k memory locations it
can run approximately 50 cycles per second.

TAMPERE
Saarinen et al. [32, 33] have suggested a hardware implementation of SDM using the work
of Flynn et al. [9] as a starting point. Like Flynn et al. they have chosen columnwise map-
ping. The address unit is very similar to that of the Stanford prototype, but newer technology
like FPGA is used to realize the adder-tree and the other logic needed for the search phase.
An analog address comparator based on summation of currents is also suggested. The
counters used in the second phase are operated by FPGAs and are based on banks of dynam-
ic RAMs. The counters are accessed 8 or 4 in parallel. To be able to experiment with modifi-
cation of the algorithm, the up/down counters are replaced with adder/subtractors of 8-bit
values.

The performance is not stated exactly, but Lindell [20] estimate their hardware to run
about 230 iterations/s for write and similar figures for read ( =256, 2256, =8192, =8,
r=111=> A =160).
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9.  CONCLUSIONS

The main idea of the SDM implementation suggested in this paper is to use a mapping onto
a linear array which can utilize as many PEs as possible in each step. This can be achieved
by using rowwise mapping for the selection phase and columnwise mapping for the store/re-
trieve phase. Each processing element can be very simple and bit-serial architectures are es-
pecially suitable for the otherwise time consuming selection phase. By the addition of a
counter to each PE, the selection time can be reduced by a factor of three to four.

Timing calculations using a PE with counters indicate that it is possible to run SDM at
speeds 10-30 times that of an 8k CM-2. This is accomplished with only 256 REMAP PEs. If
we normalize with respect to the clock frequency and number of PEs, the measure of speed
would be 150 times that of CM-2 per PE. The relatively poor performance on CM-2 is found
to depend on at least three factors: underutilization of PEs during the select/retrieve phase;
the natural rowwise mapping demands time consuming sum-reduction across PEs; the “opti-
mal” transposed mapping is hard to implement efficiently with the current sequencer.

In our study, the multi-modular concept is found to be a better way to increase the degree
of parallelism then just adding PEs to an ordinary SIMD array.

Communication is simple in SDM as in many other artificial neural network algorithms
[24, 37]. The form of communication needed is found in many other, conventional algo-
rithms (broadcast, nearest neighbor, select/first) and may be included at small cost in logic
and wire.

Also when comparing our REMAP computer to direct hardware implementations of
SDM, like the one described in Flynn et. al. [9], our approach seems very promising. The
first small (128 PEs) version of the REMAP computer was completed during 1993. Unfortu-
nately the FPGA reprogramming tools have made it difficult to experiment with the architec-
ture as intended. Thus, we have yet to implement a version containing counters instead of
multipliers.
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ABSTRACT a section where some of the existing parallel implementations
are discussed. Finally, we draw some conclusions concerning

Self organizing maps (SOM) are a class of artificial neural the task of designing parallel computers for SOM.

network (ANN) models developed by Kohonen. There are i
number of variants, where the self organizing feature map
(SOFM) is one of the most used ANN models with unsuper-

vised learning. Learning vector quantifiers (LVQ) is another 2.0 BACKGROUND
group of SOM which can be used as very efficient classifiers ) ] o
SOM have been used in a variety of fields, e.g. robotics, teléAn overview of the different models of self organizing maps

communication and speech recognition. and the application areas where they have been used can be

Currently there is a great interest in using parallel computersfound in [26, 28, 29, 30, 31]. Below we only restate the basic
for ANN models. In this report we describe different ways tomodels and refer to the references above for more details.
implement SOM on parallel computers. We study the desigr . )

of massively parallel computers, especially computers witl2.1 ~ Competitive Learning

simple processing elements, used for SOM calculations. . .
plep 9 In competitive learning [30, 47] the responses from the adap-

Itis f?tlftlnd tfhat SO'}{' glike mafsy oltfher AN'\i Pogeb)ddemtanddstive nodes (weight vectors) tend to become localized. After ap-

very little of a parallel computer. If support for broadcast an ; o ;

multiplication is included very good performance can be propriate training the nodes spemfx clusters or co.debook

achieved on otherwise modest hardware. vectors that approximate the probability density functions of
the input vectors. Algorithm 1 is an example of a competitive
learning algorithm. If the spatial relationships of the resulting

1.0 INTRODUCTION feature sensitive nodes are not considered we get a zero-order

The algorithms we study in this report are Kohonen’s self otopology map.

ganizing maps (SOM) and variants of them. These maps hz  Algorithm 1 Competitive learning (zero-order topology).

been used in pattern recognition, especially in speech recog 1. Find the node (or weight vectar)  closest to imput

tion [27], but also in robotics and automatic control [40, 46 Hx(t ) —w_(t )H = mion(t ) —w, (t )H

o . . k ¢k : k i Ui
and telecommunication tasks [3, 32]. This study is part of a s I
ries of reports [43, 44, 49] that shows how well suited bit-serii 2. Make the winning node closer to input.

SIMD computers are for simulating artificial neural networks. Wherd = ¢

o Wi (te,n) = wit) +a(t) [x(t) —w ()]
As an example of bit-serial SIMD computers, REMAP otherwise
(reconfigurable, embedded, massively parallel process W, (t, ) = w,(t)

project) will be used. As the processing elements are reconf
urable it is possible to include different types of support for di
ferent kinds of algorithms. For back-propagation [47] an2.1.1 Adding Conscience

Hopfield networks [18, 19, 20] a bit-serial multiplier has be?A problem with the algorithm above is that instead of placing

found to b_e essential for the performance [44, 49]. I_:o_r the irp o nodes according to the ir}put point density fungtion)
plementation of Kanerva’s SDM model [25] the multiplier was, o odes are placed pgx) M/ (M +2) Having low dimen-

not needed, instead a counter was suggested [43]. In this refgjo a1 input vectors (i.e. smaMl) there will be a bias towards

we try to recognize arch|tectl_Jr_aI pnnmples_ and componenthe low probability regions. DeSieno [6] has found that adding
that are essential for the efficient calculation of Kohonen'. .« iance to the competitive learning algorithm will greatly
models. improve the encoding produced by the map. The idea is that
In the next section we describe the background of SOM. Aftthe nodes should be conscientious about how many times they
that, two sections discuss implementation considerations ahave won, compared to other nodes, see Algorithm 1. That is,
ways to map SOM onto a computer architecture. Then follovevery node should win the competition approximately the same

Repeat from step 1 while reducing the learning cate

1



number of times. Another way to improve the clustering is tvalue of a stochastic binary signal is viewed as an analog signal

use a higher-order topology map, like the Kohonen model, thin the range [0,1]. This signal representation leads to very sim-

is especially true for non-continuous input probability densitple (and space efficient) digital logic for the computations

functions. needed in the algorithms. For example, multiplication of sto-
Algorithm 2 Competitive learning with conscience (zero-or-  chastic signals can be computed using only a simple AND gate.

der topology).

1. Find the node (or weight vectar) closest to input

using a consciencg  as offs€tié a scaling factor).
Hx(tk) -w,(t) H = rr}in(Hx(tk) -w; (t) H +Cgc)

By noting that the weight vectors slowly integrate the effects of
the environmental stimuli, this can be done by incrementing/
decrementing the weights stochastically with a probability pro-
portional to the strength of the input vector. Obviously, more it-
2. Make the Winning node closer to input. e_rations are needed, but as ea(_:h step is computationally very
Wherd = simple the overall computation time will decrease, see section
W, (6, 0) = w () +a () [x(4) —w (t)] 58
other\lee
W, (tk+1) =W (tk)

3. Repeat from step 1 while reducing the learning tate 3.0 IMPLEMENTATION CONSIDERATIONS

and increasing the conscience of the winning neurcSOM models have been implemented on a large number of dif-

C(t,q) =¢(t)+1 ferent parallel computers: Warp [39], Transputers [17, 45, 48],
. Connection Machine [45], MasPar [11] and in special hard-
2.2 Kohonen Learning ware [8, 24, 37, 38, 52, 53].

