
DOCTORAL THESIS 1995:162 D
DIVISION OF COMPUTER SCIENCE AND ENGINEERING ISSN: 0348 – 8373

ISRN: HLU - TH - T - - 1994 - 162 - D - - SE

Highly Parallel Computers for
Artificial Neural Networks

Tomas Nordström

i

Doctoral Thesis 1995:162 D

Highly Parallel Computers for

Artificial Neural Networks

Tomas Nordström

Division of Computer Science & Engineering

Luleå University of Technology, Sweden

E-mail: tono@sm.luth.se

March 1995

Supervisor / Handledare

Professor Bertil Svensson, Chalmers University of Technology

Faculty opponent / Fakultetsopponent

Associate Professor Dan Hammerstrom, Oregon Graduate Institute

Highly Parallel Computers for Artificial Neural Networks

ii

I do not know what I may appear to the world, but to myself I
seem to have been only like a boy playing on the seashore, and
diverting myself in now and then finding a smoother pebble, or
a prettier shell than ordinary whilst the great ocean of truth lay

all undiscovered before me.
ISAAC NEWTON

 Tomas Nordström 1995

ISSN: 0348-8373
ISRN: HLU-TH-T--162-D--SE

Published 1995
Printed in Sweden by “Högskolans Tryckeri, Luleå”

ABSTRACT

iii

ABSTRACT

During a number of years the two fields of artificial neural networks (ANNs) and highly par-
allel computing have both evolved rapidly . In this thesis the possibility of combining these
fields is explored, investigating the design and usage of highly parallel computers for ANN
calculations.

A new system-architecture REMAP (Real-time, Embedded, Modular , Adaptive, Parallel
processor) is presented as a candidate platform for future action-oriented systems. With this
new system-architecture, multi-modular networks of cooperating and competing ANNs can
be realized. For action-oriented systems, concepts like real-time interaction with the envi-
ronment, embeddedness, and learning with self-organization are important. In this thesis the
requirements for ef ficient mapping of ANN algorithms onto the suggested architecture are
identified. This has been accomplished by studies of ANN implementations on general pur-
pose parallel computers as well as designs of new parallel systems particularly suited to
ANN computing. The suggested architecture incorporates highly parallel, communicating
processing modules, each constructed as a linear SIMD (Single Instruction stream, Multiple
Data stream) array, internally connected using a ring topology, but also supporting broadcast
and reduction operations.

Many of the analyzed ANN models are similar in structure and can be studied in a uni-
fied context. A new superclass of ANN models called localized learning systems (LLSs) is
therefore suggested and defined. A parallel computer implementation of LLSs is analyzed
and the importance of the reduction operations is recognized. The study of various LLS
models and other commonly used ANN models not contained in the LLS class, like the mul-
tilayer perceptron with error back-propagation, establishes REMAP modules as an excellent
architecture for many different ANN models, useful in the design of action-oriented systems.

Descriptors

Action-oriented systems, artificial neural networks, sparse distributed memory, self-organiz-
ing maps, multi-layer perceptrons, localized learning systems, massively parallel computers,
SIMD, bit-serial processor array, REMAP.

Highly Parallel Computers for Artificial Neural Networks

iv

PREFACE

v

PREFACE

This thesis deals with the implementation of artificial neural networks on massively and
highly parallel computers.

The thesis consists of nine papers. The first two papers introduce the concept of noncon-
forming massively parallel computers and survey parallel computer architectures used for
artificial neural networks. The two following papers are descriptions of the REMAP archi-
tecture which I use as a starting point for my studies. This architecture has been developed at
Luleå University of Technology, in cooperation with Chalmers University of Technology
and Halmstad University. In the last five papers the mapping of dif ferent ANN algorithms
onto parallel computers is studied.

As each of the papers is self-contained there are sections that overlap, but the major part
of each paper is original work. The nine papers are:

PAPER A

Paper A

 is published in Proceedings of the New Frontiers, a Workshop of Future Direction
of Massively Parallel Processing

:
Davis, E. W., T. Nordström and B. Svensson, “Issues and applications driving re-
search in non-conforming massively parallel processors,” in Proceedings of the New
Frontiers, a Workshop of Future Direction of Massively Parallel Processing, Scher -
son Ed., McLean, Virginia, 1992, pp. 68-78.

PAPER B

Paper B

 is published in Journal of Parallel and Distributed Computing

:
Nordström, T. and B. Svensson, “Using and designing massively parallel computers
for artificial neural networks,” Journal of Parallel and Distributed Computing, vol.
14, no. 3, pp. 260-285, 1992.

PAPER C

Paper C

 is published in Proceedings of Connectionism in a broad perspective

:
Svensson, B., T. Nordström, K. Nilsson and P .-A. Wiberg, “Towards modular, mas-
sively parallel neural computers,” Connectionism in a Broad Perspective: Selected
Papers from the Swedish Conference on Connectionism - 1992, L. F . Niklasson and
M. B. Bodén Eds. Ellis Horwood, pp. 213-226, 1994.

Highly Parallel Computers for Artificial Neural Networks

vi

PAPER D

Paper D

 is published in Selected papers from: Second International Workshop on Field-Pro-
grammable Logic and Applications

:
Linde, A., T. Nordström and M. Taveniku, “Using FPGAs to implement a reconfig-
urable highly parallel computer,” Field-Programmable Gate Array: Architectures and
Tools for Rapid Prototyping; Selected papers from: Second International Workshop
on Field-Programmable Logic and Applications (FPL'92), Vienna, Austria, Grün-
bacher and Hartenstein Eds. New York: Springer-Verlag, pp. 199-210, 1992.

PAPER E and F

Paper E

 and F

 are submitted for publication:
Nordström, T., “On-line localized learning systems, part I - model description,” sub-
mitted for publication, 1995.
Nordström, T., “On-line localized learning systems, part II - parallel computer imple-
mentation,” submitted for publication, 1995.

These papers are also available as research reports:
Nordström, T., “On-line localized learning systems, part I - model description,” Res.
Rep. TULEA 1995:01, Luleå University of Technology, Sweden, 1995.
Nordström, T., “On-line localized learning systems, part II - parallel computer imple-
mentation,” Res. Rep. TULEA 1995:02, Luleå University of Technology, Sweden,
1995.

PAPER G

Paper G

 is to be submitted for publication:
Nordström, T., “Hardware for sparse distributed memory simulations,” to be submit-
ted for publication, 1995.

An earlier version is available as a research report:
Nordström, T., “Sparse distributed memory simulation on REMAP3,” Res. Rep.
TULEA 1991:16, Luleå University of Technology, Sweden, 1991.

PREFACE

vii

PAPER H

Paper H

 was presented at Fourth Swedish Workshop on Computer System Architecture

:
Nordström, T., “Designing parallel computers for self organizing maps,” in DSA-92,
Fourth Swedish Workshop on Computer System Architecture, Linköping, Sweden,
1992.

This paper is also available as a research report:
Nordström, T., “Designing parallel computers for self or ganizing maps,” Res. Rep.
TULEA 1991:17, Luleå University of Technology, Sweden, 1991.

PAPER J

Paper J

 is published in Proceedings of 10th International Conference on Pattern Recogni-
tion, Computer Architectures for Vision and Pattern Recognition

:
Svensson, B. and T. Nordström, “Execution of neural network algorithms on an array
of bit-serial processors,” in 10th International Conference on Pattern Recognition,
Computer Architectures for Vision and Pattern Recognition, Atlantic City, New Jer-
sey, USA, 1990, vol. II, pp. 501-505.

Highly Parallel Computers for Artificial Neural Networks

viii

THESIS SUMMARY

1

THESIS SUMMARY

Motivation and significance

Both the computer and the model of biological neural networks emer ged during the ‘40s.
Many computer architects have been inspired by how the human brain works. Already von
Neumann [22] discussed the relation between human and machine computations. Many neu-
ral-like algorithms or machines emer ged during the late ‘50s and early ‘60s, and were used
in the fields of pattern recognition, classification and adaptive signal processing. However ,
after the book “Perceptrons” by Minsky and Papert appeared in 1969 the artificial neural
network field seemed to be a dead end. In their book Minsky and Papert showed the limita-
tions of the most popular model at that time: the perceptron. The results in the book were
correct and elegantly described, but the authors also speculated that more complex models,
e.g. multi-layer ones, would show the same limitations as the simple perceptrons, a specula-
tion which was later proven to be wrong. In the ‘70s and early ‘80s much of the research on
human-like capabilities for computers was conducted as research in the field of artificial in-
telligence using a symbol oriented approach, in which Minsky and Papert became promi-
nent.

In parallel with the research on human-like capabilities for computers a continuous evo-
lution of computer hardware took place. Technological development in the fields of semi-
conductors, transistors, and integrated circuits resulted in an enormous increase in calcula-
tion speed. Most of the computers before the ‘80s were uniprocessors or several loosely
connected individual computers. Despite the power of the computer in the early ‘80s, there
seemed to be little progress in the solving of problems like image recognition, speech recog-
nition etc. It became apparent that new algorithms and computing models were needed to
solve these problems, which humans solve without effort.

During the early ‘80s some of the dedicated scientists who had continued their ef fort af-
ter the publishing of Minsky’ s and Papert’ s book, like Kohonen, Grossber g, Anderson,
Rumelhart and McClelland together with some new scientists in the field like Hopfield,
gradually built a foundation on which many new and powerful artificial neural network
models could be built. In the late ‘80s the field of artificial neural networks literally exploded
and efforts from many researchers from biology, physics, mathematics, control theory, psy-
chology, computer science, and computer engineering demonstrated the capabilities and
possibilities of the artificial neural network models. At the same time a number of commer -
cial, massively parallel computers were manufactured. As many of the new neural network
models are massively parallel by nature they seem to map very well onto these new massive-
ly parallel computers.

However, in many instances the current high performance, parallel, general purpose
computers are not as well suited as they first appear to be since they do not address issues
like real-time, time determinism, heterogeneous communication, physical size, or power
consumption. These issues are important in the realization of action-oriented systems

 [1, 2]

Highly Parallel Computers for Artificial Neural Networks

2

which interact in real-time with their environments by means of sophisticated sensors and
actuators, often with a high degree of parallelism, and are able to learn and adapt to different
circumstances and environments. These systems will be trainable in contrast to the program-
ming of today’s computers. All these issues can be viewed as nonconforming

 to the systems
available on the more general purpose oriented market for parallel computers.

The common theme in this thesis is the idea of finding an architecture suitable with re-
spect to these issues and thus suitable for action-oriented systems. A new system architec-
ture, REMAP (Real-time, Embedded, Modular, Adaptive, Parallel processor project), incor-
porating highly parallel, communicating processing modules, is presented as a candidate
platform for future multi-modular artificial neural networks (ANNs). Action-oriented sys-
tems are studied mainly by focusing on separate ANN modules (algorithms) and on separate
hardware modules, but all these software and hardware modules are parts in the concept of a
modular and heterogeneous system.

Approach

For this thesis the approach has been to start with simple processing elements and simple
means of communication. In a way this approach is inspired by the relatively simple build-
ing blocks (nerve cells) the brain consists of. As needed, architectural features have been
added to this basic concept. For the major part of my study the REMAP architecture has
been used as a starting point. This is a reconfigurable bit-serial SIMD (Single Instruction
stream, Multiple Data stream) processor array . As the processing elements are reconfig-
urable it is possible to include dif ferent types of support for dif ferent kinds of algorithms.
Architectural principles and components that are essential for the ef ficient simulation of the
most frequently used ANN models are established in the thesis. One of the results is that sur-
prisingly few additions to the basic concept are required to get good performance and high
efficiency.

Summary Outline

The rest of this thesis summary is outlined as follows: first I discuss the design space on a
general level; then follows a more detailed discussion of the design space for control, pro-
cessing elements (PEs), and the interconnection network. The next major section will dis-
cuss the ANN implementation studies I have done. In the sub-sections some of the findings
which make it possible to find a suitable architecture in the vast design space will be pointed
out. These findings are used in the following section to design our own REMAP architecture
and the REMAP prototype. After that I briefly point out possible future directions for this re-
search. The major conclusions of this thesis are then summarized in the next section. Finally,
there are sections with corrections and comments, abbreviation list, acknowledgments, and
references.

THESIS SUMMARY

3

Design space

The design space for computers that can be used for ANN is very large, and even if it seems
futile to talk about an optimal design there are a number of interesting trade-offs to be made.
One basic trade-of f is between flexibility

 and speed

. That is, to increase speed we usually
have to sacrifice some flexibility. In one end of the spectrum we have ordinary general pur -
pose computers and in the other end we might have analog or optical computers. In between
we have various digital parallel computer designs.

The large number of ANN algorithms and the continuous development of new models
and variations suggest that a certain degree of flexibility through reprogramming is desir -
able. This is usually solved by constructing a general architecture that can be software pro-
grammable. With the arrival of reconfigurable hardware, such as field programmable gate ar-
rays (FPGAs), it is possible to achieve some of the needed flexibility through “soft
hardware.” The possibility to build a computer for ANN with FPGAs has been explored in
Paper D

.
While analog or optical computers in certain situations might give higher performance

than corresponding digital computers they will need to be designed for a specific algorithm
and cannot easily be reprogrammed or reconfigured. Even though I can see a future where
analog modules fit into the concept of multi-modular computers (esp. close to sensors) it has
not been considered in this thesis. Instead I have concentrated on the part of design space
where digital

, software programmable

, parallel computers

 can be found, as the flexibility to
run many different ANN models is desirable.

Given that we want to design a digital parallel computer suitable for ANN there are still
many trade-offs. The main questions are:

•

What form and level of execution autonomy should the PEs have?

•

What is a suitable size and complexity of the PEs? How many PEs should be avail-
able and what amount of memory should each PE have?

•

How should the PEs be interconnected?
These questions correspond to the building blocks of a parallel computer: the controller

, the
processing elements

and their memory, and the interconnection network

, which will be dis-
cussed in the following sub-sections.

How will this (still lar ge) design space be further reduced? The most important aspect
has been the intended application: action-oriented systems, that is, be able to run a number
of different artificial neural networks models.

Highly Parallel Computers for Artificial Neural Networks

4

Control design space

There has been a long controversy in the parallel computer field between the concept of
SIMD

 (Single Instruction stream, Multiple Data streams) and MIMD

 (Multiple Instruction
streams, Multiple Data streams) from the taxonomy by Flynn [10]. The core of the contro-
versy is the question of how much autonomy each PE should have. Whereas the SIMD com-
puter has one single controller the MIMD computer will use a controller for each PE, pro-
viding the PEs maximal autonomy.

Disadvantages of the MIMD concept are [5]: the problem to program and debug hun-
dreds of processors running independently, more parallelism is found in data than in instruc-
tions, and the high cost of synchronization. A major advantage of MIMD is that highly opti-
mized “off-the-shelf” components like RISC processors and high density memory modules
can be used as building blocks.

One trend among today’ s general purpose parallel computers is to either extend the
SIMD concept with a suitable amount of autonomy (like local address modification), or to
reduce the MIMD concept to SPMD (Same Program on Multiple Data streams).

This debate can be extended to the two major paradigms used to express parallelism:
data parallelism

 and control parallelism

 [5]. Whereas the former finds parallelism in the
data set the latter will find parallelism in the instructions. In a study by Fox [1 1] he reports
that the most successfully implemented problems on parallel computers were those which
could be specified as data parallel.

In this thesis the basic SIMD concept, thus, a data parallel paradigm, has been found suf-
ficient for most of the ANN models studied. However , action-oriented systems with their
structure of cooperating modules suggest that the SIMD concept should be extended to a
MIMSIMD

 (Multiple Instruction streams for Multiple SIMD arrays) as will be discussed in
Papers A

, B

, C

, and G

.