In the brain there are many areas, such as the visual and so
tosensory cortex, which are organized in a way that reflects t
organization of the physical signals stimulating the areas .
they are topological maps.

Aspects that have to be considered when implementing SOM
on parallel computers are: communication facilities, computa-
‘tional capabilities, mapping and partitioning of the algorithm.
Some architectures benefit a great deal if floating point num-
Inspired by that, Kohonen has developed a class of artificibers can be avoided, and the integer precision needed for the
neural network (ANN) models which develop these, so calleweights should be analysed.

self organizing maps (SOM), also referred to as topologic.
feature maps (TFM). They are all models with competitiv
learning and use first, second, or higher order topological ma
[26].

SOM may be formed with unsupervised learning, i.e. withot
any teacher saying what is right or wrong. This type of SOM

referred to as self organizing feature maps (SOFM), see AlgThe rest of this section will discuss the different aspects of im-
rithm 3. plementing SOM based on these four steps.

The algorithms in section 2.0 can be divided into four steps:
Finding the distance from the input to the nodes.
Finding the node closest to input.

Determining the neighbourhood to the closest node.
Updating the neighbourhood nodes.

W

Algorithm 3 The SOFM algorithm (higher-order topology) 31 Communication
1. Find the node (or weight vecter)  closest to imput

: The weight vectors can be assumed to be distributed over the
x(t) —w_(t )] = min|x(t,) —w (t ; . ) )
Xt =W (4] i [x (4 —w; (1) ] processing elements (PEs). Thus the first step requires the input
vector to be distributed. The most effective way to do this is by

utilizing broadcast. If the architecture does not have broadcast,

for example if Transputers are going to be used, a nearest

2. Find the neighbourhool_ (t,)
3. Make the nodes in the neighbourhood closer to input.

Wheré O N ) . L
W tk+15 W, (tk) +a (tk) [X(tk) —w, (tk)] neighbour communication like ring or mesh must be used.

other\lee _ For the second step a minimum distance must be found. A min-
Wi (teey) = Wi (1) imum could be found by doing—1 comparisons among the

nodes. Some “global” or “token-ring” communication is need-
ed if the nodes are distributed over many PEs. As seen in sec-
tion 4.4 a very fast bit-serial method exists to find min/max
If the resulting maps are to be used as classifiers, and the triamong PEs if a global-or function exists.

ing example classes are known (i.e. supervised learning), a f
tuning of the SOFM model called learning vector quantizatio

4. Repeat from step 1 with ever decreasing neighbou
hoodN,, and gain sequerte OKa <1 ).

The activation/selection of the neighbours can either be solved

as a spatial distance calculation or as a nearest neighbour com-
(LVQ) model has been suggested [29, 30]. In the simplest ve munication. The time for communication will depend on the

zlon ihg s\llffeLer:cE is tth?:] in rStﬁp 3I in Aﬁorlr:hmhitk) h ('jnelghbourhood size. When the neighbourhood size is small the
u:gj %r LVQ elongs 1o the wrong class. No neighbourhood ., o nication method can be faster than spatial distance cal-
culation. The topology of the computer should support the

2.3 Stochastic Competitive Kohonen communication needed, which depends on the spatial topology
Learning of the SOM model.

Van den Bout and Miller 11l [52, 53] have suggested a modifi
cation to competitive and Kohonen learning which simplifiePut) iS stored no communication is needed during step 3.
the calculations by replacing the “analog” signals with stocha
tic binary signals. In their model, called TINMANN, the mear

If the input vector (or the difference between the node and in-



3.1.1 Summary on Communication The matching law is modified to

For the basic SOM models broadcast is the most efficient w x(t) Twc(tk) = max{ x(t) TWi (t)}
of communication. i

By computing which nodes to be considered as neighbours, The update law must then be modified to
stead of using nearest neighbour communication, the compu wherd ON_(t,)

topology becomes irrelevant for the algorithm. It also make w, (t) +a'(t) x(t)

the time for step 3 constant with respect to the neighbourho Wi (te 1) = W, (t) + o (R X (8]

size. _ iV k k
otherwise

3.2 Computations W () = w(ty)

For all of the algorithms in section 2.0 the distance is calcule
ed using a Euclidean metric. Another much used metric is tigiii o' is a monotonically decreasing function, but now

dot-product metric. Both metrics are discussed in this sectiorg < ' < o0 . The neighbourhood is the same decredsing  as

Some model parameters used in this and following sectiobefore.

are: We get the following estimate on the number of computations
N The number of nodes needed in each step:
N, Size of the neighbourhood (may depend ontime) 1. For the dot-product metric théM subtraction, used by
M The dimension of the input vector Euclidean distance metric, can be avoided. The squar-
o Bits used for weights ings are replaced by multiplications.
n The number of processing elements available. 2. Same as Euclidean metric, but we want to find maxi-

mum instead of minimum.
Same as Euclidean metric.
Using dot-product distance metric we musiNdd/

3.2.1 Euclidean Metric
Using a Euclidean distance metric in the first step means tt

the distanceix (t,) —w; (t,)| s calculated as multiplications antl M additions for the nominator.
(x. (1) —w: (t ))2 For the denominator we must use an addititbipi
Zj jVk ij Vk . . .
squarings arld M additions. We must also do one di-

Note that the square-root function does not need to be evalu vision.
ed, as the square-root is a monotonic function and the resulte tota] number of operations is (assuming two spatial dimen-
used for comparison only. sions)
We get the following estimate on the number of computatior O = 2MN+ (N-1) +6+4MN_+1.

needed in each step: ) ) Using a reasonable value My IKg4  we get approximate-
1. We must doNM subtractionsNM squarings andNM ly

additions. Note that the result of the subtraction can k

. ) . O= (1+4M) N operations per training example.
reused in step 3 if there is enough memory to store ti ( ) P P g P

result. The dot-product calculation can in some technologies be very
2. The number of calculations needed for finding minifast (e.g. optical transmission filters). But for our purpose the
mum isN-1 comparisons (subtractions). overhead for the normalization is too time consuming. This

3. If we instead of communicating, calculate the neighWi” be accentuated if SIMD computers are to be used.
bourhood, it should be possible to calculate the spati
distance in less than 3 operations (subtract, squal
add) per spatial dimension (usually 1-3).

3.2.3 Precision Used for the Weights

If we intend to use a bit-serial architecture, where each PE only
. operates on one bit at a time, the precision becomes very im-
& E (c))rrngl)ﬁl u&da::]nug:t%?irct;;gguztd;ar'\rﬂy dN;:ggiti On:ut.i.trrlaecpprtant. An analysis made by J. Mann [37] show§ that at least 8
subtractcion can be carried outcin step 1 if there iblts seems necessary for the weights. He also finds that Eucli-
enough memory to store the result. dean distance measures are not as sensitive as dot-product met-
ric to weight precision.
The total number of operations is (assuming two spatial dime
sions and recalculation of the subtraction)
O = 3MN+ (N-1) +6+ 3MN..

It also seems that the updating rule could be changed to an in-
crement/decrement of the weight, depending on the sign of the
difference between the weight and the input without much in-
Using a reasonable value iy IIké4  we get approximatefluence on the performance of the SOM algorithm.

ly Hammerstrom and Nguyen have found the SOM to be sensi-

tive to error bias from bit truncation, more sensitive than to av-
3.2.2 Dot-Product Metric erage quantization error from reduced precision. They also re-
duce the error accumulation using saturation arithmetic (on
overflow the max/min value is used).

O= (1+ 3.79M) N operations per training example.

By normalizing the input vector (i.e. keepiqp{(tk) H =1 ),
and keeping the nodes normalized after updating, the dot-prc
uct can be used instead of sum of squares. The distance ca3.2.4 Summary and Comments on Computation

lat'?[n CTE then be Calfﬁlated asla Vzle'gtt maén)I( times an NPaimost half of the operations computed are multiplications,
veclortlike in many other neural network modets. and therefore support for multiplication is very important. As



calculations using short fixed-point nhumbers seem possib
bit-serial computers become interesting. The Euclidean met
uses less operations for its computation, and is less sensitive
weight quantization, and is therefore more attractive to us
than dot-product.

Many have used CUPS (connection updates per second) &
measure of performance on SOM algorithms. It has been us
as the number of connectiokB\ multiplied by the number of

updates per secondi.e MNu. This despite the fact that very

Parallelism Typical range SOM:
Training session 10- 16
Training example 10 - 10
Forward-Backward 1-2
Node (neuron) 100 - 16
Weight (synapse) 2-1d¢
Bit 1-64

few connections are actually updated when using small neigTo utilize the computing resources of a massively parallel com-

bourhoods.

Even if the wordupdatesis misleading, the CUPS measure,
used in relation to the FLOPS (floating point operations pe
second) or IPS (instructions per second) measures, can be L
as an indication of the efficiency of the architecture (on SOI
algorithms). We may define an efficiency measure like:

puter (thousands of processing elements) efficiently the table
indicates that we must use at least one of the following dimen-
sions:

Training session parallelism.
Training example parallelism.
Node parallelism.

Weight parallelism.
operationgpersecond _ _Ou
maximumnumberof operations  IPS,

_ B.75MNu _ . CUPSp
O1PsS,, "Ps, 0

Note that the first two dimensions of parallelism are of interest
only in batch processing situations, i.e. when training the net-
work. If the network is to be to used in a real-time situation, in-
teracting with the outside world, training session and training
example parallelism would be unavailable. In those cases, node
Where [P, is the maximum number of operations per secand/or weight parallelism must be chosen, possibly in combi-
ond achievable on the computer. The corresponding measnation with e.g. bit and layer parallelism.

for floating point calculations is:

(EQ1)

ax

4.3 Node Parallelism on SIMD Computers

E = 375-CUPS
FLOPS; Unfortunately the amount of node parallelism used for updat-
ing the nodes varies with the size of neighbourhood. Still the
4.0 MAPPING SOM ONTO A COMPUTER node parallelism is the most used and maybe the most natural
ARCHITECTURE mapping for SIMD computers. The mapping may be visualized

. for a 1D map topology on a linear processor array as in Figure
4.1 Computer Architectures 1.

One of the most used divisions of architectures is due to Flyi
[10]. He divided the computers into groups according to th
number of instruction streams and the number of data strean

Input Vector

1. SISD - Single Instruction stream, Single Data stream. Weight
2. SIMD - Single Instruction stream, Multiple Data \S/i():rt'gr PE array

streams.

3. MISD - Multiple Instruction streams, Single Data
stream. (Anomaly of the division)

4. MIMD - Multiple Instruction streams, Multiple Data
streams.

Single instruction stream multiple data stream (SIMD) com Figure 1 Using node parallelism to map SOM onto
puters is a computer model where the same instruction is e a linear processor array.

CUtzdl i_n gach ofblthe prochgssing elements (F:IE?). Using t!For the four steps we then get the following estimate of the
model it is possible to achieve massive parallelism at smi,, her of computation steps needed, using Euclidean distance

_COSt' It is found that almost all ANN algo_rithms_ fit very We”metric and having the same number of processing elements as
into the SIMD model [44]. The SOM algorithms in section 2.(the number of nodes, i.g=N.

also seem to map easily onto the SIMD computer model. Tk Calculating the distance requirb subtraction steps,

hypothesis will be found to be true later in this section. Beloy . o
. . . M squaring steps anld addition steps. The result of
there follows a discussion on how to implement SOM on - . . .
the subtraction can be reused in step 4 if there is

SIMD computer.
enough memory to store the result.
4.2 Degree of Parallelism 2. The number of calculations needed for finding the min-

. . imum distance varies with the communication struc-
Looking at an ANN algorithm such as SOM there are (at leas . . . . . .
- L - ) ture. Using bit-serial arithmetic and global-or function,
six different ways of achieving parallelism [44]. The typical

. . . L7 as later described in section 4.4, the comparison can be
degree of parallelism varies widely between the six differet computed in less tha@(25 +log,M)  (Two times the
kinds, as the table below shows. P 92

number of bits in the sum of squares) steps.



3. The time to determine the neighbourhood varies wit

the communication structure, but it should always b
possible to calculate in less than 3 operations per sg

bits are used for the spatial coordinates, the following
estimates for the cycle count can be given:

Euclidean (spatial) distance

tial dimension.

4. Updating the weights requiredV( subtractions),M
multiplications andv additions. Note that the efficien-
cy during this step is only /N i.e. the efficiency will
go down as the neighbourhood shrinks.

A second order topology map can be computed in
206 cycles
- City block (spatial) distance
A first order topology map can be computed in 48

cycles
The total number of steps is, using a 2D map as an examg A second order topology map can be computed in
approximately 96 cycles

O = 3M +2(25+log,M) +6+3M 4. Updating of the weight vectors can be computed
with38M cycles for subtractioddM  cycles for multi-
plication an®dM cycles for addition. If the global
constantt is loaded in parallel from the controller, and
the result from the multiplier is used directly for the ad-

dition, the number of cycles in step 4 will B&M

4.4 Bit-serial SIMD Implementation

The majority of massively parallel processors use bit-seri
arithmetic, and that is also the basic mode of operation for o
own research machine, REMAPTherefore, we would like to
analyse the algorithms down to bit-level. For the majority @
operations using bit-serial PEs, the processing times grow lir
arly with the data length used. E.g. the time to do a bit-seri’ "™ >
addition is the same time as to read the operands and storeed In t)_/plcally186M + 25_0 cycles. Note, that we assume .
result (B cycles). This may be regarded as a serious disadv!\- USing the approximate total number of operation
tage (e.g when using 32- or 64-bit floating point numbers), ©= (1 +3.7M)N, ~we can calculate the efficiency
as an attractive feature (use of low precision data speeds up E = (Ou)/IPS; o

computations accordingly). In any case, bit-serial data pat| et C stand for the clock frequency. As the time for multiplica-
simplify communication in massively parallel computers. tion is4d the PG is (Cn)/ (4d) . The update rate will
As concluded in section 3.2.4 support for multiplication is imbeu = (Cn) / (180MN + 250N) and the efficiency

portant. Unfortunately, very few bit-serial computers have suj _4(1+3.79M)%

port for bit-serial multiplication, and without such, T T185M + 250

multiplication time grows quadratically with the data length

However, with an inclusion of a bit-serial multiplier [9, 44, 55]The asymptotic efficiency will be 83%. Already #d~10 and

the multiplication of tw® bit numbers can be performetbin 0=8 the efficiency is 73%. These figures show that a bit-serial
cycles (i.e. the time to read the operands and store the resuliSIMD computer can be used very efficiently for SOM calcula-