THESIS SUMMARY

5

PE design space

In the PE design space there are important decisions to be made on how many PEs there
should be, and the size and complexity of these PEs. There is a trade-of f between having
many simple PEs and few complex PEs, a PE granularity

 design choice.
While discussing parallel computers it is interesting to use an adjective to indicate the

number of PEs available. And while studying parallel computers for ANN we found that the
term massively parallel

 was used without defining what was meant by massive. Therefore
we set out to make a suitable definition, thus, in Paper B

 we argue that being massive should
mean that the structure gives an impression of being solid. That is, the number of units
should be so high that it is impossible to treat them individually; they must be treated en
masse

. By definition then, each PE must be told what to do without specifying it individual-
ly. This is actually the concept of SIMD or SPMD. The lower bound for massive parallelism
will then be set by the largest computer in which each PE is treated as an individual with its
own instruction flow (MIMD). We think that for the moment 2

12

 = 4096 is a suitable limit. It
is useful to have characterizations also of the lower degrees of parallelism and to this end we
suggest a rough division between: highly

 parallel, moderately

 parallel, and barely

 parallel.
By defining the limits to 2

12

, 2

8

, 2

4,

 2

0

 we have an easy-to-remember scheme for the charac-
terization. In the previous section we introduced the MIMSIMD concept as a suitable way of
extending the SIMD concept for action-oriented systems, this also implies that we prefer a
system of highly parallel modules

 to a single massively parallel computer.
To guide the decision on the PE complexity required it is interesting to determine the

precision

 needed in calculations and for input/output (I/O). This precision is of course deter-
mined by the intended application area, ANN. From the discussion in Paper B

 it is clear that
most ANN implementations will not need very high precision calculations (typically less
than 16 bits). In general the precision used by I/O will depend on the environment in which
the ANN or the action oriented system is used, but it can be noted that layers close to sensors
often use low precision, say 16 bits or less.

The PE granularity decision also depends on the amount of memory needed for each PE
and whether the memory should be on-chip or of f-chip. Given additional levels of autono-
my, other sets of constraints might become important. For example, if local address modifi-
cation is wanted, each PE’s address lines need to be sent outside of the chip (assuming of f-
chip memory). Thus, the number of pins becomes a limiting factor.

Many realization aspects

 will also influence the PE granularity decision. One such real-
ization aspect is the type of VLSI (very large scale integration) technology available. Differ-
ent technologies, for example CMOS, GaAs, and FPGA, will introduce dif ferent optima in
our design space. Another realization aspect is packaging. That is, the number of pins that
can be used to connect the PEs to external memory and I/O are limited. The load they can
take and their maximum switching rate are also limited. The use of standard components,
like SRAM or DRAM is desirable as such components use highly optimized realizations.
Even though I, as mentioned earlier , suggest that highly parallel computer modules are bet-
ter than massively parallel computers for ANN calculations, the number of PEs in a module
are still too high for single chip solutions to be feasible. This requires us to have many sig-

Highly Parallel Computers for Artificial Neural Networks

6

nals to go off-chip. Within the REMAP project multi chip modules (MCM) are investigated
as a possible remedy for the off-chip connectivity problem.

If a bit-parallel approach is not taken for granted, a bit-serial

 approach opens up a new
set of opportunities. Besides allowing many more PEs into each chip the bit-serial approach
will allow a trade-off between speed and precision, even dynamically. This lets us make im-
portant experiments on the precision needed for dif ferent ANN models. Bit-serial design
also allows for rapid prototyping

 using FPGAs. Even if FPGAs have low density compared
to full custom VLSI a highly parallel computer can be built with FPGAs if bit-serial PEs are
chosen, as shown in Paper D

.
The simplicity of bit-serial PEs allows a high clock frequency to be used. The chip area

is also more efficiently used for bit-serial calculations. It can in fact be argued that bit-serial
computation is always the most ef fective way of computing [12]. Still, for bit-serial arith-
metic to be competitive in modern CMOS technology the design either needs to implement
very many (more than 128) PEs or to clock them at high clock speeds (probably above
500MHz). The possibility of such sizes and clock-speeds are shown in the Blitzen project
[6] which 1990 resulted in a chip with 128 PEs in 1.25 µ

m standard CMOS process and by
Larsson-Edefors who built a 470 MHz bit-serial arithmetic unit in 1.0 µ

m standard CMOS
process [14]. However, there are drawbacks in having very many PEs and using high clock-
speed. One problem is the size mismatch between PE array size and problem size in the case
of very many PEs. For the high speed PEs it becomes hard to construct the fine-grain con-
troller. Thus, for future CMOS implementations these problems must be addressed. Howev-
er, the modular concept and a distributed (on-chip) control seem to alleviate the problems.
Another possible drawback with bit-serial computation is the dif ficulty of performing float-
ing point calculations, but studies by Åhlander [24] indicate that bit-serial floating point
hardware is a feasible alternative.

The synaptic processing rate argument

While discussing granularity it is also interesting to discuss the balance between the process-
ing power and the network size (that is, the number of weights). Holler [13] has introduced
the concept of synaptic processing rate

 (SPR) (or CPSPW – connections per second per
weight). His argument for the importance of this measure is the following: Biological neu-
rons fire approximately 100 times per second. This implies that each of the synapses pro-
cesses signals at a rate of about 100 per second, hence the synaptic processing rate (SPR)
(or, to use Holler’s terminology, the CPSPW) is approximately 100.

If we are satisfied with the performance of biological systems (in fact, we are even im-
pressed by them) this number could be taken as a guide for ANN implementations. Many
parallel implementations have SPR numbers which are orders of magnitude greater than
100, hence have too much processing power per weight. A conventional sequential comput-
er, on the other hand, has an SPR number of approximately 1 (if the network has about a mil-
lion synapses), that is, it is computationally under -balanced. Bit-serial PEs might be a suit-
able compromise between these extremes. It should be noted that Holler ’s argument is of
course not valid in batch processing training situations.

THESIS SUMMARY

7

Conclusion

Without knowing all the realization aspects there is no definite answer about the best PE
granularity. But following our design approach we started to explore the simplest form of
PEs, the bit-serial ones. This choice for our first prototype architecture has made it possible
to make a highly parallel prototype with large flexibility by using FPGAs and the possibility
to easily experiment with different precision in the calculations.

Interconnection network design space

A large number of interconnection networks (ICNs) have been suggested for parallel com-
puters over time, thus the ICN design space is large. Even after restricting ourselves to com-
munication networks suitable for SIMD control, that is, synchronous communication, there
are many choices of topology available. The most powerful communication is found in an
all-to-all network, but the cost to implement this structure quickly becomes prohibitive. At
the other end of the cost/complexity scale we find the bus. Even if the structure is simple, the
possibility to perform broadcast makes a bus interesting for ANN computations. Between
these two extremes many topologies have been suggested [8], for example, ring, star , tree,
mesh, hypercube, shuffle-exchange, omega, Benes.

The trend among highly parallel computers today is to use low-dimensional networks

like ring, mesh, torus, or 3D networks, as well as trees and fat-trees. Each of these networks
can be shown to be optimal under certain important criteria, like hardware volume or wiring
cost [7, 17].

The special requirements for ANN computations make other more specialized communi-
cation structures

 attractive. For instance the use of broadcast becomes very interesting, sup-
porting the spreading of activation values among nodes.

Design space conclusion

Based on earlier studies of highly parallel architectures [9] and a general conception of the
architecture’s usefulness the hypothesis has been that a linear SIMD array

, internally con-
nected using a ring

 topology, but also supporting broadcast

, is a suitable architecture for
ANN calculations. In this thesis I have conducted studies around this concept which, as it
turns out, fits very well to the requirements of ANN calculations. As discussed in the next
section two important extensions are the support for reduction operations and the support for
fast multiplication.

On a higher level the REMAP concept also includes the idea to support multi-modular
ANNs by using a number of these highly parallel SIMD array modules

 interconnected to
form a modular

 and heterogeneous system

.

Highly Parallel Computers for Artificial Neural Networks

8

Studies of ANN implementations on highly parallel

computers

General studies of ANN implementations on highly parallel computers have been conducted
as well as specialized studies of our experimental architecture REMAP . The results have
then been used to restrict the hardware design space (finding what extensions to the basic
concept that are needed).

Paper B

surveys the most used models and describes some basics of ANNs. The compu-
tational and communication needs are analyzed for the basic models. The different dimen-
sions of parallelism in ANN computing are identified, and the possibilities for mapping onto
the structures of dif ferent parallel architectures are analyzed. Some means to measure the
performance of ANN simulations are given. A survey of 27 different parallel computers used
for ANN simulations is also given.

In Paper E

 I introduce the concept of localized learning systems

 (LLSs). This concept
makes it possible to combine many commonly used ANN models into a single “superclass.”
The LLS model is a feedforward network using an expanded representation with more nodes
in the hidden layer than in the input or output layers. The main characteristics of the model
are local activity and localized learning in active nodes. Some of the well known ANN mod-
els that are contained in LLS are generalized radial basis functions (GRBF), self-or ganizing
maps (SOM) and learning vector quantization (L VQ), restricted Coulomb ener gy (RCE),
probabilistic neural network, sparse distributed memory (SDM), and cerebellar model arith-
metic computer (CMAC). The connection between these models as variations of the LLS
model is demonstrated. This connection also lets us suggest new variants of “old” ANN
models. In two separate papers, Paper G

and Paper H

, two of the LLS models are studied in
greater detail (SDM

 respectively SOM

). Furthermore, in Paper J

 the mapping of two well
known ANNs not contained in the LLS class, the multilayer perceptron

 (MLP) with error
back-propagation and the Hopfield network

, are studied. Thus, it covers both the mapping of
feedforward and feedback neural nets. The characteristics of these models are briefly out-
lined. The computations are analyzed for all these models, performance figures are given,
and system implementation is discussed.

THESIS SUMMARY

9

Mapping ANN onto the computer architecture

Before the best mapping can be found it is important to identify the kind of parallelism
found in the algorithm. In Paper B

the different dimensions of parallelism

 typically found in
ANN algorithms are identified as follows:

Training session parallelism
Training example parallelism

Layer and Forward-Backward parallelism
Node (neuron) parallelism

Weight (synapse) parallelism
Bit parallelism

Among these forms of parallelism the greatest amount of parallelism is found in training
session, training example, node, and weight parallelism. As the first two are batch oriented
and cannot be used in real-time the most interesting forms of parallelism are found to be
node and weight parallelism

. Maybe node parallelism is the most natural form, that is, map-
ping a node (neuron) onto a PE. This is also suggested as the basic mapping for all the mod-
els studied. However, this basic mapping becomes inefficient if there is a large mismatch be-
tween the sizes of different node layers. In Paper F

 a strict node parallel mapping is therefore
relaxed and a weight parallel mapping is used for the final layer, thus we get a “mixed paral-
lelism

” solution. To support weight parallelism, facilities to combine the “weight output” is
needed, thus the addition of an adder-tree

 to the architecture is suggested. This adder-tree
can also support the implementation of MLPs with back-propagation learning as suggested
in Paper J

.
For Kanerva’s SDM model described in Paper G

, a node parallel mapping used for all
layers is found to be the most efficient one. This is accomplished by using a so called trans-
posed mapping.

Operations required for ANN calculations

The basic operations for ANN calculations are addition, subtraction, and multiplication.
Multiplication is the most complex of these operations and can easily become the bottle-
neck. Therefore the multiplication

 should be supported with extra hardware.
While studying the implementation of SDM in Paper G

, it was found beneficial to add a
bit-counter

 to the architecture. By adding such a counter to each PE, the selection time (the
first layer) can be reduced by a factor of three to four. As the basic SDM model does not use
a the multiplier it could actually be exchanged for the counter. This possibility is particularly
interesting if reprogrammable logic is used.

Much of the computing power of ANN comes from the use of non-linear functions, for
example, the sigmoid or a Gaussian. Since the calculation of such functions can be time con-
suming the support for such functions needs some consideration. This is discussed in Papers

B

 and E

.

Highly Parallel Computers for Artificial Neural Networks

10

Adding control autonomy to allow addition and subtraction to take place at the same
time (depending on an add/sub control bit) has been found to speed up certain parts of the
SDM calculations by a factor of two.

Many of the ANN implementations studied can benefit numerically from having satura-
tion arithmetic

 where overflow saturates to the maximum value and underflow is set to the
minimum value.

Communication structure required by ANN

The basic building block of the brain is the nerve cell (neuron). In humans there are about
10

12

 neurons. But the complexity of the brain is not limited to the vast number of neurons.
There is an even lar ger number of connections between neurons. One estimate is that there
are a thousand connections per neuron on the average, giving a total of 10

15

 connections in
the brain. Neurons are often grouped naturally into lar ger structures (hundreds of thousands
of neurons). Inside these cortical areas or modules the interconnection is denser than be-
tween modules. Much of the impressing performance of biological systems comes from the
highly interconnected (and modular) structure. Thus, communication is essential for the neu-
ral networks field and this is also reflected in the usage of the term connectionism. This
structure should also be taken as a guide for ANN implementations.

One such multi-modular structure is suggested for action-oriented systems

. These sys-
tems consist of a number of cooperating, often different, ANN models. These separate ANN
models often use dense interconnection patterns

. In Paper B

 we find broadcast or ring com-
munication to be very ef ficient ways to support these dense communication patterns. It is
also noted that the synchronous form of communication resulting from a SIMD control
helps to achieve an effective solution. To support ANN models which use competitive learn-
ing, and which use the “ transposed mapping

” (i.e., SDM), we early on added a select-first
network and global-or into the communication structure. These structures are also generally
needed for general purpose programming on SIMD computers.

Later in my studies the importance of the reduction operations

 is noted, cf. Paper F

. This
is especially true in on-line situations where batch training is not suitable. The importance is
clearly shown for LLSs in Paper F but these operations are also useful for MLP with back-
propagation, even if this is not stressed in the earlier Papers B and J. Surveying other archi-
tectures (see Papers B and F) few architectures are found that have support for reduction op-
erations, thus few of the architectures include a suitable support for the LLS class of models.

To support the communication needed between dif ferent modules an optical network
connected as a star is suggested. This is briefly described in Paper C. By using time multi-
plexing (TDMA) this network can support real-time and time-determinism. In each module
a real-time database reflects the status of the environment which is cyclically distributed
over the optical network. A more thorough treatment of the intermodule communication
structure is found in [18].

Real-time, Embedded, Modular, Adaptive, Parallel processor project – REMAP

11

Real-time, Embedded, Modular, Adaptive,
Parallel processor project – REMAP
The REMAP project started as “Reconfigurable, Embedded, Massively Parallel Processor
Project” but has evolved into “Real-time, Embedded, Modular, Adaptive, Parallel processor
project.” This change reflects the change of focus in the project. The reconfigurability be-
came less emphasized, even if it is still there. As discussed in Paper A we did instead find
modularity, adaptability and real-time operations important for this type of massively paral-
lel computer. It also has become apparent that highly parallel modules fit the intended appli-
cation area better than a monolithic massively parallel computer.

The REMAP project is described in Paper C and the first realization of a REMAP mod-
ule, a reconfigurable bit-serial processor array with SIMD control, is described in Paper D.
To allow real-time operations and time determinism the architectural concept is based on re-
source adequacy, both in processing and communication [15, 16]. Learning algorithms are
cyclically executed in distributed SIMD-nodes, which access their data from local real-time
databases, updated with data from the other nodes via a shared high-speed optical link. Oth-
er aspects of the project are described in [3, 4, 18, 19, 21, 23]. The support for the multi-
modular REMAP is an ongoing research.

As described earlier in this summary support for fast multiplication is desired. In Paper J

the very simple bit-serial multiplier suggested by Ohlsson in [20] was added to the architec-
ture. This simple bit-serial multiplier uses a carry-save technique and can equalize multipli-
cation time relative to addition time. In Paper G I suggest that the bit-serial multiplier be re-
placed by a simple bit counter that can support fast Hamming distance calculations. For the
LLS model described in Paper E I found a need for reduction operations. The architectural
support for this is analyzed in Paper F. Three different implementations of global-sum are
identified and studied in Paper F. It is found that a bit-serial tree of adders gives the best per-
formance/size ratio. For the global-minimum operation a new bit-serial structure is pro-
posed. This new min/max network has the advantage of not needing a global-or network
which the standard bit-serial way of finding minimum needs. This also results in a speed ad-
vantage in most cases. These reduction operations can be seen as special communication
structures, but besides them I have not found any other means of communication necessary
in a single module.

All the studied ANN implementations in this thesis show that the REMAP concept is an
excellent architecture. Minor additions have been needed, but as they have been added a
high performing and efficient architecture has emerged.

Highly Parallel Computers for Artificial Neural Networks

12

The REMAP prototype

Building custom computers with FPGAs is today a field of research in its own right. In Pa-

per D the possibility to build a REMAP module with FPGAs was explored. One of the find-
ings was that in order to use the FPGA circuits efficiently, and get high performance, the sig-
nal flow is crucial. Unfortunately the Xilinx EDA software did not support this design issue
at the time of implementation (1992-1993), and the signal flow design had to be made by
hand. The need to assign the I/O pins to memory and controller further restricted the recon-
figurability. Thus, even if the processing elements are simple and regular , which makes it
easy to implement them with the XACT Editor, the possibility to reconfigure has not been
used much in our project. On the other hand the implemented PE design fulfills the require-
ments for most ANN models and thus the need to change the PEs is limited. This design
method also gives the PEs high performance, with clock rates up to 40-50 MHz. These is-
sues are also discussed by Linde and Taveniku in [21].

The positive side of using FPGAs is that they allow you to think of the computer as
“modeling clay” and you feel free to really change the architecture towards the application
and not the other way around. With better tools this kind of architecture also has the poten-
tial to allow different architectural variations to be easily tested and evaluated on real appli-
cations.

Future REMAP Research

The main objective for future REMAP research is to develop the multi-modular concept.
The design and use of multi-modular ANN, and the question of how to map them onto multi-
modular highly parallel computers, should be addressed.

For the next generation of REMAP computers there are of course also many other re-
search issues to be resolved. Whether a new realization technology will result in a dif ferent
PE granularity is one such issue. And if the bit-serial design is retained it is clear that the
control issues must be addressed.

MAIN CONTRIBUTIONS

13

MAIN CONTRIBUTIONS
The main results presented in this work are the following:

• A new system-architecture REMAP (Real-time, Embedded, Modular , Adaptive, Par-
allel processor project), incorporating highly parallel, communicating processing
modules, is presented as a candidate platform for future multi-modular artificial neu-
ral networks (ANNs).

• The suggested architecture for the modules is a linear SIMD (Single Instruction
stream, Multiple Data stream) array , internally connected using a ring topology , but
also supporting broadcast and reduction operations. Besides addition and subtraction
the PEs need to support fast multiplication, which is identified as the most important
operation in ANN implementations. For certain ANN models minor additions or re-
placements of PE features have been suggested, for example, the addition of a bit-
counter to support Kanerva’s sparse distributed memory (SDM) is proposed.

• Requirements for efficient mapping of ANN algorithms onto highly parallel comput-
er modules are identified. This has been accomplished both by studies of ANN imple-
mentations on general purpose parallel computers as well as designs of new parallel
systems tuned for ANN computing.

• The terms massively/highly/moderately/barely parallel are defined. The analysis sug-
gest that modules of highly parallel modules are better than a single monolithic mas-
sively parallel computer, i.e., each module should have less than 4096 PEs.

• Six different dimensions of parallelism in ANN calculations have been identified. For
action-oriented systems it is established that node and weight parallelism are the
most important. In this thesis I also establish that the combination of node and weight
parallelism, “mixed parallelism”, is the preferred form of parallelism for most of the
ANN models studied.

• Many of the analyzed models are similar in structure and can be studied in one con-
text. I therefore suggest and define a new superclass of ANN models called localized
learning systems (LLSs). A parallel computer implementation of LLS is analyzed and
the importance of the reduction operations is recognized. After adding support for re-
duction operations to the REMAP computer concept, it becomes very well suited for
LLS.

• For many ANN algorithms, the reduction operations have been found to be an impor-
tant extension to the basic SIMD architecture. Three implementations of global-sum
are identified and studied. It is found that a bit-serial tree of adders gives the best per-
formance/size ratio. For the global-minimum operation a new bit-serial structure is
proposed. This new min/max network has the advantage of not needing a global-or
network as the standard bit-serial way of finding minimum does. This results in a
speed advantage in most cases.

Highly Parallel Computers for Artificial Neural Networks

14

• A REMAP prototype containing 128 bit-serial PEs has been built, showing that it is
possible to build a highly parallel computer module suitable for ANN calculations
with field programmable gate arrays.

• The potential of the suggested architecture is shown through theoretical studies, for
example, an SDM implementation of a normal problem using 256 REMAP process-
ing elements is found to run 10 times faster than the normal Connection Machine
simulation, where 8k processing elements are used. Another example is the very effi-
cient implementation of self-organizing maps on the REMAP architecture.

CORRECTIONS AND COMMENTS

15

CORRECTIONS AND COMMENTS
This thesis consists of papers that have been published as separate documents and no correc-
tions have been made to the content. However , there are some corrections and clarifications
that should be made. These are listed below.

• The number of layers defined in Paper J is not consistent with the other papers. In Pa-

per J the layer count is the number of node layers, while in Paper A to Paper H it is the
number of weight layers.

• In Paper J on page II-502 in Algorithm 1, Step 2, replace ‘ ’
with ‘ ’

• In Paper J the description of the problem associated with accessing the weight matrix
 during the feedforward phase and needing to access the transposed matrix

during the back-propagation phase is sketchy. Solutions to this problem can be found
in Paper B, for example using skewed matrices or an adder -tree. Additionally, three
different forms of adder-trees are suggested and analyzed in Paper F.

net j
l()

wi j
l()

oi
l 1–()

i∑=
net j

l()
w j i

l()
oi

l 1–()
i∑=

W WT

Highly Parallel Computers for Artificial Neural Networks

16

ABBREVIATIONS

17

ABBREVIATIONS
The following abbreviations are used in this thesis:

ALU arithmetic and logic unit
ANN artificial neural network
ANS artificial neural systems
AOS action oriented system
BAP bit-serial array processor
BP back-propagation
CL competitive learning
CLB combinatorial logic blocks
CMAC cerebellar model arithmetic computer
CMOS complementary metal oxide silicon
CPS connections per second
CPSPW connections per second per weight
CU control units
CUPS connection updates per second
DRAM dynamic RAM
EBF elliptic basis function
ER expanded representation
FA full adders
FIFO first in first out
FLOPS floating point operations per second
FPGA field programmable logic arrays
GRBF generalized radial basis function
GaAs gallium arsenide
HD Hamming distance
HEP high energy physics
HyperBF hyper basis function
I/O input and output
ICN interconnection network
IOB input-output blocks
IPS interconnections per second
LAN local area network
LHC large hadron collider
LLS localized learning system
LRTDB local real-time database
LVQ learning vector quantization
MCM multi-chip modules
MD Mahalanobis distance
MIMD multiple instruction streams, multiple data streams
MIMSIMD multiple instruction streams for multiple SIMD arrays
MLP multilayer perceptrons
MM memory modules
MSB most significant bit

Highly Parallel Computers for Artificial Neural Networks

18

PCA principal component analysis
PE processing element
PNN probabilistic neural networks
RAM random access memory; a better term would be read and write memory (RWM)
RAN resource-allocation network
RBF radial basis function
RBP recurrent back-propagation
RCE restricted Coulomb energy
REMAP real-time, embedded, modular, adaptive, parallel processor project
RISC reduced instruction set computer
RPCL rival penalized competitive learning
RWC real world computing
SDM sparse distributed memory
SIMD single instruction stream, multiple data streams
SOFM self-organizing feature maps
SOM self-organizing maps
SONN self-organizing neural network
SPMD same program on multiple data streams
SPR synaptic processing rate
SRAM static RAM
SSC superconducting super collider
TDMA time division multiple access
TFM topological feature maps
TLU threshold logic unit
TRD transition radiation detector
VLSI very large scale integration
WA work area
WDMA wavelength division multiple access
WS workstations
WTA winner-take-all
WUPS weight updates per second

ACKNOWLEDGEMENTS

19

ACKNOWLEDGEMENTS
First and most I would like to thank my supervisor and friend Prof. Bertil Svensson, now at
Chalmers University of Technology, for introducing me to the field of parallel computers,
for his guidance and for his comments during the evolution of this thesis.

I would also like to send my thanks to all the co-authors of the papers in this thesis.
Furthermore, I would like to thank all the people at Luleå University of Technology who

have assisted me by reading parts of this thesis and offering me their suggestions, comments,
criticism, and encouragement: Prof. Per -Ola Börjesson, Prof. Svante Carlsson, Assoc. Prof.
Lennart Gustafsson, Assoc. Prof. Timo Koski, Lic. Tech. Per Ödling. The support from the
head of the Computer Science and Electrical Engineering department Assoc. Prof. Anders
Grennberg and the head of the Computer Science and Engineering division Assoc. Prof.
Lennart Andersson is much appreciated.

Discussions among the project group members of REMAP have been of the utmost value
for understanding the possibilities of the REMAP computer architecture.

I also would like to acknowledge Prof. Erkki Oja, Dr . Pasi Koikkalainen and Dr . Jouko
Lampinen. During the time I visited them at the Information Technology Laboratory at
Lappeenranta University of Technology I got many important impulses for my later research
work. Likewise I would like to thank Prof. Ed Davis for kindly inviting me to visit North
Carolina State University (NCSU) to work on the subject of nonconforming computers. It
was a pleasure to cooperate with him on Paper F.

I also acknowledge the financial support to REMAP from STU and NUTEK (Swedish
National Board for Industrial and Technical Development). The stay at NCSU was support-
ed by the Luleå University of Technology Board of Graduate Studies and Research.

Tack! Tack!

Highly Parallel Computers for Artificial Neural Networks

20

REFERENCES

21

REFERENCES
[1] Arbib, M. A., Metaphorical Brain 2: An Introduction to Schema Theory and Neural Networks,

Wiley-Interscience, 1989.
[2] Arbib, M. A., “Schemas and neural network for sixth generation computing,” Journal of Par-

allel and Distributed Computing, vol. 6, no. 2, pp. 185-216, 1989.
[3] Bengtsson, L., A. Linde, T. Nordström, B. Svensson, M. Taveniku and A. Åhlander, “Design

and implementation of the REMAP 3 software reconfigurable SIMD parallel computer ,” in
Fourth Swedish Workshop on Computer Systems Architecture, Linköping, Sweden, 1992.

[4] Bengtsson, L., A. Linde, B. Svensson, M. Taveniku and A. Åhlander, “The REMAP massively
parallel computer platform for neural computations,” in Third International Conference on Mi-
croelectronics for Neural Networks (MicroNeuro '93), Edinbur gh, Scotland, UK, pp. 47-62,
1993.

[5] Blank, T. and J. R. Nickolls, “A grimm collection of MIMD fairy tails,” in Frontiers of Mas-
sively Parallel Computation (Frontiers ´92), H. J. Siegel Ed., McLean, Virginia, USA, pp.
448-457, 1992.

[6] Blevins, D. W., E. W. Davis, R. A. Heaton and J. H. Reif, “Blitzen: A highly integrated mas-
sively parallel machine,” Journal of Parallel and Distributed Computing, vol. 8, pp. 150-160,
1990.

[7] Dally, W. J., “Performance analysis of k-ary n-cube interconnection networks,” IEEE Transac-
tions on Computers, vol. 39, no. 6, pp. 775-785, 1990.

[8] Feng, T.-Y., “A survey of interconnection networks,” IEEE Computer, no. 12, pp. 12-27, 1981.
[9] Fernström, C., I. Kruzela and B. Svensson, LUCAS Associative Array Processor - Design, Pro-

gramming and Application Studies, vol. 216 of Lecture Notes in Computer Science, Berlin:
Springer Verlag, 1986.

[10] Flynn, M. J., “Some computer or ganizations and their ef fectiveness,” IEEE Transactions on
Computers, vol. C-21, pp. 948-60, 1972.

[11] Fox, G. C., “What have we learnt from using real parallel machines to solve real problems?,”
Caltech report C3P-522, 1989.

[12] Hockney, R. W. and C. R. Jesshope, Parallel Computer 2, Adam Hilger imprint by IOP Pub-
lishing Ltd., 1988.

[13] Holler, M. A., “VLSI implementations of neural computation models: a review,” in Neural In-
formation Processing Systems 3, R. P. Lippmann, J. E. Moody and D. S. Touretzky Eds. Den-
ver, CO, USA, pp. 993-1000, 1990.

[14] Larsson-Edefors, P., “A 470-MHz CMOS true single phase clocked bit-serial arithmetic unit,”
IEEE Transactions on Circuit and Systems, I: Fundamental Theory and Applications, vol. 41,
no. 4, pp. 337-341, 1994.

[15] Lawson, H. W., “Cy-Clone: an approach to the engineering of resource adequate cyclic real-
time systems,” The Journal of Real-Time Systems, vol. 4, no. 1, pp. 55-83, 1992.

[16] Lawson, H. W., Parallel Processing in Industrial Real-Time Applications, Englewood Cliffs,
NJ, USA: Prentice-Hall, 1992.

[17] Leiserson, “Fat-trees: universal networks for hardware-ef ficient supercomputing,” IEEE
Transactions on Computers, vol. 34, pp. 892-901, 1985.

[18] Nilsson, K., “Time-deterministic communication in a computer system for embedded real-time
applications,” Licentiate Thesis 179L, Department of Computer Engineering, Chalmers Uni-
versity of Technology, Sweden, 1994.

Highly Parallel Computers for Artificial Neural Networks

22

[19] Nilsson, K., B. Svensson and P.-A. Wiberg, “A modular, massively parallel computer architec-
ture for trainable real-time control systems,” Control Engineering Practice, vol. 1, no. 4, pp.
655-661, 1993.

[20] Ohlsson, L., “An improved LUCAS architecture for signal processing,” Tech. Rep., Dept. of
Computer Engineering, University of Lund, 1984.

[21] Taveniku, M. and A. Linde, “A reconfigurable SIMD computer for artificial neural networks,”
Licentiate Thesis 189L, Department of Computer Engineering, Chalmers University of Tech-
nology, Sweden, 1995.

[22] von Neumann, J., The Computer and the Brain, New Haven: Yale University Press, 1958.
[23] Wiberg, P.-A., “Change-oriented time-deterministic real-time systems: motivation and imple-

mentation,” Licentiate Thesis 177L, Department of Computer Engineering, Chalmers Univer -
sity of Technology, Sweden, 1994.

[24] Åhlander, A. and B. Svensson, “Floating point calculations in bit-serial SIMD computers,” Re-
search Report CCA-1992, Centre for Computer Architecture, Halmstad University, 1992.

68

Issues and Applications Driving Research in
Non-Conforming Massively Parallel Processors

Edward W. Davis+, Tomas Nordström‡, and Bertil Svensson*

+ North Carolina State University
Raleigh, North Carolina

‡ Luleå University of Technology
Luleå, Sweden

* Chalmers University of Technology
Gothenburg, Sweden

Abstract

Concepts such as modularity and heterogeneity are be-
coming important for a growing number of applications
that use massively parallel computer architectures. Ap-
plication areas which seem to require these concepts ap-
pear in real world computing and action oriented
systems. In many instances the current offerings of high
performance, parallel, general purpose computers are
not well suited to these applications since they do not ad-
dress issues like real-time, time determinism, heteroge-
neous communication, physical size, power consumption,
etc. These issues are important in special systems that
can be viewed as non-conforming to general purpose
markets. The differences in needs will be explored by
looking into two examples of modular and heterogeneous
systems: high performance instrumentation systems and
action oriented systems. We raise some research issues
that need to be resolved in order for modular and hetero-
geneous systems to be used effectively and efficiently.

Key words:

Massively Parallel, Non-Conforming Computers, Modu-
lar, Heterogeneous, Embedded, Real-World Computing,
Real-Time, Action Oriented Systems.

1. Introduction

The goal of the Frontiers '92 Workshop on Processor Ar-
chitectures was to identify problems that could be ad-
dressed through research, and whose solutions would
promote the availability and use of massively parallel pro-
cessing. In recent years the meaning of "massively parallel
processing" has broadened. In 1986, when the first Fron-
tiers symposium was held, the phrase meant systems with
more than 1000 processing elements, and the architectural
model was definitely SIMD. Now it rightly includes
MIMD architectures, and variations on these two models.
It is less right, however, to call systems with 32 processors

massively parallel, as has been done in some instances. In
this paper our view of architectural models is quite liberal,
encompassing heterogeneous computing environments,
and we definitely are concerned with systems having thou-
sands of processors.

The workshop produced discussion on a broad range of
research issues. We expand on the discussion in selected
areas and identify problems and research issues from those
areas. The nature of this paper, consistent with the work-
shop, is not to report research results. It is to identify re-
search that needs to be done. Our interest is not systems
targeted for general purpose, high performance computing.
It is systems that are in some ways special purpose or ap-
plication specific. The use of "non-conforming" in the title
is meant to indicate systems that differ in substantial ways
from the commercial offerings, or that have unique re-
quirements that are not well met by current offerings. We
begin by defining terms and concepts.