There are of course some cycles needed for overflow tests and
initiations but the above indicates that SOM could be calculat-

tions
Using the natural mapping for SIMD computers (node paralle

ism) and having = N we get the following number of cycles 4.5  Qther Forms of Parallelism

for the SOM algorithm using Euclidean metric. If the input vectors are long (i.e. lary® and the neighbour-

1. We have .to d8dM - cycles for subtrapgéﬁl\/l CyCIeEhoocNC is small, a “transposed” mapping could be considered.
for squaring a.nﬁléM. cycles for addition. If Fhe re,su“This is the same as the columnwise mapping suggested for
from the multiplier is used directly for addition (i.e. gp\ [43). For SOM this would correspond to weight parallel-
wnthogt storing tht_a resglt in memory) the total time foriSm with iteration over the nodes, see Figure 2.
squaring and adding will b@M

2. Finding minimum (or maximum) using bit-serial work- Using this mapping the summation of squares must be done
ing mode can be implemented very efficiently. A glo-across the PEs, and special hardware (e.g. an adder-tree)
bal-or function is needed to check a bit “slice” if allshould be included for efficiency reasons. However, with this
bits are equal, also the means to turn off PEs dependihardware available it is possible to pipeline the addition and
on the result of the previous Operation are needed. Acomparison (carried out in the Controller) with the subtraction
suming we want to find minimum (i.e. using Euclidearand squaring (carried out in the processor array).
distance metric), the search starts by examining tt
most significant bit of each value. If anyone has a zer
all PEs with a one are turned off (otherwise we restot
the previous state). The search goes on in the next pa
tion, and so on, until all bit positions have been treate:

Input Vector

The time for this search is independent of the numb:e ye%%;t
of values compared, it depends only on the data lengt Store

The maximal number of cycles needed will be twc
times the length of the data g 25 + log,M) . To re-
solve multiple minimums a select first network [9] car
be used to select the first active processor.

3. Wanting to have constant time for this step we want t
calculate the neighbourhood (instead of communicat
it). There are a number of variants depending on tt
(spatial) distance measure and the map topology. If

=== PE array

! Adder-tree

Figure 2 Using weight parallelism to map SOM
onto a linear processor



For the last step, weight parallelism is faster than node parallits strong points are its powerful hypercube connection for gen-
ism with a factorM/N, . This will be a considerable factoleral communication and the multidimensional mesh connec-
wherN, is small an¥l is large. The second and third steps artion for problems with regular array communication demands.
almost “for free” for weight parallelism as pipelining can beln the CM-2 model TMC also added floating point support, im-
used. As the number of noddften is larger than the number plemented as one floating point unit per 32 PEs. This means
of elementsM in the input vector, and for weight parallelism2048 floating point units on a 64k machine, giving a peak per-
we only haven = M PEs, this mapping will be less efficientformance of 10 GFlops. CM-2 is one of the most popular paral-
than node parallelism during the first step. The factor lel computers for implementing ANN algorithms.

M)/ (2N) . .
(3M) 7 (2N) Obermayer et al. have implemented large SOM on the CM-2

It seems that the most efficient mapping during the first step[45]. They used node parallelism and up to 16k PEs (nodes).
node parallelism and during the fourth step weight parallelisThe input vector lengttM was varied and lengths of up to
(as for the SDM model [43]). But we have not found any waM=900 were tested. 48 MCUPS were achieved on a problem
to achieve mixed mapping for SOM onto any normal SIMLwith n=N=16384 andM=100. As they used a bell-shaped
computer. Gaussian function for neighbourhood calculations, an efficien-

. i ti EQ 1 | ing-
Note that if2N >5M , no matter how fast the three last stepCy measure according to equation (EQ 1) would be meaning

are when weight parallelism is used, it will still be less efficier

than the node parallel version. This is because its first stThe same authors have also implemented the same algorithm

takes longer than the total time of the node parallel version. on a self built computer with 60 T800 (Transputer) nodes con-
nected in a systolic ring. Besides algorithmic analysis they
have benchmarked the two architectures. Having M=100, n=30

5.0 IMPLEMENTATIONS ON PARALLEL and N=14400 they achieved 2.4 MCUPS.

COMPUTERS The conclusion is that the CM-2 (16k PEs) with floating point
In the following subsections many of the parallel computersupport is equal to 510 Transputer nodes for the SOM. As a
used for SOM are described. Performance figures for the SC16k CM-2 has 512 Weitek floating point units, each with ap-
algorithm on these computers are also given if they are avaiproximately the same performance as one T800 on floating
ble. point calculations, it can be concluded that SOM basically is
computation bound. In a “high-communication” variant of
SOM where broadcast could not be used efficiently a 30 node
Transputer machine would run at one third of the CM-2 speed.

5.1 CNAPS 5.3 L-Neuro
CNAPS (Connected Network of Adaptive ProcessorS) mani

A summary of the discussed implementations is shown in Fi
ure 3.

) : . ’ ' The Laboratoires d’Electronique Philips (LEP), Paris, have de-
factured by Adaptive Solutions is one of the first archltecturesigned a VLSI chip called L-Neuro. It contains 16 processors

developed especially for ANN. It was called X1 in the first de, ying in SIMD fashion. In association with these chips
scription by Hammerstrom [14]. It is a 256 PE SIMD maCh'n'Transpu’[ers are imagined as control and communication proc-

with a broadcast interconnection scheme. Each PE has a Mlassors. The chip has support for multiplications with a multiply

ply (9x16bit) and add arithmetic unit and a logic-shifter unit. Igta, \neights are represented by 2-complement numbers over
has 32 general (16bit) registers and a 4kByte weight memOg . 16 pits and the states of the neurons are coded over 1 to 8
There are 64PEs in one chip. 1, 8 or 16 bits can be used ;.o

weights and 8 or 16 bits for activation. . . . .
Duranton and Sirat [7, 8] have described implementations of
The performance of CNAPS on SOFM was reported by Han, o, som, Hopfield and BP networks on this architecture.

merstrom and Nguyen in [15]. The figures are based N owever, no figures of performance were given.
20MHz version of CNAPS. Best match using Euclidean dis

tance measure, havingF512 nodes an1=256 elements per 5.4 MasPar

vector (§=16), can be carried out in 2JS. Making thel_r MasPar MP-1 [1, 5, 42] is a SIMD machine with both mesh
CUPS figure comparable to others the performance will k . . o
and global interconnection style of communication. It has

about 183 MCUPS. A CNAPS computer can maximally . .
gchiev? 10240 MIPS on dot-product operations. The efficiem::ﬁﬁ:glgr Fc))(f)“;troscljezpsior:; Iglc; t:qe\:ﬁ\;( Czr;dvgsieiﬁeng:rizélh:n d
is thus: 16384. Each PE has 40 32-bit registers, a 4-bit integer ALU,
E = 3.75(183 _ 7% floating point “units” for Mantissa and Exponent, addressing
10240 tunit for local address modifications, and a 4-bit broadcast bus.