Two important concepts in this paper are modularity
and heterogeneity. By "modular" we mean that a suitable
architecture can be achieved by combining a number of
building blocks (modules). Each module can be a comput-
er in its own right, and in our context each module could
be a homogeneous parallel computer module as well. "Het-
erogeneous" indicates that these modules can be of differ-
ent kinds, that is, they can differ in parallelism, control, I/O
support, and other aspects of their architecture. By having
different kinds of modules it is possible to use a module
that fits a certain part of the application very well, and by
combining modules we get a very good fit between an ap-
plication and the architecture for many applications. An
abstract view of such a system is given in Figure 1, where
there are three modules of different types which communi-
cate with each other and with the external world of periph-
eral devices, instruments, sensors, actuators, etc.

Davis, E. W., T. Nordström and B. Svensson, “Issues and applications driving
research in non-conforming massively parallel processors,” in

Proceedings of
the New Frontiers, a Workshop of Future Direction of Massively Parallel Pro-
cessing

, I. D. Scherson Ed., McLean, Virginia, 1992, pp. 68-78.

69

There are several additional concepts of importance.
The notion that a system is "resource adequate" means that
computational resources, including I/O, have the necessary
power to accomplish the task in an allotted amount of time.
"Embedded" systems are just those in which resources are
closely coupled to other parts of a system, such as sensors
or actuators. Having the capability to configure modular,
heterogeneous systems means that we can achieve embed-
ded systems with resource adequacy, which relieves us
from many of the real-time resource sharing problems.

Figure 1. A modular, heterogeneous, parallel system.

By studying two areas where modular and heterogeneous
architectures are suggested, specifically instrumentation
systems for large experiments and action oriented systems,
many important architectural aspects will be found. In ad-
dition to the two areas we mention, similar problems and
opportunities can be found in applications originating in
manufacturing, military, medical, environmental, space-
borne, and other endeavors.

In major experiments, such as the new particle colliders
proposed in the U.S. and Europe, data must be acquired
from thousands of physically distributed sensors. Data
rates are high and real-time processing is needed to select
important data and reject the rest. Parallel processing can
be used to advantage on the images of particle tracks and
energies. However, large packaged parallel machines are
not very suitable since processing requirements and the
physical environment makes it necessary to modularize
and embed processing resources in proximity to the sen-
sors. Other characteristics of this environment, and the re-
search issues it raises, are further discussed in Section 2.

In an action oriented system, sensory, motor, and pro-
cessing parts, all possibly utilizing neural network princi-
pals, are seen as an integrated system capable of

External Inputs

External Outputs

Parallel
Module

A

Parallel
Module

B

Non-Conforming System

Inter-module
communication

Parallel
Module

C

interacting with the environment in real-time. Integrated
should not mean that there is only one block of computa-
tion, instead it should be seen as a number of cooperating
smaller blocks. Each block is carrying out different styles
of signal processing, e.g. pattern recognition, vector quan-
tization, or error correction. Many blocks are potentially
implemented as artificial neural networks (ANN). This
modularization corresponds very well to how the brain is
organized, where real neurons often can be found to be
grouped into larger structures (hundreds of thousands of
neurons). In Section 3 we further explore the idea of action
oriented systems.

1.1 Demands placed on systems

The intended application areas, and the key concepts, lead
to a number of demands on these massively parallel sys-
tems. The first demand is

real-time

performance

. The im-
plication of this demand is that for each task there must
always be enough computational and I/O resources guar-
anteed. Since hardware is often cheap it is natural to use
resource adequacy as a hardware design philosophy. Dif-
ferent tasks require different computing paradigms and
system architectures. As a consequence, the final system
may be heterogeneous. Therefore, we need to find overall
system architectures in which we can still deal with, and
guarantee, the real-time demands.

The second demand is

embedded

implementations

.
Miniaturization and low power consumption are necessary
to achieve an embedding of resources. By taking advan-
tage of the advances made in VLSI technology and pack-
aging, e.g. multichip module techniques, the goals of both
miniaturization and low power consumption can be met. In
many cases embedding also leads to distributed systems,
which in turn implies that modularization is required.
Communication needs can be critical. Processing is fre-
quently required to be close to sensors and massively par-
allel I/O becomes an important issue.

The third demand is support for

safety critical

func-
tions

 and preparedness for

harsh environments

. Fault toler-
ant processor arrays and communication, and/or fault
tolerant computational models are increasingly important
for applications where human safety is involved. Alterna-
tively, fault tolerance is needed when applications require
computing equipment to operate in places where condi-
tions are harsh or repair is difficult.

The fourth demand is the ability to function in dynam-
ic,

real-world environments

. Adaptability to changing en-
vironments, and self-organization in relation to input
patterns that have never before been encountered, are nec-
essary functions. An emerging technology in order to
achieve such advanced behavior is the application of neu-
ral network principles. A way to cope with the complexi-
ties involved with advanced systems functioning in natural

70

environments is to use a multitude of cooperating ANNs,
organized in layers and hierarchies. Support for this must
then be given in the architecture.

The fifth, and final, demand that we consider here is the
need for

new development methods and tools.

 Action-ori-
ented systems, as well as other systems where the environ-
ment can not be fully modeled, must be developed through
interaction. This interaction exists both between the system
designer and the system, and between the system and the
environment. Developing/training the system on-line, us-
ing the real sensors and actuators, must be supported.

1.2 Contrasting system design goals

Unfortunately the problem areas mentioned above, cou-
pled with the system demands, do not fit very well into the
current offerings of high performance, parallel, general
purpose computers. General purpose computers do not
have the need or luxury to address the range of issues of
the embedded systems we are investigating. As examples
of different design goals and constraints consider:

General Purpose versus Embedded Systems

• Maximum performance • Resource adequate
• Throughput oriented • Real-time, time determinism
• Size is of minor concern • Size is important
• Standard languages like HPF • Custom programming
• Normal I/O capabilities • High I/O bandwidth
• Standard data formats • Data transformations

When the first massively parallel machines were devel-
oped each processing element (PE) was very simple, often
bit-serial [4, 16, 18]. Many of the organizations that devel-
oped such machines now have moved towards highly par-
allel computers where each PE is much more powerful [13,
19]. This is partly a result of technology advances, and
partly a reaction to the market pressure towards high maxi-
mum performance and general purpose usage. As a vendor
put it at the workshop: "The market is only interested in
using 32-bit data".

Certainly the grand challenge problems present strong
motivation and incentive to architects and corporations [9].
While all of the problems require very high computational
rates, most do not have real-time requirements. The one
exception is weather forecasting where response time, al-
though real, is not short. All can be handled using hard-
ware configured as large systems in controlled
environments. This has left the field of real-time, embed-
ded, and action-oriented systems without major support.
Many of the design goals of a general purpose highly par-
allel computer do not apply for this class of machines.

This paper suggests that modular, heterogeneous sys-
tems will play an important role in the future use of mas-

sively parallel processing. Sections 2 and 3 give examples
of these systems and describe some unique aspects and en-
vironments of their use. Section 4 emphasizes the research
issues that must be addressed for success with these special
systems that do not conform to current commercial offer-
ings.

2. High performance instrumentation
systems

An informative example of massive parallelism in an em-
bedded real-time system occurs in the field of high energy
physics (HEP). Particle colliders like the Superconducting
Super Collider (SSC) in the U.S., or the Large Hadron Col-
lider (LHC) in Europe produce very large quantities of ex-
perimental data in very short time spans. At projected
beam collision intervals of 15 ns, one of the sensing instru-
ments for the new colliders will output data at rates in the
neighborhood of 1013 bytes/s [3]. The problem is to ac-
quire interesting data from the vast quantity produced, and
then to find "events" of interest in the data such as particle
tracks and peaks of energy. These results are further pro-
cessed to determine energy, momentum, time duration, and
other aspects that represent the physics of the events.

Hierarchical and parallel configurations of computers
are used extensively for data acquisition and processing in
the instrumentation systems of colliders [8]. Detectors sur-
round the site of collisions in a physically large volume ex-
tending approximately 10 meters along the beam axis and
2 meters in diameter. In the terminology of the physicists,
the computer structure is in levels of "triggers". For the
LHC the first level trigger acts as a filter by identifying re-
gions of interest within the total set of detectors. The sec-
ond level trigger typically locates particle tracks or peaks
of energy. It thus reduces the data but increases the infor-
mation passed to a third level where the physics of the
events is processed. Our own work is at the second level. A
massively parallel processing array based on the Blitzen
SIMD device [5] is being evaluated for use by CERN in
the LHC [7].

2.1 System properties

This instrumentation system displays many of the proper-
ties that were described in Section 1. It also provides ex-
amples of research issues that must be addressed to realize
trigger structures or comparable systems. Note that SSC
and LHC are in the early phases of development, with ini-
tial experiments expected in the late 1990's, and thus these
issues are current and ongoing research issues.

If we consider the requirements of HEP instrumenta-
tion, the need for modular and heterogeneous properties
becomes apparent. The system is real-time in that colli-
sions occur at definite time intervals and the interesting

71

data for a collision must be gathered and processed, at least
through the second level where it is reduced such that it
can be saved by the third level for off-line physics calcula-
tions. Collisions occur at 15 ns intervals. It is the responsi-
bility of the first level to determine which collisions are
producing potentially interesting data and to pass that re-
duced amount of data to the second level. A tentative goal
for the second level in LHC is to gather and process at a
100 kHz decision frequency. Thus, the real-time process-
ing interval is just 10

µ

s. To put this in a computer time
context, the overhead for sending one message between
processors in the Intel Paragon is about 25

µ

s.
The system is heterogeneous in that different process-

ing technologies and architectures are used at different lev-
els of the hierarchical arrangement. The general structure
is shown in Figure 2 [6]. Data rates differ dramatically, as
do processing requirements. SIMD parallel processing ar-
rays are being evaluated for the second level, but MIMD is
likely for the third level. Analog devices may be used in
the first level. Within a level, the processors are homoge-
neous, but they must communicate with different types of
processors in the other levels.

Figure 2. Hierarchical trigger structure with heteroge-
neous processors.

The system is modular in that processors must be physical-
ly near the source of data to accommodate high bandwidth
transfers from the sensors and the collision frequency.
Since sensors are densely distributed over the 10 m length

Detector
Section

Trackers,
Calorimeters,
Muon Chambers

First Level
Trigger

FIFO
Pipeline

Data
Gate

Multiplexer

@ 66 MHz

Other Channels

Second Level
Trigger

FIFO
Pipeline

Data
Gate

@ 100 kHz

Other Modules

Event Builder

Third Level Trigger
and Mass Storage

Massively
Parallel
SIMD Array

Processor
Farm

Detector
Section

Detector
Section

of the instrument and around the circumference, the three
levels in the processing hierarchy are also distributed.
There is a tree structure to the hierarchy with the first level
being the leaves. Thus modules of SIMD arrays can be
used for the second level, and a reduced number of MIMD
modules, or possibly just one, for the third level. Essential-
ly, the system is modular since it is necessary to use piece-
wise coverage of detectors in the collision volume. It is
also massively parallel due to the number of processing el-
ements needed to provide the interfaces and processing for
those detectors.

A further characteristic of the systems we are studying
is that processors are embedded with other electronics and
mechanics. This is clearly the case with instrumentation
for HEP. It is impractical as well as unworkable to think of
running 560,000 wires transferring a cumulative 107

megabytes per second, as expected for the transition radia-
tion detector (TRD) [3], from the instrument site to a room
with a computer system.

The final characteristic for this example has been intro-
duced in the paragraphs above. There is a high bandwidth
I/O requirement. For the TRD example, the major burden
is on input with an expected bandwidth of 107 MB/s into
the first level and 7.7*105 MB/s into the second. In gener-
al, some formatting or transformation of data may be nec-
essary. For this example application it is necessary since
the instruments produce small outputs that can be repre-
sented in a few bits. The bits are gathered into 32-bit words
for transmission over HiPPI channels, then must be trans-
formed by a corner turning process for alignment with pro-
cessing elements.

Figure 3 shows one SIMD module with 1024 PEs as it
may be used for the second level trigger. Several such
modules are needed for the total system. A region of inter-
est is selected by the first level and delivered via a HiPPI
channel to this level. The array of PEs was sized to satisfy
I/O and processing rates, and the region is mapped to the
array. Results of feature extraction algorithms are passed
to the third level. The flow of regions of interest is continu-
ous during an experiment, with a goal of 10

µ

s for process-
ing each 16 by 240 pixel region.

All of these characteristics are described to emphasize
the need for application specific solutions rather than com-
mercially available systems. This became apparent in prac-
tice through the process used by CERN to selectively
refine the choices for the final system to be used in the
LHC. In their process, a progressive set of evaluations is
made. They first identified candidate technologies, then
specified benchmark tests. Results were presented at a con-
ference held at CERN, in Geneva Switzerland. A candidate
commercial massively parallel system had effective deci-
sion frequencies that met the desired rate. However, it
achieved the good rate only by accumulating a large num-
ber of events and processing events in parallel. This pro-

72

duced long latencies for the earlier events accumulated,
followed by a burst of results for all events. The irregular,
bursty nature of the processing was not acceptable in the
overall design of the instrumentation. The lack of modular-
ity in a fixed commercial system was a detriment in this
case. Other researchers using systems with more modulari-
ty proposed adequate resources, still using a high degree of
parallelism, that more closely matched the problem size. A
single event could be processed using parallelism, but
events were not accumulated into parallel data sets. Re-
sults were produced at the uniform time interval of input
data arrival for the events.

2.2 Design problems

Application specific systems like the second level trigger
described above frequently require the solution of many
interesting problems. There are research issues and re-
search approaches to the problem solutions. We briefly
identify some issues that relate to this example, then defer
to Section 4 for the main discussion of research direction
for these non-conforming massively parallel computers.

An interesting high level design problem is mapping
the application, expressed as algorithms and data proper-
ties, into an architecture. The problem exists from two
points of view: selecting the processing resources and con-
figuring those resources. The richness of devices and archi-
tectural arrangements of those devices into solutions

provides many parameters that can be exploited during a
design phase. Tools and techniques to assist in the mapping
could be very useful.

Algorithms and data rates for high energy physics
strongly imply a heterogeneous, hierarchical structure. Re-
search is needed in methods for partitioning tasks and
communicating through the hierarchy. Fault tolerance and
reliability issues must be addressed since experiments are
expensive and the system is complex.

Real-time computing in HEP has the constraint of very
short response or computation times. Providing real-time
for a problem with response times in the microseconds is
different from that for one with milliseconds of time. For-
tunately, the problem does not require response to a wide
set of irregular inputs driven by interrupts. It is real-time
from the point of view of needing to complete a fixed rou-
tine and perform related I/O within a very short time span.
This is well-suited to the resource adequacy notion, assum-
ing sufficiently adequate devices are available.

In the next section we give a second example of appli-
cations where standard parallel processing systems are not
suitable. It contrasts in several ways to the instrumentation
example above, but it also has similarities and presents
several of the same research needs.

Figure 3. Mapping detector data to a processing array in the second level trigger.

16
pixels

Region of Interest

32 pixels

32
PEs

Virtual
Processing
Array 32 PEs

1 2 3 4 Processing Phases

240 pixels

Physical
Processing
Array

32 x 32
PE
Plane

4 Memory
Planes

73

3. Action oriented systems

An action oriented system (AOS) is used as the second ex-
ample of an application area where modular and heteroge-
nous computers will be needed. Here these aspects are
combined with embeddedness, real-time responses, high I/
O and internal communication bandwidth, etc., which gen-
erates a need for non-conforming massively parallel pro-
cessing systems.

The concept of action oriented systems (or computing)
has been developed by Michael Arbib for many years and
is often called "sixth generation computers" by Arbib him-
self [1]. That particular term has become more appropriate
since the introduction of the MITI real world computing
(RWC) program in Japan [10], which replaces the much
debated fifth generation project. This is because many of
the goals of the RWC program are focused on expanding
the knowledge in the field of action oriented systems!

Many of the ideas of action oriented systems are drawn
from the organization and function of the human brain.
The key-concepts of action oriented computing are:

-

Cooperative computing

Using the brain as a model, we find a number of coop-
erating areas instead of a large homogeneous information
processing facility. Each area is, of course, highly parallel
and can for now be approximated as homogeneous in
structure. This makes it very natural to suggest a heteroge-
neous modular computer for simulating action oriented
systems. As each module communicates with many other
modules in a massively parallel way, this structure puts
strong demands on intermodule communication.

-

Perceptual robotics

An AOS generates its knowledge about the surround-
ing world by exploration. The system interacts with the en-
vironment through a process of Perception -> Decision ->
Action. The perception can be sensors for images, speech,
tactile information, etc. As these sensors are massive, inex-
act, and many times incomplete, the system must be highly
parallel, robust and fault tolerant. And as real-world infor-
mation is volatile, the system must work in real-time.

-

Learning

In contrast to the computers of today which need exact
instructions (rules or programs) to function, an action ori-
ented system will base much of its actions on learning. The
system should be able to self-organize the information it
gains from exploration of the world, and integrate informa-
tion from many different sources to create an internal mod-
el of the world. From past experiences incorporated in the
internal model, it should be able to make decisions on what
actions are appropriate. Much of this learning will be im-
plemented as artificial neural networks, but certainly any
universal or domain knowledge can and should be incorpo-
rated in advance (like the laws of Newton).

In Section 1.1 most of the demands of an AOS were
summarized. But besides issues mentioned there, the close
interaction with sensors and actuators will need attention.
This closeness makes it desirable to have the computations
take place in the sensors/actuators in a massively parallel
fashion. Another issue is development methods for appli-
cations using AOSs. As learning instead of programming is
emphasized, the possibility to develop/train the system on-
line or in-the-loop (using the real sensors and actuators)
seems desirable. Still the system must support ways to
handle timing constraints in a natural way. Future develop-
ment environments for AOS should probably be graphical-
ly based, using domain specific symbols (hierarchically),
and time attenuations [14, 17]

After looking at one early example of an AOS in Sec-
tion 3.1, we will discuss suitable architectures for AOSs in
Section 3.2. Following that, we find that not only will AOS
influence research in non-conforming computers, but also
the research in the field of artificial neural networks.

3.1 Application areas for action oriented
systems

The areas where action oriented systems first will be intro-
duced are in manufacturing, robotics, autonomous vehi-
cles, and the control field in general. As these areas already
are action oriented and modular (but not necessarily ANN
based) it is not hard to realize that ANN based AOSs are
interesting. Often the problems are complex enough to
need the complexity of multiple ANNs.

One recent example of an action oriented system is
COLUMBUS [20], an autonomous mobile robot devel-
oped at CMU. This robot's single goal is to maximize its
information of the initially unknown environment. The
project has so far concentrated on the algorithms to be used
and not so much on the computer architecture to run the al-
gorithms. COLUMBUS uses a mixture of different algo-
rithms (as could be expected of an AOS). There are two
separate ANNs for sensor interpretation and confidence es-
timations. This information is then used to enhance an ex-
ploration map at a higher level. By means of a modified
dynamic programming algorithm this map is used to de-
cide on an action. The decision is based on where there are
unexplored areas and where there are obstacles.

Although it appears that the implementors of COLUM-
BUS have not concentrated on the architecture, they have
produced a modular and distributed implementation, using
several SUN SPARC workstations in parallel. As the pro-
cessing power is not embedded (on the robot) a transmis-
sion of sensor and control information by a radio link to
and from the robot is needed. By dropping some sensor in-
formation, and modifying the dynamic programming algo-
rithm used for planning, it has been possible to reach close
to real-time performance (each action taking from 3 to 12

74

seconds). Even if the authors indicate that they are satisfied
with this performance, we feel that a different kind of ar-
chitecture could help to speed up parts of the system by ad-
dressing the problem of embeddedness, I/O performance,
and parallelism used.

3.2 Architectures for action oriented
systems

The best architecture for an AOS is still an open research
question. An architecture we suggested in [17] views the
system as a number of

nodes

 that communicate through
logical

channels

. The real-time concept is supported by de-
manding time-determinism for all parts in the system. By
time-determinism we mean that it should always be possi-
ble to determine the execution or cycle time for each com-
putation and communication. To accomplish time
determinism we suggest that

local real-time databases

 be-
tween the nodes and the channels be introduced. The three
main concepts of this architecture are described below:

Nodes

 can be either an I/O interface or a computational
entity, or function as a combination. Each node can differ
in functionality, and communicate with other nodes via the
logical channels. The computation is cyclic [11, 12] and
time-deterministic (no interrupts). We expect many of the
nodes to be implemented as SIMD computers.

Channels

 also need to adhere to time-determinism and
at the same time give as high communication bandwidth as
possible to the communicating nodes. We expect fiber-op-
tics to be used, together with time division multiplexing. If
this type of multiplexing is not enough, frequency multi-
plexing may be considered in addition.

Local real-time databases

 are needed to store the
shared data from other nodes and are updated cyclically
from the channels. The data stored in the database reflects
the best available information for its node at a certain time.

Figure 4 shows an implementation of this architectural
concept. Four Operating Nodes, some incorporating mas-
sively parallel I/O and each with a processor array (PE ar-
ray) connected to a local real-time database (LRTDB), are
shown. The Operating Nodes are cyclically controlled by
control units (CU). Channels between the nodes are estab-
lished using time and/or frequency multiplexing on the
shared fiber-optic medium.

The figure also shows a Development Node which is con-
nected both to the network of operating Nodes and to a Lo-
cal Area Network (LAN) of workstations (WS) running the
development system. The Development Node may be a PE
array (as shown) but may also be another type of computer,
but with the same interface to the shared medium. The
LAN can be removed without affecting the running sys-
tem.

Figure 4. An architecture implementing a modular, heterogenous, parallel system for action oriented computing.

CU CU

LR
T

D
B

P
E

 a
rr

ay

CU CU

LR
T

D
B

P
E

 a
rr

ay

CUCU

LR
T

D
B

P
E

 a
rr

ay

CUCU

LR
T

D
B

P
E

 a
rr

ay

CU CU

LR
T

D
B

P
E

 a
rr

ay

WS WS

Development
Node Operating Node

LAN

S
en

so
rs

A
ct

ua
to

rs

S
en

so
rs

75

A more detailed description of this architecture concept
can be found in [14, 17]. To test these ideas and explore
possibilities in the design of the nodes, an experimental
system has been built using field-programmable logic de-
vices. Experience from this project, called REMAP [2],
will lead to a VLSI design of modules that can be the base
for building non-conforming computers, especially in the
areas of AOSs. The architecture is intended to be open for
the emerging technologies like analog ANN VLSI chips
that can do much of the computations close the sensors at
extremely high speed.

3.3 AOS Influence on ANN research

During the last ten years a formal explosion of artificial
neural network research has lead to a number of different
models. Most of the models are naturally parallel and can
easily be implemented on highly parallel computers. In a
study it has been found that for most ANNs a highly paral-
lel SIMD computer with simple communication (broad-
cast) is enough [15]. But when it comes to a number of
cooperating ANN modules relatively few experiments
have been done, and there is no hardware around with the
capacity to do real-time simulation of multi-ANN systems
big enough to be interesting. Many aspects of multi-ANN
are unclear at this time, leading to a need for flexibility in
the systems that implement them, to cope with changes in
models etc.

Some aspects of ANNs in AOS that need to be ad-
dressed are influenced by the real-time aspects. New ANN
models need to be developed since real-time creates a need
for models that can learn continuously, which is not the
case for one of the most popular ANN models (back-prop-
agation learning). And as learning methods using relax-
ation or structural adaptation are not time-deterministic, it
will be hard to use such models for real-time AOS as well.
Real-time also means that some types of parallelism in the
ANN models [15] can not be used. That is, the training ex-
ample and training session parallelism are batch oriented
and simply are not viable for continuous learning. (We
should use the parallelism in weights and nodes instead).
Other aspects of ANNs in AOS that need more research are
those of planning and creating useful internal world mod-
els.

4. Research issues

Very early in our workshop session it became apparent that
we could not discuss processor architecture in isolation
from the other three workshop topics. They are interrelat-
ed. Thus some of the topics below stray from narrow pro-
cessor issues. Even so, the broader topics all have an
impact on processors and must be considered in arriving at
processor architecture decisions. Our topics do not include

VLSI design issues, even though those also have an impact
on processor architecture.

In previous sections we have given examples of modu-
lar and heterogenous computers. In each example, general
purpose highly parallel computers were not capable of
solving the problems within certain performance con-
straints. Instead we found that a special purpose heteroge-
nous architecture using homogeneous modules was
necessary to generate more effective solutions. But before
such special systems can become readily available as solu-
tions for a broad class of problems, there are a number of
research issues that have to be addressed. Our discussion is
representative rather than exhaustive. We highlight some
specific issues at the system and processor levels, and then
indicate other areas with open research issues.

4.1 Configurable systems

Systems issues are the global concerns that cannot be re-
solved by considering one PE in isolation, yet they affect
each PE's architecture. The systems of interest in this paper
are by definition different from those which can be pro-
duced in quantity in a commercial manufacturing setting.
They are special in some ways and have unique properties.
The challenge is to provide the tools, techniques, and
methodologies that can lower the cost and improve the
quality of systems configured for special applications.
From the starting point of a problem specification or an al-
gorithm, coupled with acceptance criteria, how does one
arrive at a good system that satisfies the criteria.

An important aspect is that, in the kind of systems we
discuss, the modules need not be as much general purpose
as processor arrays for "traditional" massively parallel
computers. We accept that some modules very strictly fol-
low the SIMD paradigm to be very efficient on some types
of computations (and worse on others). For more irregular
computations, other paradigms (SPMD, MIMD,...) are
used in the modules. That is, we accept heterogeneity in
the system. Assuming that our problem is sufficiently large
that parallelism becomes advantageous, several more spe-
cific issues can be identified:

76

•

How is the overall problem partitioned into modu-
lar parts?

•

Which style of parallelism (SIMD, MIMD, combi-
nation) is appropriate? Can we know from problem
parameters?

•

Which devices, preferably commercially available,
provide the best fit with the problem?

•

How do we size a system to provide resource ade-
quacy?

•

Does an architecture scale from prototype to full
size?

•

Can we logically rearrange resources due to lasting
changes in the environment or the task to achieve
more generality?

•

How can we specify benchmarks such that they
provide the desired insight to design alternatives?

•

Can custom configurations be developed quickly
for evaluation?

•

How is the evaluation process controlled, given the
richness of possibilities with parallel architectures?

4.2 Processor architectures

Individual processor issues are more directly related to the
processing power and flexibility of each processor. An ar-
chitectural decision affecting a processor will co-influence
system decisions such as array size. Thus, to do a good
processor design, one can not look only at maximum MIPS
or FLOPS, but must look at the whole system's perfor-
mance and the environment in which the system is sup-
posed to operate. Several specific issues are:

•

What functional capability is given at each proces-
sor?

•

What application oriented features for artificial neu-
ral networks, associative processing, signal pro-
cessing, etc. are needed?

•

What local control features should be implemented
for SIMD processors?

•

How is massively parallel I/O incorporated?

•

How is memory capacity and access balanced with
processing resources?

•

What processing granularity is best, from bit-serial
processors to full 64-bit widths?

•

What interprocessor communication granularity is
best?

•

In order to achieve maximum performance per
watt, what trade-off should be made between clock
speed and number of PEs per chip?

4.3 Communications and I/O

As seen in Figure 1, there are communication paths be-
tween the system and the external environment, and be-
tween modules of the system. If individual modules are
parallel processors there is also intra-module communica-
tion. Since interconnection networks is the subject area of
one of the other workshops, we mention here only the as-
pects that seem especially important. In general, the prob-
lems are all concerned with high bandwidth movement of
data between different types of modules with different I/O
mechanisms and structures. In many cases, processing is
required to be close to sensors or actuators, which may
deal with analog signals. Efficient methods for data format
conversion and corner turning are needed. Interfaces for
HiPPI and other high speed channels must be developed
for continuous modes of operation.

4.4 Fault Tolerance

Systems to be used in safety critical and/or harsh environ-
ments need to be fault tolerant. Many new possibilities of
fault tolerance have emerged with ANN models. This, to-
gether with a multi-modular structure of ANN, raises many
research issues on how to combine the fault tolerance in
ANN structures with fault tolerance in the hardware struc-
ture.

•

How do we retain the inherent fault-tolerance char-
acteristics of ANNs when we map them onto a pro-
cessor array?

•

What are the methods to distribute fault detection
and correction over a large number of modules?

•

How can one reason about correctness in time as
well as values, in an action oriented framework?

Redundancy and reconfigurability can be used to increase
chip yield as well as provide reliability. This becomes in-
creasingly important as VLSI technology allows more pro-
cessors per chip and die size increases. Research is needed
to investigate reconfiguration methods for various inter-
connection schemes.

4.5 Software development paradigms

As mentioned in Section 3 new development paradigms
are needed for non-conforming massively parallel comput-
ers. This is especially apparent for AOSs where an on-line
or in-the-loop application development method is needed.
Some key-concepts for new paradigms will be: graphical
interface, data visualization, data parallelism, incremental
development on a running system, and software compo-
nent reuse. All of these concepts need more research, espe-
cially concerning their use in systems such as we are
describing.

77

4.6 Artificial neural networks

There are still many challenges for ANN researchers be-
fore large modular ANN (AOS) can be built and its func-
tion understood. Some of the research issues are stated in
Section 3, and many more can be found in the article by
Kahaner describing the MITI's real world computing pro-
gram [10], many of the research issues regarding multi
ANNs are listed. For example, the aspects of how the AOS
should handle information, its representations, storing and
recalling information, integration of multiple information
sources, etc. Other research aspects are concerned with the
ways learning and self-organization are best carried out.
The results of this research have great influence on both
system and module architecture of the computing platform

5. Final comments

Identifying research topics has the problem of knowing
where to start, and then, where to stop. Given the general
area of processor architectures for massively parallel sys-
tems, we have chosen to emphasize systems which are
unique or special in some way. We refer to these systems
as non-conforming since they differ from commercial of-
ferings. The advantage is that they provide a rich environ-
ment, one with many degrees of freedom, and perhaps
some difficult constraints, for architectural and related re-
search. Two quite different system examples were present-
ed. They were intended to show that massive parallelism
can be used in various application areas and to show the
need for further research to achieve the desired end results.

Acknowledgments

We would like to acknowledge the support of several orga-
nizations for enabling our participation in the Frontiers '92
Workshop and the preparation of this paper. Davis ac-
knowledges support of the U.S. Environmental Protection
Agency through Cooperative Agreement CR 820636-01-0,
and the North Carolina Supercomputing Center for support
during a leave from North Carolina State University (NC-
SU) and for the provision of computing resources.
Nordström acknowledges support of The Board of Post-
graduate Studies and Research at Luleå University of
Technology through a visiting scholarship to NCSU
(920616 – FNTNr 215/91). Svensson acknowledges the
support for the REMAP project from The Swedish Nation-
al Board for Industrial and Technical Development
(NUTEK) under contracts No. 900-1583 and 900-1585.
And finally we all acknowledge the bright ideas, stimulat-
ing discussions, and hard work of the Blitzen groups at
NCSU and the University of Padova in Italy, and the whole
REMAP group at Halmstad University, Luleå University
of Technology, and Chalmers University of Technology.

References

[1] Arbib, M. A. "Schemas and neural network for sixth gen-
eration computing."

Journal of Parallel and Distributed
Computing

. Vol. 6(2): pp. 185-216, 1989.
[2] Bengtsson, L., A. Linde, T. Nordström, B. Svensson, M.

Taveniku and A. Åhlander. "Design and implementation
of the REMAP3 software reconfigurable SIMD parallel
computer."

Fourth Swedish Workshop on Computer Sys-
tems Architecture

, Linköping, Sweden, 1992.
[3] Bialas, P., J. Chwastowski, P. Malecki and A. Sobala.

"Benchmarking with data from the transition radiation
detector." (CERN/EAST note 91-11), CERN, Geneva,
Switzerland, 1991.

[4] Blank, T. "The MasPar MP-1 Architecture."

Proceedings
of COMPCON Spring 90

, pp. 20-24, San Francisco, CA,
1990.

[5] Blevins, D. W., E. W. Davis, R. A. Heaton and J. H. Reif.
"Blitzen: A highly integrated massively parallel ma-
chine."

Journal of Parallel and Distributed Computing

.
Vol. 8: pp. 150-160, 1990.

[6] Bock, R. K. et al. "Embedded Architectures for Second
level Triggering in LHC experiments (EAST)." (CERN/
DRDC/90-56), CERN, Geneva, Switzerland, 1990.