More figures are needed to be able to analyse where the bo ‘
neck is. The low efficiency may depend on the high maxim;MP'l has a peak performance, for a 16k PE machine, of 1500

performance, achieved in an operation mode which can not MFIOPS single-precision [42].
utilized for SOM. In [4, 12, 13] Grajski, Chin et al. have implemented BP and
. . SOM. The mapping of SOM into MP-1 uses node parallelism.
5.2 Connection Machine It was measuripc)i tg give 17.2 MCUPS on a 4k m;chine when
The Connection Machine [16, 50] manufactured by Thinkinl6-dimensional input vectors were used. They report that high
Machines Corporation (TMC) is for the moment the most maegfficiency is achieved using the MP-1 and that the performance
sively parallel machine built (from 8k up to 64k processing efigures increase with the dimensionality (up to 18 MCUPS).
ements). In addition to its large number of processors, two



5.5 REMAP3 An implementation of SOM on Warp has been described by R.
Mann and Haykin [39]. When they used training example par-
allelism between 6 and 12.5 MCUPS were achieved. Because
of a fixed communication overhead (0.01s) at the start of each
batch, better performance could not be achieved. Some minor

per chip would be possible. On a single board, 1k process<pr0blem with the topology ordering process when using train-

. ) . _ing example parallelism were reported. They suggested that ei-
with memory would be possible. If implemented on VLS| ‘ther the map starts at some order instead of at random state, or

(r:r:c;ilégiqsgggiﬁlzbtzvzci?etﬂeHznwﬁglddatt:ee rz:en%fp;%t;g;'r;r;'(that the map is trained sequentially for the first 100-1000 steps,
539 per second on an= N = 2048 problemNI=128 and® after which the training example parallelism is “turned on”.

16) and more than 11800 updates per second on the smaThe Warp has 10 PEs, each having 10 MFlops, giving it a total
problem 6= N=1024,M =10 an@ = 8). The correspondingof 100MFlops. Having\N=1024 andV=128 the implementa-

CUPS (and efficiency) figures would be 141 MCUPS (=:tion could run at=5.3x18 updates per second (each batch (ep-
E=83%) and 121 MCUPS (=B=71%), respectively. och) was 18 training examples), giving it 12.5 MCUPS and an

efficiency ofE=47%.
5.6 Transputer Y

The Transputer [22, 54] is a single chip 32-bit microprocesscs'8 TInMANN

It has support for concurrent processing in hardware whicvVan den Bout et al. [41, 52, 53] have suggested a stochastic all
closely corresponds to the Occam [2, 21, 23] programmirdigital implementation of Competitive Kohonen learning (see
model. It contains onchip RAM and four bi-directional 20section 2.3) called TINMANN.

Mbits/sec communication links. By wiring these links togethe
a number of topologies can be realized. Each Transputer of 1
T800 type is capable of 1.5 MFlops (20MHz) and architecture
with up to 4000 Transputers are being built [54].

The goal of REMAPR s to construct modules for ANN compu-
tation. A typical module for SOM would consist of a few thou-
sand bit-serial processors. If the processing elements nee
for ANN were integrated on a VLSI chip more than 128 PE

Their modifications to the SOFM model make it possible to use
very simple PEs. A typical hode would consist of two registers
(10-12 bits), two adders or subtractors, two flags, memory for
weights, gated broadcast, global-or function and some control
The SOM model has been implemented on Transputers logic. A VLSI version of TINMANN has been implemented
Hodges et al. [17], Siemon and Ultsch [48] and Obermayer where each node used 4000 transistors [41]. Using 10-bit
al. [45]. All three implementations distribute the nodes over ttweights the memory could be used for three to four weights per
PEs and use ring communication to distribute the input vectnode, i.e. the input vector lengthis very limited. The update
and to find the global minimum. As long as the neighbourhocrate, using 20MHz clock, is 267000 updates per second per
is larger than the number of PEs this mapping is quite efficiemnode usingM = 3. If one million transistors were used a 250
Good performance will also be achieved for high input dimernode chip could be constructed and thus giving 200 MCUPS
sion. per chip. As broadcast is used there is no problem to extend the

. system outside the chip boundaries.
Hodges et al. presented an equation for the performance but y P

concrete implementation. A “rapid prototyping” version of the architecture in reconfig-
urable logic (XILINX) is also reported [53]. To eliminate some
complexity and space, the architecture uses bit-serial nodes.
Each chip (X3020) contains 3 PEs and external RAM is used
for weights (i.e. much largé can be used). One circuit board,
called Anyboard, contains up to 8 X3020 and thus contains up
to 21 PEs. This project was not completed. However, simple
calculations showed that the interface between the host and the
Obermayer et.al have implemented SOM on, and compared bit-serial nodes over the IBM PC bus was the major bottleneck.
performance of, Connection Machine and Transputers, see slgnoring the bus interface, the nodes were quite fast [51].

tion 5.2.

Siemon and Ultsch state a performance of 2.7 MCUPS on a
Transputer machine. Haviny=128x128, M=17, u=25000/
2546 the total number of operations would ®e= 991000
Each Transputer can give 1.5 MFlops so the maximum numk
of Flops would be 24MFlops. Then the efficiency wouldEle
42%

A more general implementation framework, called CARELIA
has been developed by Koikkalainen and Oja [35]. The neul
network models are specified in a CSP-like formalism [33, 3
35]. The simulator is currently running on a network of Trans
puters and one of the models implemented is SOM. The pt
formance of the simulator has not been reported.

5.7 Warp

Warp is a one-dimensional array of 10 or more powerft
processing elements (PEs) developed at Carnegie-Mellon U
versity in 1984-87 [36]. Each cell/PE has a microprogrammi
ble controller, a 5 MFlops floating-point multiplier, a 5 MFlops
floating-point adder and a local memory. Communication be
tween adjacent cells may be conducted in parallel over two i
dependent channels: a left-to-right X channel and bidirection
Y channel.



COMPUTER n  MaxMIPS N M 1) u MCUPS E

(MFLOPS)
CM 16384 2500 16384 100 FP 48 -%
MasPar 4096 376 4096 16 FP 250 16 16%
4096 376 4096 256 FP 17 18 18%
Warp 10 100 1024 16 FP 522 8.6 32%
10 100 1024 128 FP 95.4 125 47%
Transputer
Obermaye 30 45 14400 100 FP 24 -%
Siemon 16 24 16384 17 FP 9.8 2.7 40%
CNAPS 256 10240 512 128 8 210 8%
256 10240 512 128 16 180 7%
REMAP? 128 80 2048 128 8 67 175 82%
1024 640 1024 10 8 11800 121 71%
2048 1280 2048 128 8 1070 280 82%
2048 640 2048 128 16 539 141 83%
TINMANN 250 - 250 3 10 267000 200 -%

Figure 3 The performance figures on SOFM simulations, for all the discussed computers. The efficiency E is cal-
culated as 3.75 CUPS/IPS,,,«. No efficiency figure has been given if the CUPS figure is incompatible with the
other figures.The number of processors is denoted by n, the number of nodes by N, the dimension of the input
vector by M, the number of bits used for weights byd and the update rate by u.

Note that if the computer manufacturer has been given “to high” maximum performance figures, the efficiency
figure will be proportionally lower.

6.0 CONCLUSION rates, but as the updates are of a different kind, it is difficult to
compare it to the original method with respect to speed. Still,
this modification is very interesting as an alternative to ordi-
nary competitive learning algorithms, as it reduces the archi-
tectural components needed for the computation. Moreover,
bit-serial SIMD computers could be considered as one of the
prime candidates for an efficient implementation of this modi-
fied SOM algorithm.

Unless especially tuned for SOM as REMARone of the
computers studied have very high efficiency. As many of tt
performance figures given in the literature are measured unc
vastly different experimental setups, the figures given fc
MCUPS and efficiency, should be used cautiously. Still, th
figures together with our analysis, indicate that the commur
cation structure and the control mechanism are of little impo
tance for the calculation of SOM. When designing a higThe natural and totally dominating dimension of parallelism is
performance SOM computer the design effort must be on irthe node parallelism. Training example parallelism has been
plementing efficient (with respect to time and area) multiplierused, but it seems that only relatively small batch sizes may be
which can be supported with operands from the controller, e.used as there will otherwise be failures in the topological or-
using broadcast, together with high bandwidth access to lo«ering. The weight parallelism and the mixed mapping, which
memory. were successfully used in the computation of Kanerva’'s SDM
model [43], can not be used efficiently for the calculation of the
SOM model. This is due to the fact that the adaptation is taking
place in the weight matrix which is also used for the selection
phase, whereas for SDM the adaptation is made in a separate
matrix.

The fact that the neighbourhasd becomes very small t
wards the end of the training session seems easier to take
vantage of on a coarse grain MIMD computer. Even if only on
PE is working there will be relatively fewer idle processor:
during the updating step, thus giving the MIMD computer :
possibly better efficiency.

The analysis also indicates that SOM can be mapped efficien
onto bit-serial SIMD computers. The only requirement is that
bit-serial multiplier is included to support the many multiplica-
tions.

By modifying the algorithm to include a “stochastic signal” it
is possible to run competitive learning without using multipli-
cation. This makes it possible to achieve enormous upd:
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ABSTRACT decides its action on an instruction from the control unit, but some
property of the data in the memory or registers of that PE.

Large processor arrays are candidates for performing compu- - Aninterconnection network defines a topological relationship
tations of neural network models at speeds required for real timebetween PEs.
applications, e.g. in pattern recognition. The paper gives ageneral
model of an array of bit-serial processors and demonstrates the A commonly used organization of the BAP is to place the
mapping of neural net models on such an array. interconnection network between the memory part and the logic

The approach maps a neuron on each processing element anpart of the PE as shown in Figure 1. This does not mean that
makes communication all-to-all available by connection weight memory and logic are physically apart - on the contrary, they are
matrices. The required communication structure is very simple. seen as a whole and should preferably be put on the same chip.

The bit-serial approach allows trade-offs between speed and
precision, even dynamically. Performance figures are given. A bit-
serial multiplier is animportant part of the design. Implementation
aspects are discussed and it is shown that a one-board realization
of a 1024 processor system is feasible with current, commonly ; ; ;
available, technology.

Control Unit

4

1

INTRODUCTION

Recent years have seen an enormous increase of interest in
neural networks. It has been realized that massive parallelism is
required for human-like performance in pattern recognition. Neural
networks provide one technique to do this. Processor arrays are Memory Modules Interconnection ALU Modules
candidates for performing the computations efficiently. The su- Network
bject of this paper is to study the mapping of neural network Figure 1. Organization of a Bit-serial Array Processor.
computations on a regular array of a large number of simple
processors. The computations are uniform and arithmetically A BAP is defined by the characteristics of five parts: data
simple. This suggests that simple processing elements are suffstorage, processing, data alignment, input/output, and control.
cient and that the SIMD type of architecture is appropriate. The Data storagas organized as Memory Modules (MMs). One bit
number of interconnections in a neural network is often orders offrom each MM is accessible at a time. A number of Giteslices
magnitude greater than the number of processing units. Thisiormally consecutive, formféeld.
suggests that connectivity be stored partly in matrices. The Processing paris an ensemble of Arithmetic and Logic

We study the mapping of both feedforward (with back-propa- Units (ALUs) which implement functions on a set of one-bit
gation) and feedback neural nets. The characteristics of thesarguments. The complexity of the ALU may vary from boolean
models will be briefly outlined. Before that we introduce a generic functions of two variables through bit-serial multipliers to full bit-
architecture for a bit-serial array processor (BAP). We describe theserial floating point units.
algorithms in a parallel language (Pascal/L) which includes One of the registers in the ALU is the oneAutivity Register
constructs directly implementable as elementary operations of @he contents of which determines whether or not the ALU takes
BAP. The computations are analysed, performance figures ar@art in the specified operation. To choose only one ALU for

given, and system implementation is discussed. activity, aselect firsfacility is included. In more elaborate models
multi-bit registers may be used to determine one out of a set of
BIT-SERIAL ARRAY PROCESSORS actions to be performed.

TheData Alignment partonsists of an interconnection struc-

A Bit-serial Array Processor (BAP) is characterized by the ture that allows each ALU to receive data also from "neigh-
following properties: bouring” modules. Common structures are the square grid, the

- It is organized as an SIMD processor, i.e. it consists of manylinear array, the n-cube and the shuffle-exchange. Many separate
processing elements (PEs) and one common control unit. structures may be implemented on the same processor.

- The PEs treat data bit-serially and the data paths to and from The structure of thénput/Output partdesign is strongly de-
each PE are only one bit wide. pendent on the demands of the application and may be varied in

- Activation of the PEs may be data driven ("associative several ways. For example, in some cases a direct bit-slice wide
process”), which means itis not the location or address of a PE thahterface to the data source may be motivated.
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The total activity is mastered by t@®ntrol Unit, which takes inputs. Then it applies a nonlinear activation function to the sum,
instructions from an ordinary sequential processor. The mostresulting in an activation value of the neuron. A sigmoid function,
obvious task for the Control Unit is to translate operations on datawith a smooth threshold like curve, is the most frequently used
items (e.g. vectors and matrices) to sequences of bit operationgctivation function in feedforward networks.

This should be performed without any overhead.

Based on the types of operands and results six basic types of Input Hidden Output

instructions to manipulate data in the array can be identified: Layer Layers Layer

Instruction type Example

field —> field Increment field, Permute field

field —> selector Max/min value of a field

field,field —> field Multiply fields, Pairwise max

field,field —> selector Pairwise equality

constant,field —> field Multiply by constant

constant,field —> selector  Closest match, Greater than

Multiplication is a frequent operation in many application
areas. Using ALUs with a complexity comparable to a full adder layer|-1 layerl
only, the multiplication time grows quadratically with the data
length. Ohlsson [1] suggested a bit-serial multiplier in each ALU,  Figure 3. A four-layer feedforward network.
giving a multiplication time that is no longer than the time required
to read the operands and store the result. The back-propagation algorithm (also known as the generalized

Figure 2 shows the design for multiplication of two 2’s comp- delta rule) [3] is used to train the network in our examples.
lementintegers using a series of fulladders (FA). The multiplicand In the first phase the input to the network is provided and values
is first shifted in, most significant bit first, into the array of M flip- propagate through the network to compute the output v&ctor
flops. The multiplier is then applied to the input, least significant is then compared with a target vecloprovided by a teacher,
bit first, and the product bits appear at the output, least significantesulting in an error vectd. In the second phase the values of the
bitfirst. The Sflip-flops store the accumulated sum. A more detailederror vector are propagated back. The error signals for hidden units
description is given in [1] and [2]. are thereby determined recursively: Error values for layee
determined from a weighted sum of the values of leyEragain
using the connection weights — now "backwards”. The weighted
sum is multiplied by the derivative of the activation function to
give the error valué.