[7] Centro, C. S., E. W. Davis, P. Ni, D. Pascoli and E. Siliot-
to. "Results of second level trigger algorithms using the
Blitzen parallel machine."

Proceedings of the 1992 Con-
ference on Computing in High Energy Physics

, C.
Verkerk and W. Wojcik ed., Annecy, France, 1992.

[8] CHEP 92.

Proceedings of the 1992 Conference on Com-
puting in High Energy Physics

, C. Verkerk and W. Wojcik
ed., Annecy, France, 1992.

[9] GC. "Grand challenges: high performance computing and
comunnications".

A report by the committee on physical,
mathematical, and engineering sciences

. National Sci-
ence Foundation. Washington, DC. 1992.

[10] Kahaner, D. "Special report: MITI's real world comput-
ing program."

IEEE Micro

. (August): pp. 70-79, 1992.
[11] Lawson, H. W. "Cy-Clone: an approach to the engineer-

ing of resource adequate cyclic real-time systems."

The
Journal of Real-Time Systems

. Vol. 4(1): pp. 55-83, 1992.
[12] Lawson, H. W. and B. Svensson. "An architecture for

time-critical distributed/parallel processing."

Euromicro
Workshop on Parallel and Distributed Computing

, Gran
Canaria, Spain, 1992.

[13] MP2. "Second-generation MPP system boosts speed five-
fold: MasPar array 32-bit CPUs."

Electronic Engineering
Times

. (October 5): pp. 14, 1992.
[14] Nilsson, K., B. Svensson and P.-A. Wiberg. "A modular,

massively parallel computer architecture for trainable
real-time control systems."

AARTC'92: 2nd IFAC Work-
shop on Algorithms and Architectures for Real-Time Con-
trol

, Seoul, Korea, 1992.
[15] Nordström, T. and B. Svensson. "Using and designing

massively parallel computers for artificial neural net-
works."

Journal of Parallel and Distributed Computing

.
Vol. 14(3): pp. 260-285, 1992.

[16] Potter, J. L.

The Massively Parallel Processor

. MIT
Press. Cambridge, Mass. 1985.

78

[17] Svensson, B., T. Nordström, K. Nilsson and P.-A. Wiberg.
"Towards modular, massively parallel neural computer."

Swedish National Conference on Connectionism,
SNCC'92

, Skövde, Sweden, 1992.
[18] Thinking Machines Corporation. "Connection Machine,

Model CM-2 technical summary." (Version 5.1), T M C
Cambridge, Massachusetts, 1989.

[19] Thinking Machines Corporation. "The Connection Ma-
chine CM-5 technical summary.", T M C Cambridge,
Massachusetts, 1991.

[20] Thrun, S. B. "Exploration and model building in mobile
robot domains."

Proceedings of the IEEE International
Conference on Neural Networks

, San Francisco, CA,
1993.

213

TOWARDS MODULAR, MASSIVELY PARALLEL
NEURAL COMPUTERS

Bertil Svensson

Department of Computer Engineering, Chalmers University of Technology, Göteborg, Sweden

and Centre for Computer Science, Halmstad University, Halmstad, Sweden

email: svensson@ce.chalmers.se

Tomas Nordström

Division of Computer Science and Engineering, Luleå University of Technology, Luleå, Sweden

email: tono@sm.luth.se

Kenneth Nilsson and Per-Arne Wiberg

Centre for Computer Science, Halmstad University, Halmstad, Sweden

email: Kenneth.Nilsson@ite.hh.se, Per-Arne.Wiberg@cdv.hh.se

ABSTRACT

A new system-architecture, incorporating highly parallel, communicating processing modules,
is presented as a candidate platform for future high-performance, real-time control systems.
These are needed in the realization of action-oriented systems which interact with their envi-
ronments by means of sophisticated sensors and actuators, often with a high degree of parallel-
ism, and are able to learn and adapt to different circumstances and environments. The use of
artificial neural network algorithms and trainability require new system development strategies
and tools. A Continuous Development paradigm is introduced, and an implementation of this,
in the form of an interactive graphical tool, is outlined. The architectural concept is based on
resource adequacy, both in processing and communication. Learning algorithms are cyclically
executed in distributed nodes, which communicate via a shared high-speed medium. The suita-
bility of SIMD (Single Instruction stream, Multiple Data streams) processing nodes for ANN
computations is demonstrated. An implementation of the system architecture is presented, in
which distributed SIMD-nodes access their data from local real-time databases, updated with
data from the other nodes via a shared optical link.

Keywords: Parallel processing; learning systems; neural networks; action-oriented systems,
control system design, real-time computer systems.

1 INTRODUCTION

“Action-oriented systems”, as described by Arbib [Arbib, 1989], interact with their environ-
ments by means of sophisticated sensors and actuators, often with a high degree of parallel-
ism. The ability to learn and adapt to different circumstances and environments are among the
key characteristics of such systems. Development of applications based on action- oriented
systems relies heavily on training, rather than progamming of the detailed behaviour.

Response time requirements and the demand to accomplish the training task point to mas-
sively parallel computer architectures. A network of homogeneous, highly parallel modules is
foreseen. The modules perform perceptual tasks close to the sensors, advanced motoric con-
trol tasks close to the actuators, or complex calculations at “higher cognitive levels”. The new
system-architectural concept that we introduce for the implementation of this kind of highly

arallel neural computer,”

Connectionism in a Broad Perspective: Selected Papers from the

wedish Conference on Connectionism - 1992

, Niklasson and Bodén Eds. Ellis Horwood,
p. 213-226, 1994. ISBN 0-13-176751-8

214

parallel real-time systems is based on the principle of resource adequacy [Lawson, 1992b] in
order to achieve predictability. This means that enough processing and communication
resources are designed into the system and statically allocated to guarantee that the maximum
possible work-load can always be handled.

Not only do these trainable control systems require new architectural paradigms, they also
require the acceptance of new system development philosophies. The traditional application-
development model, characterized by a sequence of development phases, must be replaced by
an interactive model based on training.

Both the system development model and the architectural paradigm are first presented on the
conceptual level and then examplified by describing implementations meeting the demands of
typical advanced real-time control tasks. Specifically, this paper points to the possibilities
based on multiple SIMD (Single Instruction stream, Multiple Data streams) arrays on which
static allocation of processing tasks is made and on the power and appeal of graphical applica-
tion-development tools.

We have shown, by own implementations and detailed studies, as well as by reviewing the
implementations of others, that typical neural network algorithms used today map efficiently
onto SIMD architectures [Nordström and Svensson, 1992]. Based on this, and the discussion
above, a hypothetical architecture for Artificial Neural Systems (ANSs) would look like the
one shown in Figure 1.

Figure 1. A multi-module architecture for an action-oriented system

Different modules (SIMD arrays) typically execute different Artificial Neural Network (ANN)
models, or different instances of the same model. Full connectivity may be used within the
modules, while the communication between modules is expected to be less intensive
(although we will also devise solutions that satisfy the potential demand for tighter connec-
tions between pairs of modules).

The work is part of REMAP

3

, the Real-Time, Embedded, Modular, Action-oriented, Parallel
Processor Project, partly funded by STU/NUTEK, the Swedish National Board for Technical
and Industrial Development, under contracts No. 9001583 and 9001585.

Sensors

Environment

Processor
Array

Sensors

Processor
Array

Processor
Array Processor

Array

Processor
Array

Processor
Array

Processor
Array Processor

Array

Processor
Array

Actuators

Actu-
ators Environ-

ment

215

2 LEARNING ALGORITHMS AND MODULE ARCHITECTURE

Studies of the brain indicate that adaptation takes place in basically two ways: by changing the
structure and by changing the synapses (connection strengths in the structure). The first one
has the nature of long-term adaptation and often takes place in the first part of an animal's life.
The second one, the changes of connection weights (the synapses), is a more continuous proc-
ess and happens throughout the animal's entire lifetime.

Modeled after this, the design of an action-oriented system should first be concerned with the
process of selecting and connecting (possibly adapting) ANN structures and other signal
processing structures. Later, the system moves into a tuning phase and a state of continuous
learning. The two stages described may also be interleaved in an iterative fashion, which calls
for some kind of incremental or circular development model as will be described later.

Only very few of the most used ANN models are found in the context of continuous learning,
but with minor modifications most of them can be turned into a continuous learning model.

The mapping of ANN algorithms onto highly parallel computational structures has been
widely investigated. A summary is provided in [Nordström and Svensson, 1992], where proc-
essor arrays of SIMD type are pointed out as the major candidate architecture for fast general
purpose neural computation.

A basic SIMD processor array is outlined in Figure 2. We have performed detailed studies of
the execution of the predominant ANN models on this kind of computing structures [Gustafs-
son 1989, Svensson 1989, Svensson and Nordström 1990, Nordström 1991a, Nordström
1991b]. The mappings of the models and the results obtained are summarized in the subse-
quent subsections. A major conclusion is that broadcast or ring communication among the
Processing Elements (PEs) of the array can be very efficiently utilized and actually provides
the necessary means for communication within the array. Multiplication is the single most
important operation in ANN computations. In bit-serial architectures, which have been our
primary target, there is therefore much to gain if support for fast multiplication is added. In
some of the ANN models, for example Sparse Distributed Memory (SDM), tailored hardware
to support specific PE operations pays off very well.

Figure 2. SIMD Module

The system architecture, described later, permits two or more modules to be linked together to
form a larger module, if necessary. This linking may be done either over the communication
medium, in which case the intermodule communication shares time with all modules of the

Control Unit

Parallel

Memory PE’sSerial
I/O

I/O

216

system, or over a separate medium. In the latter case the cooperating modules form a

cluster

with more available bandwidth for internal communication. Special “dual-port” nodes form
the interface between the cluster and the main medium.

2.1 Parallelism in ANN Computations

As described more thoroughly in [Nordström and Svensson, 1992], six different dimensions
of parallelism can be identified in neural network computations:

Node parallelism

 and

weight
parallelism

 are the two most important for consideration in a parallel implementation for use
in real time. Node parallelism means treating all, or several, nodes in a layer simultaneously
by several PEs. Weight parallelism means treating all, or several, inputs to a node simultane-
ously. The two forms of parallelisms may be combined. In typical ANN applications the
degrees of these two forms of parallelism are usually very high (hundreds, thousands,...). The
same, or even higher, degrees are available by

training-session

 and

training-example parallel-
ism

, but these forms are not available for use in real-time training situations, thus are of minor
importance in action-oriented systems.

Layer parallelism

 (treating all layers in parallel and/or
going forward and backward simultaneously) and

bit-parallelism

 (treating all bits in a data
item in parallel) complete the picture, but the degrees of these are seldom greater than the
order of ten.

In the architectures and mappings described in subsequent sessions we find it practical to refer
to the different dimensions of parallelism as defined above.

2.2 Feedforward Networks with Error Backpropagation

The mapping of feedforward networks with error backpropagation on highly parallel arrays of
bit-serial PEs is described in [Svensson, 1989] and [Svensson and Nordström, 1990]. Node
parallelism is used. A quite simple bit-serial multiplier structure using carry-save technique
[Fernström et al. 1986] is added to the basic PE design. By this, multiplication time is equal-
ized to addition time. When performing multiply-and-add operations, which is the dominating
operation in this algorithm, both units work in parallel. Connection weights are stored in
matrices, one row of the matrix per PE module.

In REMAP

3

, PE arrays along these lines are being developed. Figure 3 shows the design of
one such PE.

Figure 3. Sample PE from REMAP

3

C
M
U
X

C
Add

0
1 R

0
1

U
D

Min

M
U
X

Multiplier

T

Mem

T Control

X
Broadcast

Some

≥1

1

≥1SomeIn SelectFirst

Br.Cast

≥1

M

U

X

And
Or
Xor
Add
IN
IN

217

An interesting result is that the computations do not require the PE array to have a very rich
communication structure. The facilities needed are the ability to broadcast a single bit from
any processor to all others, a means for selecting processors in order, one by one, and a bit-
serial adder tree to add the values of a field. As an alternative to broadcast, ring communica-
tion may be provided; in that case the adder tree is not needed.

A typical module (about the size of one small printed-circuit board using common state-of-
the-art technology) would be a 1024 PE array of bit-serial processors incorporating a bit-serial
multiplier. Such an array is capable of training at 265 MCUPS (Million Connection Updates
Per Second) or recall at 625 MCPS (Million Connections Per Second) using 8-bit data at 25
MHz. A four-layered feedforward network with 1024 neurons per layer would run at the speed
of 85 training examples or 200 recall examples per second.

2.3 Feedback Networks

As reported in [Gustafsson, 1989] and [Svensson and Nordström, 1990], a simple PE array
with broadcast or ring communication may be used efficiently also for feedback networks
(Hopfield nets, Boltzmann machines, recurrent backpropagation nets, etc.). The MCPS meas-
ures are, of course, the same as above. On a 1024 PE array running at 25 MHz, 100 iterations
of a 1024-byte input pattern takes 106 ms.

2.4 Self-Organizing Maps

[Nordström, 1991b] describes different ways to implement Kohonen’s Self-Organizing Maps
(SOMs) [Kohonen, 1990] on parallel computers. The SOM algorithm requires an input vector
to be distributed to all nodes and compared to their weight vectors. This is efficiently imple-
mented by broadcast and simple PE designs. The subsequent search for minimum is extremely
efficient on bit-serial processor arrays. Determining the neighbourhood for the final update
part can again be done by broadcast and distance calculations. Thus, also in this case, broad-
cast is sufficient as the means of communication. Node parallelism is, again, simple to utilize.
Efficiency measures of more than 80% are obtained (defined as the number of operations per
second divided by the maximum number of operations per second available on the computer).

2.5 Sparse Distributed Memory

Sparse Distributed Memory (SDM), developed by Kanerva [Kanerva, 1988], is a two-layer
feedforward network, but is more often – and more conveniently – described as a computer
memory. It has a vast address space (typically 10

300

possible locations) which is only very
sparsely (of course) populated by actual memory locations. Writing to one location influences
locations in the neighbourhood (e.g. in the Hamming-distance respect) and, when reading
from memory, several neighbouring locations contribute to the result.

The SDM algorithm requires distribution of the reference address, comparison and distance
calculation, update, or readout and summation, of counters at the selected locations. Nord-
ström [Nordström, 1991a] identifies the requirements for these tasks and finds a “mixed” map-
ping (switching between node and weight parallelism in different parts of the calculation) that
is especially efficient.

218

A counter in the place of the multiplier in the bit-serial-PE based architecture described above
makes the array especially efficient for SDM. A 256 PE REMAP

3

 realization with counters is
found to run SDM at a speed 10 - 30 times faster than that of an 8K PE Connection Machine
CM-2 (clock frequencies equalized). Already without counters (then the PEs become
extremely simple) a 256 PE REMAP

3

 outperforms a 32 times larger CM-2 by a factor of 4 -
10. One explanation of this is the more developed control unit of REMAP

3

 which makes the
mixed mapping possible to use.

3 APPLICATION SYSTEM DEVELOPMENT

Increased flexibility, adaptability, and the potential to solve some hard problems are the main
reasons for introducing ANN in real-time control systems. A new development philosophy,
that allows conventional control engineering and ANN principles to be mixed, is required.

3.1 Trainability in Real-Time Control Systems

The most common development philosophy today in the domain of computer-based systems
is the “sequence of phases” strategy, often referred to as the waterfall model [see, e.g., Som-
merville, 1989] (Figure 4).

Figure 4. The waterfall model.

The sequence of phases is no longer relevant when trainable systems are to be developed. A
trainable ANN system may be considered as having two parts: structure and data. The struc-
ture is the ANN algorithms and the hardware architecture. The data is the information that the
system gets from the environment and the stored information that yields the behaviour of the
system (e.g., the connection weights). In most of the models that have been suggested so far
the structure is static in the sense that it is not changed by the system itself, but there is an
interesting development going on towards dynamic structures. The stored information can be
static after a training session or dynamic meaning that the environment constantly influences
the system’s behaviour.

In a development model feasible for trainable systems, the analysis activity has similarities to
the waterfall model in sorting out the demands on the system, but turning these demands into,
e.g., functions or objects is not relevant here. In contrast to programmed systems the main
design task is to determine an adequate set of ANN-algorithms and a system architecture. This
does not give the system its function, which is an important difference to conventional sys-
tems. The function of the system is given by training, either in a special training session or by
running the system in its proper environment.

Analysis
Design

Implementation

Test

219

To describe development of trainable systems we need a circular development model as illus-
trated in Figure 5.

Figure 5. The circular development model.

In contrast to the waterfall model, where system development is considered as a project and
maintenance as a process, the circular development model incorporates development and
maintenance as two activities in the same process. The parts of this process are:.

Analysis. Each instance of this activity handles a portion of the demands that the system is to
fulfil. The treated demands may have impact on the system as a whole or only a small part of
it.

Design. To meet the demands, existing algorithms are tested/modified or new ones are devel-
oped. This design style can be compared to rapid prototyping to encourage the creativity of
the developer. The activity leads to a structure which includes ANN-algorithms and conven-
tional control algorithms.

Training. When the structure of the system is updated, the system is given its new properties
by exposing it to environment data or a set of training data. Training may be a part of the oper-
ation activity but can also be a separate activity succeeded by verification.

Verification. In most cases the updated trained structure of the system has to be verified before
letting it influence the environment. In this activity the developer can use own data or data
from the environment and structures dedicated to verification.

Operation. There is no sharp distinction between operation and other activities. The behaviour
of the system might change constantly during operation due to adaptation. The system might
have only a fraction of its functionality implemented but still be a good test-bench for analy-
sis, design and training.

In control applications the security aspect is often emphasized. Letting ANN-based systems
act on the environment without special precautions could lead to severe problems. It is a major
research challenge of neural control engineering to devise solutions for handling these mat-
ters. One possible approach is to have a "security shell" which gives limits for the outputs
from the ANN algorithms.

3.2 The Continuous Development Paradigm.

To support the development model we introduce the Continuous Development Paradigm (CD-
paradigm). This paradigm can be expressed as “Development by changing and adding”. This
is a well-known approach in modern Software Engineering but in this context the aims are

Analysis

Design

Training

Operation

Verification

220

extended to include both hardware and software. A development environment to support the
use of the CD-paradigm should share the following characteristics:

•

Easy to change the system structure (hardware and software) and data “on the fly”.

•

Incremental Development using the running system as development platform.

•

No undesired side-effects on the already tested parts of the system

•

System data and structures can be viewed with emphasis on understandability.

•

Developer gets immediate response to a change of the system.

•

Developer can use concepts and symbols of the application domain.

3.3 An Implementation

We describe an implementation of a system development tool based on the CD-paradigm
described above.The most important features of the tool are:

•

Graphical developer’s interface.

•

Cyclic execution with temporal deterministic behaviour.

•

Dynamic change of the running software.

•

Dynamic inspection/change of data “on the fly”.

•

Change of the distributed hardware “on the fly”.

•

Use of symbols and concepts from the domain of control engineering and ANN.

The tool is used to develop applications running on a set of distributed, communicating nodes.
Each node is to have a cyclically executing program. The cyclical execution scheme is chosen
in order to achieve a time-deterministic behaviour. The cycles have two parts: the Monitor and
the Work Process. The Monitor (i)starts on a given time (a new

dt

 has passed), (ii) takes care
of input data that has arrived during the previous cycle and prepares output data that is to be
distributed during the present one, (iii) handles program changes, and (iv) starts the Work
Process.

A temporal view of the execution of one cycle is shown in Figure 6, where the different paths
of the Work Process are indicated. Continuous lines indicate processing that consumes time,
dotted lines show idle processing, and lines splitting up means a selection in the control flow.
The development tool guarantees that the worst case branch is within the cycle time,

dt

.

Figure 6. Temporal view of Monitor and Work Process

Monitor

Timet+dtt

221

3.3.1 Graphical Developer’s Interface

To support the CD-paradigm and demands of understandability the developer's interface to the
system is an interactive graphical tool. The most basic properties of the tool are outlined
below.

•

All development is done on a system in operation.

 That is, a system operating in real time
but not necessarily affecting the system environment.

•

Hierarchical way of describing the application.

 The levels of abstraction span from the ins-
tructions of the node control unit to the abstract concepts of the application.

•

Support for reuse of system components.

 Part of the tool is a browser where system compo-
nents (processes, data, and connections) are stored.

•

Tools for viewing data

. Data can be viewed in various ways, e.g. using bargraphs, dia-
grams, maps, and conditional recording.

On the highest level (

system level

) the user works with a display showing an overview of a
typed dataflow between nodes executing cyclic processes (Figure 7). This is actually a map of
the system configuration.

Figure 7. System level display (left) and basic symbols.

The user may open up a process symbol to work with a graphical specification on the

node
level

. This can be repeated, resulting in a hierarchy of graphical specifications. Figure 8 shows
an example of such a display. In the Work Area (WA), surrounded on both sides by the Input
and Output areas, respectively, the designer can place symbols that specify the operation of
the node. The placement of symbols in WA has temporal meaning relative to a time scale T
that indicates the total time of the process. Every symbol in WA can be opened to move the
designer one level of abstraction lower in the system hierarchy. When the designer places a
symbol in WA, using the browser, the corresponding process will be added to the execution

Process

Data Buffer

Connection

Cyclic Process

222

thread. The designer can then immediately use the inspection tools to verify the function of
the added process. This is indicated in Figure 8.

Figure 8. Node level (or lower levels) display

4 SYSTEM ARCHITECTURE AND INTERMODULE COMMUNICATION

4.1 Concept

The system-architectural concept is based on the notions of nodes, channels, and local real-
time databases:

Nodes, which differ in functionality, are communicating via a shared medium. Input nodes
deliver sensor data to the rest of the system and may perform perceptual tasks. Output nodes
control actuators and may perform motoric control tasks. Processing nodes perform various
kinds of calculations. I/O nodes and processing nodes may have great similarities but, because
of their closeness to the environment, I/O nodes have additional circuits for interfacing to sen-
sor and actuator signals.

Communication between nodes takes place via channels. A communication channel is a logi-
cal connection on the shared medium between a sending node and one or more listening
nodes. The channels are statically scheduled so that the communication pattern required for
the application is achieved. This is done by the designer. Two types of data are transported
over the medium: Code changes are distributed to the nodes to allow modifications "on the
fly" of the cyclically executed programs in the nodes. Process data informs the nodes about
the status of the environment (including the states of other nodes). If the application requires
intensive communication within a set of related nodes a hierarchical communication can be
set up. The related nodes form a cluster with more available bandwidth on the internal chan-
nels.

Rather than being individual signals, the process data exchanged between the nodes is more
like patterns, often multi-dimensional. Therefore, the shared medium must be able to carry
large amounts of information (Gigabits per second in a typical system).

Every node in the system executes its program in a cyclic manner. The cyclically executed
program accesses its data from a local real-time database (LRTDB). This LRTDB is updated,
likewise cyclically, via channels from the other nodes of the system.

+ - * /
Browser

Input OutputWA

T

Search

a,h

a
h s

diagram

PID-cntl
M-mult

223

The principle of resource adequacy, the cyclic paradigm and the statically scheduled commu-
nication via the LRTDBs imply the time-deterministic behaviour of the system which is so
important in real-time applications (cf [Lawson, 1992a]).

One of the nodes connected to the network is a Development Node, as shown in Figure 9. It
establishes a channel to an executing node when it needs to send program changes. Instruc-
tions along with address information are sent to the executing node where the monitor makes
the change between two executions of the Work Process.

Figure 9. Multi-node target system and multiple-workstation development system

The Development Node is connected to a Local Area Network (LAN) of workstations (WS)
running the development system. The LAN connection can be removed without affecting the
running system.

For inspection of the LRTDB and other local data the Development Node opens channels in
the same way as when other process data is moved between nodes.

4.2 Implementation

Implementations of the processing modules have been briefly described in earlier sections (see
Figure 2 and Figure 3). Here we concentrate on the implementation of the communication
architecture. A more detailed description is given in [Nilsson et al., 1992].

An all-optical network (the entire path between end-nodes is passive and optical) is used as
the shared medium. Communication channels between SIMD Nodes are established by time-
multiplexing (TDMA) in a statical manner. In every scheduled time slot there is one sender
and one or more listener (broadcast).

If higher capacity is needed, WDMA (wavelength division multiple access) may be used
instead. Then, scheduling of communication is not required. The nodes scan the wavelength
spectrum to fill their LRTDBs. The scanning can be statically determined or a function of the
internal state of the node. As an interesting future possibility, it may also be trained.

Broadcast implies that it is important to synchronize the communication. The synchronization
is done via a global, distributed optical clock. Alternatively, a communication slot can be sev-
eral time slots, which gives a slower communication speed.

WS WS

LAN

Target System

Development
System

Development
Node

Operating
Node

224

In the communication interface of each SIMD Node (Figure 10) a clock frequency reduction
is done by a factor k by means of shiftregisters (k is the size of the PE array, e.g. k=256). It is
important to synchronize the dataflow with the shift clock. This is done by sending the clock
and the data in the same medium. Clock and data use different wavelengths (f1 and f2), imply-
ing that the communication interface must include two laserdiodes and two optical filters (F)
for the flow of process data.

In addition to the exchange of process data there is also a distribution of code caused by pro-
gram changes made "on the fly".

Figure 10. Communication interface. T is transmit, R is receive. Grey boxes indicate the optical/
electrical conversion.

Due to the high speed the communication interface must be integrated into one IC to work
properly. Today there are shiftregisters available implemented in GaAs-technology for very
high speed (some Gbit/s). The GaAs-technology also gives the possibility to integrate optical
devices with logic. The topology of the all-optical network is a star, which has a decibel loss
proportional to logN, while a bus topology has one proportional to N (N is the number of
nodes in the system) [Green, 1991].

The SIMD Module accesses data from its own local real-time database (LRTDB) reflecting
the status of the environment. The LRTDB is implemented as a dual-port memory. At one side
the SIMD Module accesses data; at the other side the control unit in the communication mod-
ule is updating the LRTDB via the communication interface. The control unit cyclically exe-

T R

F F

f1f2ff 12

SR SR

DD CLCL

k

Clock to
SIMD-array and

Comm. processorGlobal
distributed

clock

225

cutes the statically scheduled send and receive commands necessary for carrying out the
communication pattern of the node (Figure 11).

Figure 11. A Node

4.3 REMAP Prototype Development

REMAP3 is an experimental project. A sequence of gradually evolved prototypes is being
built, starting with a small, software configurable PE array module, implemented as a Mas-
ter’s thesis project [Linde and Taveniku, 1991]. With only slight modifications in PE array
architecture, but with a new high-performance control unit, the second prototype is now being
built [Bengtsson et al., 1991], almost full-scale in PE number, but far from miniaturized
enough for embedded systems.

The early prototypes rely on dynamically programmable logic cell arrays (FPGAs) [Linde et
al. 1992]. Therefore, different variations of the prototypes can be realized by reprogramming.
The FPGAs are designed for high speed. Thus, the speed and the logical size of the prototype
systems suffice for new, demanding applications, but the physical size does not allow embed-
ded multi-module systems to be built from the prototypes.

Based on the experiences from the FPGA-based prototype modules, a design for a VLSI
implemented module that can be used in multi-node systems as described above will be made.

5 CONCLUSION

This paper points to the strength of combining massively parallel architectures, trainability,
and incremental development environments. The SIMD paradigm combines single-threaded
programming with multiprocessing power and easy miniaturizing for embedded systems. We
have presented a massively parallel system architecture based on multiple SIMD processor
arrays to allow the implementation of real-time, ANN-based training using interaction-based
system development tools.

The presented system architecture and development model are intended to be used in biologi-
cally inspired design of control systems [Kuperstein, 1991; Singer, 1990], where sensory,
motoric, and higher cognitive functions are mapped onto nodes or clusters of nodes.

Process
Data

Code changes
Global clock

CL
Control Control

SIMD-array

Local
Real-Time
Database

Comm.
interface

Comm.
interface

Comm.
processor

SIMD
Module

226

6 REFERENCES

Arbib, M.A. (1989). Schemas and neural networks for sixth generation computing. Journal of Parallel and Dist-
ributed Computing, Vol. 6, No. 2, pp. 185-216.

Bengtsson, L., A. Linde, T. Nordström, B. Svensson, M. Taveniku, and A. Åhlander (1991). Design and imple-
mentation of the REMAP3 software reconfigurable SIMD parallel computer, Fourth Swedish Workshop on
Computer Systems Architecture, Linköping, Sweden, January, 1992. Available as Research Report CDv-
9105 from Centre for Computer Science, Halmstad University, Halmstad, Sweden.

Fernström, C., I. Kruzela, and B. Svensson (1986). LUCAS Associative Array Processor – Design, Programming
and Application Studies. Vol. 216 of Lecture Notes in Computer Science, Springer Verlag, Berlin.

Green, P.E. (1991). The future of fiber-optic computer networks. Computer, Vol. 24, No. 9.

Gustafsson, E. (1989). A mapping of a feedback neural network onto a SIMD architecture, Research Report
CDv-8901, Centre for Computer Science, Halmstad University, May 1989.

Kanerva, P. (1988). Sparse Distributed Memory. MIT Press. Cambridge, MA, USA.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE. Vol. 78, No. 9. pp. 1464-1480.

Kuperstein, M. (1991). INFANT neural controller for adaptive sensory-motor coordination. Neural Networks,
Vol. 4, pp. 131-145.

Lawson, H.W. (1992a). Cy-Clone: an approach to the engineering of resource adequate cyclic real-time systems.
The Journal of Real-Time Systems. Vol. 4, No. 1, pp. 55-83.

Lawson, H.W. (1992b), with contributions by B. Svensson and L. Wanhammar . Parallel Processing in Indu-
strial Real-Time Applications. Prentice-Hall, Englewood Cliffs, NJ, USA.

Linde, A. and M. Taveniku (1991). LUPUS – a reconfigurable prototype for a modular massively parallel SIMD
computing system. Masters Thesis Report No. 1991:028 E, Division of Computer Engineering, Luleå Uni-
versity of Technology, Luleå, Sweden (in Swedish).

Linde, A., T. Nordström, and M. Taveniku (1992). Using FPGA to implement a reconfigurable highly parallel
computer. Second International Workshop on Field-Programmable Logic and Applications, Vienna, Aus-
tria, Aug. 31 – Sept. 2.

Nilsson, K., B. Svensson, and P.A. Wiberg (1992). A modular, massively parallel computer architecture for trai-
nable real-time control systems. AARTC ‘92: 2nd IFAC Workshop on Algorithms and Architectures for Real-
Time Control, Seoul, Korea, Aug.31 – Sept. 2.

Nordström, T. (1991a). Sparse distributed memory simulation on REMAP3. Research Report No. TULEA
1991:16, Luleå University of Technology, Luleå, Sweden.

Nordström, T. (1991b). Designing parallel computers for self organizing maps. Research Report No. TULEA
1991:17, Luleå University of Technology, Luleå, Sweden.

Nordström, T. and B. Svensson (1992). Using and designing massively parallel computers for artificial neural
networks. Journal of Parallel and Distributed Computing, Vol. 14, No. 3, pp. 260-285.

Singer, W. (1990). Search for coherence: a basic principle of cortical self-organization. Concepts in Neurosci-
ence, Vol. 1, No. 1, pp. 1-26.

Sommerville, I. (1989). Software Engineering. 3rd ed. Addison-Wesley, Reading, MA, USA.

Svensson, B. (1989). Parallel imlementation of multilayer feedforward networks with supervised learning by
back-propagation, Research Report CDv-8902, Centre for Computer Science, Halmstad University, Halm-
stad, June 1989.

Svensson, B. and T. Nordström (1990). Execution of neural network algorithms on an array of bit-serial proces-
sors. Proceedings of 10th Internatinal Conference on Pattern Recognition – Computer Architectures for
Vision and Pattern Recognition, Atlantic City, NJ, USA, June 1990, Vol. II, pp. 501-505.

199

Lecture Notes in Computer Science 705, Herbert Grünbacher,

Reiner W. Hartenstein Eds. Springer-Verlag

Field-Programmable Gate Array: Architectures and Tools for
Rapid Prototyping;

Selected papers from: Second Internation-
al Workshop on Field-Programmable Logic and Applications

(FPL'92), Vienna, Austria

pp.199-210

Using FPGAs to Implement a
Reconfigurable Highly Parallel Computer

Arne Linde*, Tomas Nordström

‡

, and Mikael Taveniku*

* Department of Computer Engineering

‡

 Division of Computer Engineering

Chalmers University of Technology, Luleå University of Technology,

S-41296 Göteborg, Sweden S-95187 Luleå, Sweden

E-mail: arne@ce.chalmers.se, tono@sm.luth.se, micke@ce.chalmers.se

Abstract.