Finally, appropriate changes of weights and thresholds are
made. The weight change in the connection toi imiyerl from
unitj in layerl-1 is proportio(ﬂal to tme product of the output value
o and the error valug: Aw;j’ = n&"’0-1) . The bias (threshold)
value may be seen as the weight frorh a unit that is always on. The
algorithm is summarized below.

Figure 2. A 5 bit wide bit-serial multiplier using carry-save 1.  Apply input
technique. M, S and C are flip-flops and FA are full adders.

2. Compute outpup) = f(ne}“) + bj('))
NEURAL NETWORK ALGORITHMS ) O)n(-1)
wherene}( = wi'o for each layer.
Several neural netmodels have been proposed. They are charac- i
terized by network topology, node characteristics, and training 3. Determine error vectd = T—O
rules. Frequently used and discussed models ammuhigayer

feedforward networksvith supervised learning by error back-

propagation [3] and tHeedback networksither with symmetric Propagate error backwards.

connectivity and stochastic nodes (Boltzmann machines [4, 5]), If nodej is an output node then the elements of the
symmetric connectivity and deterministic nodes (Hopfield net [6, error value vectob are

7, 8]), or nonsymmetric connectivity and deterministic nodes[9, q(') = 001 - oMt — oMy = oV (1 - 0('))%(')

10] olso { (IRAY I | {

In order to be as general as possible in the implementation
studies we use a feedback algorithm without any assumption on
symmetry of the weight matrix. Thus, for the Hopfield model and
the Boltzmann machine shorter execution times than those report-
ed below can be expected (both use symmetric matrices). f(x) = Trex

The back-propagation model is used as a pattern classifier or e
feature detector. The feedback models are used as auto-associatives, AdjLIISt weights and thresholds.
memories for tasks like pattern completion. Awi,(): na )Oj(l 1) vai(') - ﬂd(l)

M_ q I (1+1) - (1+1
q _OJ()(]__OJ())zd Wi(j+)
|

Here we have used the fact that the sigmoid function
has the derivative: f (1)

Feedforward networks with error back-propagation 6. Repeat from 1.

A feedforward net (ff net) with four layers is shown in Figure 3. ) ) o )
Each node (neuron)in alayer receives input from every node inthe Algorithm 1. Back-propagation training algorithm
previous layer. Each node computes a weighted sum of all its
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Feedback networks Feedforward net with error back-propagation

A feedback network has a single set of completely interconnec- Figure 5 shows the data storage for each layer. In the forward
ted nodes, see Figure 4. All nodes are both input and output nodepass th@etvector is computed By successive, parallel multiply-
Each node computes a weighted sum of all its inputs and applieand-add operations, each requiring access to a different output
a nonlinear activation function to the sum. The resulting value isvalue from the previous layer. Thus the PEs must, one after the
treated as input to the network in the next step. When the net hasther, broadcast their output values to all PEs. Ohector is
converged, i.e. when the output no longer changes, the pattern ccomputed by a parallel application of the activation function.
the output of the nodes is the network response.

WO BO QOO npefh EO
Ingrjut

Output wi) w@ -owll, b of) nefd ) 0D PR

/ wh Wl wll, b0 ol neld ) 00 PE

wiowdy - wliy, bl of) nel) &) OO PE.

Figure 5. Data storage for layer .

In the backward pass the computation of the error vector for
Figure 4. A seven node feedback network. each layer requires vertical addition. We suggest a bit-serial adder
o ) ) ) ] tree. The addition of each column can be overlapped with the
Training or learning can be done in supervised mode with themultiplications for the next. On completion of this phase, weight
delta rule [11] or back propagation [10], or unsupervised by achanges are calculated. Thevector of layet—1 is first multiplied
Hebbian rule [11]The delta rule is more powerful than the Hebb py a constant;). Then, for eacl, thej:th value of the result is
rule, and more commonly used than back-propagation (for feedproadcast to all other PEs, tevector is multiplied by this value
back nets). We only analyse the delta rule algorithm. and the result is added to ftté column of the weight matrix. The
In the first phase of training the pattern is imposed on the net athreshold vector is changed in a similar way.
time zero by forcing the output from the net to match the pattern.
Following this initiation, the net iterates in discrete time steps The Pascal/L language
using the given formula. When the net has converged the activa-
tiona is compared to the targetand the error is calculated as  pascal/L is an extension of Pascal for parallel processing,
e =t — 3. The weights are changed in proportion to the product of developed in the LUCAS project [2]. In Pascal/L the parallelism

the activatiors, and the erroe, i.e.Awjj = ngg of the architecture has a correspondence in the syntax of the
o ) language. Thus, constructs in the language are directly implemen-
1. Set activation values to external input values table as elementary operations of a BAP.
2. Calculate new activation valugs=f (nef + bj)  where A selectordefines a boolean vector over the MMs and is used
net = z wi;jg , until the network is stable to control the parallelism of operationgérallel array has a fixed
i

number of components, all of the same type and located in the
3 Determine error vectoE = T—A MMs. An indexing scheme allows simultaneous access to a
4 Adiust the weightaw: = and biak, = column or a subset of the column components of a two-dimensio-
- J ghtawij = nag i =18 nal array. For exampl&V[*,5] selects column 5 oV, W[SEL,5]
5 Repeat from 1. selects a subset of column 5. A parallel array may be used without
any index at all (and no brackets), in which case all components of
Algorithm 2. Delta learning algorithm for feedback networks the array are referenced.
To support data-driven processing a number of standard func-
tions and procedures can be applied to selectorgir$h&unction
MAPPING NEURAL NETWORKS ON A BAP finds the first component of a selector with the vaiueand returns
a new selector with only this element true. Tet-procedure
It should be clear from the above descriptions of networks, thatssigngalseto the first true element of the selector. This is useful
the computations of both a feedforward network with error back-when elements are to be processed sequentiallgorheiunction
propagation and a feedback network involve mainly matrix-by- returnstrue if there is at least one true element of the selector,
vector multiplications, where the matrices contain the connectionotherwise it returnfalse
weights and the vectors contain activation values or error values.

Such a multiplication contains? scalar multiplications antl The Pascal/L program
computations of sums &f numbers. ) )
The fastest possible way to compute this is to perforiv?all For the feedforward net, the following declarations are needed

multiplications in parallel, which requiré® PEs and unit time, ~ (For simplicity of notation we consider only one layer):
and then form the sums by using trees of adders. The addition var W :parallel array [0..N-1,0..N-1] of integer(b);

requiresN(N-1) adders an@®(logN) time. This is, however, an net :parallel array [0..N-1] of integer + logN);
unrealistic method depending on both the number of PEs required B,0,0,E,E"parallel array [0..N-1] of integer(b);

and the communication problems causktitead we take the { O is the output of the previous lay&’, is the error of the
approach of having as many PEs as neurons in alggeid storing following layer}

the connection weights in matrices, sikdgyN, one for each layer. sel :selector[0..N-1];

The PE with indexhas access to ropof the matrix by accessing | tinteger;

its own memory word.
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The following program parts implement the algorithm:
Forward pass
j :=0; net:=0; sel := TRUE;
while somésel)do begin
net := net + W[* j] * Offirst (sel)]; next(sel); j := j+1;
end
O = f(net+B);
Backward pass
Computation of error vectors:
j:=0; E:=0; sel := TRUE;
while somésel)do begin
E:= E + E[first(sel)] * W[*,j]; next(sel); j:=j+1;
end,
E := O*(1-O)*E;
Computation of new weights:
j:=0; sel := TRUE;
while somésel)do begin
WI*,j] .= W[*,j] + n*O-first (sel)]*E; next(sel); j:=j+1;
end
B := B +n*E;

General feedback algorithm

COMPUTATION TIME
Feedforward networks with error back-propagation

The computations for one layer of the feedforward pass contain
N operations of type multiply(by constant)-and-add followed by a
few (maximum ten) multiply-and-add operations to compute the
activity function (e.g. by a piecewise linear activation function
which approximates the sigmoid function). Sitis large in the
applications we consider we can leave the latter operations out
when we estimate the computation time.

During accumulation the sum will grow to a maximal length of
b+logN bits. On the average the number of cycles for multiply-
and-add will be B+logN—-1, using the bit-serial multiplier of Figure
2.

In the backward error computation phase the summation is
made over the adder tredarlogN cycles. A multiplication and a
tree addition can be made simultaneously. The weight changing
phase, finally, takesbicycles per column.

In total the computations for one layer consumb: {8log\N—
1+ max(d, b+logN)]N cycles during trainingnd(4b + logN—-1)N
cycles during recall.

Assuming a clock frequency of 10 MHz (which is fairly conser-
vative) execution times shown in Table 1 are derived.

A common measure of the performance of neural net hardware

The data storage required for a general feedback network iss the number of "CPS” (Connections per second). In a netNvith
approximately the same as for one layer of the ff network. Theneurons per layeN? connections are used and/or updated in each
computations of the forward pass are the same as in the ff net (orlayer. The MegaCPS figures for BAPs of different sizes are given
layer), but are repeated until no more changes occur, or for a fixeéh Table 2.

number of times. To update the weights, the error vector is first

calculated in parallel and then multipliedipalso in parallel. The N N

values of the activation vector are then broadcast one by one to all 256 1024 4096 256 1024 4096
other PEs. Each PE multiplies the value withrjtg(ror)-value and 8 [2.4 9.9 40.6 8 [1.0 4.2 17.6

adds the result to the corresponding weight.
The Pascal/L program

var W : parallel array [0..N-1,0..N-1] of integer(b);
net :parallel array [0..N-1] of integer(b + logN);
B,A,Aold,E : parallel array [0..N-1] of integer(b);
Extinputs :parallel array [0..N-1] of integer(b);
sel :selector[0..N-1];

j,m:integer;
{Initialize}
rand(W); {Initialize the weights
A := Extinputs;  {Set activation valués
Aold := A+2*e;  {Get past first while tept

{Train the net one pass with one pattern
Calculate new activation values during m cycles or to convergence
m :=0;
while somgabs(Aold - A) > eand (m < mmax)do begin
j:=0; net := 0; sel := TRUE; Aold := A,
while somésel)do begin

net := net + W[* jl*A[first(sel)]; next(sel); j := j+1;
end,
A :=f(net+B); m := m+1,;
end;
{Update weights

E :=n*(Extlnputs - A);j := 0; sel := TRUE;
while somésel)do begin
WI*,j] := W[*j] + A[ first(sel)]*E; next(sel); j:=j+1;
end,
B:= B +n*E;

b 12| 3.6 144586 b
16 | 4.7 18.9 76.6

12| 1.4 5.8 24.2
16 | 1.8 7.5 30.7
a) b)
Table 1. a) Training time per layer (ms). b) Recall time per
layer (ms). 10 MHz clock frequency is assumed.

N N
256 1024 4096

256 1024 4096

8 | 27 106 413 8
b 12| 18 73 286 b 12 | 47 180 694
16 | 14 55 219 16 | 36 140 546
Training Recall

Table 2. Number of MegaCPS (Million Connections Per
Second) for different network sizes and data precisions.

Feedback networks with delta rule.

The computations of one iteration conthlimultiply-and-add
operations. We do these computations ib+{dgN-1)N cycles.
Thus, the figures of Table 1b apply. The weight changing phase
takes &N cycles. Executingn iterations and one weight update
then takesn(4b+ logN—1)N+ 4bN cycles.

Table 3 shows the training times for different network sizes and
precisions. The times for recall equal those of Table 1b.

MEMORY REQUIREMENTS AND IMPLEMENTA-
TION ASPECTS

The amount of storage per word required for the feedback
network, or for each layer in the ff net, is approximatsly See
Table 4. Anm layer network requires+1 times as much memory
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N N
256

256 1024 4096 1024 4096

8 |18 7.4 30.7 8 [101 423 1770
b 12| 2.6 10.8 43.8 b 12 [142 586 2440
16 | 3.5 14.0 56.9 16 |183 7% 3100

a)

processor to all others, a means for selecting processors in order,
one by one (a select first chain), and a bit-serial adder tree to add
the values of a field.

The approach taken is to map one neuron on each processor —
in the case of multilayer networks the same processors are used for
all layers. If more processors are available, or if the processors are
fewer than the neurons, the programs presented must be slightly
changed. The speed will increase or degrade accordingly. Thus,

b)
Table 3. Training times (ms) for feedback network. a) with 1 the speed of a certain network can be adjusted by choosing the

iteration, b) with 100 iterations. 10 MHz clock frequency is number of processors.

assumed.

A critical operation in the computations is multiplication. We

have shown how a very simple bit-serial multiplier structure using
(with am-1 connection weight matrices stored). It should also becarry-save technique can equalize multiplication time relative to

mentioned that there are methods proposed that inalideantum
terma in the weight changing rule for the ff networks (refer to
Algorithm 1):

| (- |
Awi,( )t = n&' )oj(I Dig Awi,-( Jt-1)

addition time.

It is seen that the different net models that we have studied put
the same demands on the processing array. These models are
representative for the neural networksarea, implying that efficient
execution of most kinds of neural networks on a BAP can be

expected.

Thus the past weight change affects the current direction to an
amount determined by the constant his is considered to allow
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requires that the weight changes be stored as well, which doubles
the required memory space.

N

256 1024 4096 [1]
g8 [2 8 =2

b 12| 3 12 48 [2]
6|4 16 64

Table 4. Memory requirements (kilobits) per processor for one [3]
layer (approximate figures).

Using commercially available RAM chips for the large amount [4]
of memory needed offers obvious advantages. On the other hand,
memory on the same chip as the PEs can increase processing speed
significantly. (5]

If external RAM is used 64 PEs of the complexity we discuss
can easily be integrated on one VLSI chip. A 1024 PE array will [€]
have 16 such chips, each with approximately 100 pins. Memory
can be implemented using chips with 64k x 4 bits, giving a chip
count of 256. With appropriate mounting technology such a[7]
network may be implemented on one board. It would run a four-

layered feedforward network with 1024 neurons per layer at the
speed of 34 training examples or 80 recall examples per second®l

An implementation of a prototype BAP is currently being made
as a joint project between Luled University of Technology and [°]
Centre for Computer Science at Halmstad University College [12].
The implementation is software configurable to allow for "compi-
lation” of a certain architecture to suit a specific application.
Neural network computations constitute one such application[!
area.
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(BAP) and have shown how the computations of different neural
network models can be performed on such a processor. A major
advantage of the bit-serial working mode is that precision can be
traded for speed. We have calculated execution times and memory
requirements for feedforward and feedback networks of different
sizes and with different numerical precision. Results show a large
speed advantage over commercial neural net simulators and form
the basis for the outline of a one-board implementation comprising
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