 With the arrival of large Field Programmable Gate Arrays (FPGAs) it
is possible to build an entire computer using only FPGA and memory. In this pa-
per we share some experience from building a highly parallel computer using
this concept. Even if today's FPGAs are of considerable size, each processor
must be relatively simple if a highly parallel computer is to be constructed from
them. Based on our experience of other parallel computers and thorough studies
of the intended applications, we think it is possible to build very powerful and
efficient computers using bit-serial processing elements with SIMD (Single In-

struction stream, Multiple Data streams) control.
A major benefit of using FPGAs is the fact that different architectural variations
can easily be tested and evaluated on real applications. In the primary applica-
tion area, which is artificial neural networks, the gains of extensions like bit-seri-
al multipliers or counters can quickly be found. A concrete implementation of a

processor array, using Xilinx FPGAs, is described in this paper.
To get efficient usage and high performance with the FPGA circuits signal flow
plays an important role. As the current implementation of the Xilinx EDA soft-
ware does not support that design issue, the signal flow design has to be made by
hand. The processing elements are simple and regular which makes it easy to
implement them with the XACT Editor. This gives high performance, up to 40–

50 MHz.

1 Introduction

The requirements for flexibility and adaptivity to different circumstances and environ-
ments have motivated research and development towards trainable systems rather than
programmed ones. This is true especially for “action oriented systems” which interact
with their environments by means of sophisticated sensors and actuators, often with a
high degree of parallelism [2]. Response time requirements and the demand to accom-
plish the training task points to highly or massively parallel computer architectures.

In REMAP, the Real-Time, Embedded, Modular, Action-oriented, Parallel Proces-
sor Project [3], the potential of distributed SIMD (Single Instruction stream, Multiple
Data streams) modules for realization of trainable systems is investigated. Each SIMD

200

module is a highly parallel computer with simple PEs tuned to efficiently compute arti-
ficial neural network algorithms.

Within the project, a series of studies have been performed [10–12, 16] concerning
the execution of neural network algorithms on highly parallel SIMD computers, with
special emphasis on architectures based on bit-serial processing elements (PEs). The
results show that SIMD is the best suited parallel processing paradigm for artificial
neural networks (ANNs) and that arrays of bit-serial PEs with simple inter-PE commu-
nication are surprisingly efficient. As multiplication is found to be the single most im-
portant operation in these computations, there is much to be gained in the bit-serial
architecture if support for fast multiplication is added.

Using today’s relatively large field-programmable gate arrays (FPGAs), it is possi-
ble to build an entire computer using only FPGAs and memory. Still, if a highly paral-
lel computer is to be constructed out of them, each processor must be very simple. As
shown in our studies of parallel computers for ANN, bit-serial PEs with SIMD control
suit our computational needs, which makes it feasible to use FPGAs as a means to con-
struct the first prototypes of our computers.

The computer built should not be seen as a final “product”, it is more of an archi-
tecture laboratory, in which it is possible to change the architecture of each PE rapidly.
Designing and compiling a new architecture takes about one week and downloading an
already prepared architecture takes less than a second.

2 Applications

To realize action-oriented systems, the artificial neural network (ANN) models [6, 7]
form a very important implementation class. As shown in [12] the demands on the ar-
chitecture are quite moderate for standard ANN algorithms like feed-forward networks
with back propagation, Hopfield networks, or Kohonen self-organizing maps. These
models, like most of the ANN algorithms, use a very simple model of the neuron. Typ-
ically, an artificial neuron computes a weighted sum of its inputs, a nonlinear function
is then usually applied to the sum, and the result is sent along to neighboring neurons,
see Fig. 1. The power of ANN computations comes from the large number of neurons
(nodes) and their rich interconnections via synapses (weights).

Fig. 1.

 The simplest model of a neuron. The neuron calculates the weighted sum
of its inputs and applies a non-linear function to it, .

Different ANN models are characterized not only by the type of nodes, but also by
the interconnection topology, and the training algorithm used [9]. Common topologies

f x()

i1
i2
i3

in

w1

w2

w3

wn

…
w j i j∑ o

o f wj i j∑()=

201

are layered feed-forward networks, winner take all networks, and all-to-all (Hopfield)
networks. Common training rules are error back-propagation and self-organizing fea-
ture maps.

Parallelism can be found in many different places [12] but for action-oriented sys-
tems the parallelism in the nodes and weights are the important ones (node and weight
parallelism). As we are focusing on the ANN models in which one can count the num-
ber of nodes and weights in thousands, we will have a lot of parallelism available.
These two types of parallelism also fit the SIMD concepts perfectly.

The calculation of the weighted sum is the most time consuming calculation and
should therefore be supported architecturally by any computer intended for real-time
ANN computations. Also the communication means between different ANN algo-
rithms/modules as well as between these modules and the environment have to be
carefully designed.

Another possible application area for the architecture we describe would be low-
level image processing. As the architecture is not very different from architectures
which are known to perform well on low-level image processing problems (e.g. AIS-
5000 [14], LUCAS [5]), this problem area also fits our architecture well.

3 The REMAP Computer

REMAP is an experimental project. A sequence of gradually evolved prototypes are
being built, starting with a small, software configurable PE array module, implemented
as a Master’s thesis project [8]. With only slight modifications in the PE array architec-
ture, but using a new high-performance control unit, the second prototype has now
been built

1

. This prototype is almost full-scale with respect to the number of PEs, but
far from miniaturized enough for embedded systems. It is the architecture of this pro-
totype that is described in this paper.

The computer consists of a number of computing modules controlled by a master
computer. Each computing module is a SIMD computer of its own. It contains a linear
array of bit-serial processing elements with memory and I/O-circuits controlled by a
control unit, see Fig. 2.

1. A 128PE prototype has now (beginning of 1993) been completed.

202

Fig. 2.

 Overview of the REMAP system. The PEs are implemented in Xilinx
XC4005 circuits (8 in each) and the serial/parallel I/O device in Xilinx XC3020
(8 parallel and 8 serial I/O each)

3.1 The Control Unit

The main task for the control unit is to send instructions together with PE memory ad-
dresses to the PE array. At the same time it computes new address values (typically in-
crements and decrements).

The control unit currently in use [3] has been designed around a microprogramma-
ble sequencer and a 32bit ALU (AMD 28331, 28332). The control unit is capable of
sending out a new address together with a new instruction every 100ns. The controller
is more general purpose than usually needed, but until we know what is needed it
serves our purpose. The microprograms to be executed by the control unit are stored in
an 8K words control store. The operations can either be simple field operations, like
adding two fields, or whole algorithms like an ANN computation. For the moment
only a micro-code assembler is available to program the control unit, but we intend to
develop more high level software development tools in the future. Currently we are
looking into the possibility of using/developing a data-parallel language similar to C*
[17].

3.2 PEs for ANN Algorithms

The detailed studies of artificial neural network computations have resulted in a pro-
posal for a PE that is well suited for this area. The design is depicted in Fig. 3. Impor-
tant features are the bit-serial multiplier and the broadcast connection. Notably, no
other inter-PE connections than broadcast and nearest neighbor are needed. The PE is
quite general purpose, and we are confident that this is a useful PE design also in sev-
eral other application areas. In this version it consists of four flipflops (R, C, T and X),

Control Unit

Master Processor
Host connection

Parallel

Memory PEsSerial
I/O

I/O

A computing module

203

eight multiplexers, some logic and a multiplication unit. The units get their control sig-
nals directly from the micro instruction word sent from the control unit.

Fig. 3.

 The sample PE

In simple PEs without support for multiplication the multiplication time grows
quadratically with the data length. A method based on carry-save adders [5] (see Fig.
4) can reduce the multiplication time required to the time to load the operands and
store the result.

Fig. 4.

 Design of a two’s-complement bit-serial multiplier. It is operated by first
shifting in the multiplicand, most significant bit first, into the array of M flip-
flops. The bits of the multiplier are then successively applied to the input, least
significant bit first. The product bits appear at the output with least significant bit
first.

As shown in [11] the incorporation of a counter instead of a multiplier in the PE de-
sign may pay off well when implementing the Sparse Distributed Memory (SDM) neu-
ral network model. A 256PE REMAP realization with counters is found to run SDM at
speeds 10–30 times that of an 8K PE Connection Machine CM-2, (with frequencies
normalized and on an 8K problem). Already without counters (then the PEs become
extremely simple) a 256PE REMAP outperforms a 32 times larger CM-2 by a factor
of 4–10. Even if this speed-up for REMAP can be partly explained by the more ad-
vanced sequencer, the possibility to tune the PEs for this application is equally impor-
tant.

C
M
U
X

C
Add

0
1 R

0
1

U
D

Min

M
U
X

Multiplier

T

Mem

T Control

X
Broadcast

Some≥1

1

≥1
SomeIn

SelOut

B

≥1

M

U

X

And
Or
Xor
Add
IN
IN

Ri

Ri Out

Out

&

Out

C

&
S

M

FA

C

&
S

M

FA

C

&
S

M

FA

C

&
S

M

FA

C

&

M

FA

S

In

C

&
S

M

FA

C

&
S

M

FA

C

&
S

M

FA

204

3.3 PE Communication

The processing element has two ways of communicating with other processing ele-
ments: nearest neighbor and broadcast communication. The nearest neighbor commu-
nication network allows each PE to read its neighbor’s memory i.e. PE(n) can read
from PE(n+1) and PE(n-1). The first and the last PEs are considered neighbors. At any
time one of the PEs can broadcast a value to all other PEs or to the control unit. The
control unit can also broadcast a value to the PEs. It has also a possibility to check if
any of the PEs has the activity bit (T-flip-flop) set. If several PEs are active at the same
time and the control unit wants one PE to broadcast, the control unit simply does a se-
lect-first operation, which selects the first active PE and deselects the rest. These com-
munication and arbitration operations can be used to efficiently perform matrix
computations as well as search and test operations sufficient for many application ar-
eas, especially artificial neural networks. To be useful in real-time applications which
include interacting with a changing environment, high demands are put on the I/O-
system. To meet these demands the processor array is equipped with two I/O-channels,
one for 8-bit wide communication and the other for array-wide communications. This
interface has a capability to run at speeds up to 80MHz (burst) which, for a 256PE ar-
ray, implies a maximum transfer rate of 20Gbit/s. Due to limitations in the control unit
the I/O-interface currently runs at 10MHz which reduces the transfer rate to 2.5Gbit/s.

4 Designing with FPGA Circuits

After a market survey we found that FPGAs from Xilinx [22] would serve our needs
best. The structure of the Xilinx circuits is shown in Fig. 5. The chip consists of a num-
ber of combinatorial logic blocks (CLB), some input-output blocks (IOB) and an inter-
connection network (ICN). These circuits are user programmable, thus enabling the
CLB, IOB and ICN to be programmed by the user. The configuration of the on-chip
configuration RAM is carried out at power up or by a reprogramming sequence. The
RAM can be loaded from an external memory or from a microprocessor, the latter is
used for REMAP. It takes about 400ms to reprogram the circuits, thus enabling the
master-processor to change the architecture of the processing elements dynamically
during the execution of programs.

205

Fig. 5.

 Xilinx FPGA overview. The IOB connects the I/O-pads to the ICN.
These blocks can be configured as input, output or bidirectional blocks. The
CLBs are configurable logic blocks consisting of two 16bit (and one 8bit) look-
up table for logic functions and two flipflops for state storage. These blocks are
only connected to the ICN. The ICN connects the different blocks in the chip. It
consist of four kinds of connections: short-range connections between neighbor-
ing blocks, medium-range connections connecting blocks on slightly larger dis-
tances, long-lines connecting whole rows and columns, and global nets for clock
and reset signals broadcasted throughout the whole chip.

Since one of our goals is to make a kind of hardware simulator for different types
of PE-architectures using a fixed hardware surrounding, it is required that the connec-
tions off chip like those to the memory and control unit have the same function regard-
less of the currently loaded processor architecture. As shown in [18] it is advantageous
to lock the pads so that control signals enter from the top and bottom of the chip, and
also design the processing elements so that they are laid out rowwise in the array of
CLBs. It is likewise preferable to have a dataflow from left to right in the chip i.e. input
data enters the left side and output emerges from the right side.

4.1 Using XC3090

The first prototype was constructed using Xilinx XC3090, and some frustrating experi-
ences were gained from the poor development tools for these circuits. The processing
elements in this version are only capable of running at 5MHz clock frequency. The
low speed is due to the incapability of the EDA software to handle signal flow layout
in the circuits, something which also leads to low utilization. The PEs were designed
using the OrCAD CAE-tools, enabling the designer to work with ordinary logic blocks
like multiplexers and different types of gates. The schematics are then automatically
converted to suit the Xilinx circuits. This is a fast design method but different parts of
the logic become intermixed and long delays are introduced.

Switching

I/O Block

CLB

matrix

Grid of general inter-
connect metal segments

206

4.2 Using XC4005

The current prototype is based on the XC4000 FPGA family from Xilinx. These cir-
cuits have a more balanced performance than the XC3000 circuits which have small
routing resources compared to the number of CLBs. In the XC4000 family the CLBs
are larger, the ICN much more powerful and the internal delays shorter. The circuits
range from XC4003, which has a 10 by 10 CLB matrix, to XC4010 with a 20 by 20
CLB matrix, and even larger circuits are announced. With these circuits it is easier to
test new types of PEs, as there is more space in them. It will also be possible to in-
crease the maximum clock frequency to 20MHz, and possibly even 40MHz if more
pipelining is introduced. The greatest advantage with these new circuits is the soft-
ware; routing a XC3090 chip can take a couple of days on a 80486 machine, while the
same problem can be solved in half an hour with the new software for the XC4000 cir-
cuits.

One PE of the kind depicted in Fig. 3 occupies approximately 10 CLBs and the
eight-bit deep bit-serial multiplier 11 CLBs. Using a XC4005 with a 14 by 14 CLB-
matrix, we can get at least 8 PEs in each Xilinx chip. Considering this and the timing
demands of 10MHz operation (due to the control unit), we can easily make design
variations both in the main processor and in the multiplier (or other coprocessor). It
takes about one week to make a tested and simulated prototype with the XACT editor.
The design is of course also open for changes to PEs with other data widths between 2
bits and eight bits.

Tools

High level tools were not available when we started to develop a processing element
for the XC4005-circuits. Therefore we have not yet tested how well those tools work.
There are, however, several advantages of using the low-level XACT editor in early
stages of the design. We get good knowledge of the circuit’s limitations and possibili-
ties, and at the same time we get full control of all necessary timing. The usage of
XACT is simplified by the regular and simple structure of our design. In the first im-
plementation we aimed towards eight processing elements running at 10MHz in each
XC4005 circuit, based on the previous experiences with the XC3090 circuits. These
goals were easily achieved; the eight processing elements can run at 20MHz utilizing
75% of the XC4005 configurable logic blocks and all of its I/O blocks, this in the 84
pin PLCC package.

Data and Control Flow in the Circuits

The data and control flow play an important role in getting the best performance out of
the circuits, therefore we have a basic template with some of the control and data sig-
nals already laid out. This template enables the user to easily implement new types of
processing elements with minimum effort and at the same time achieve high perfor-
mance.

When designing the control flow we want to use the global networks as much as
possible. This is achieved by using 4 of the global nets and 20 of the vertical long-
lines. The memory input signal is connected to the memory output via a horizontal
long-line through the chip in order to enable a good data input distribution and allow

207

write-back of unchanged data when the processing element is inactive. With these re-
strictions in signal flow the internal delays can be held very low.

Fig. 6.

Layout for PEs in an XC4005

As we have used the XC4005-PC84 which has a 14x14 CLB matrix, and the rest of
the hardware is designed for eight processing elements, the chip is divided into four
blocks of two processing elements each, occupying three rows in the matrix. Each pro-
cessing element then gets 21 CLBs, 2 IOBs with PADs, and six IOBs with only edge
decoders

1

. After this we have 28 unused CLBs.

Testability

From our experiences of the XC3090 circuits, which sometimes got into undefined
states when we tried to reconfigure them, we now separate programming pins to the
master processor so that we can directly see which circuit is failing. We also use the
possibility of reading back configuration and state data from the Xilinx circuits, which
can be done while the PEs are running. The master can also single-step the processor
via the control unit and read back all state variables. Two pads on each processing ele-
ment are dedicated to probing, here we can measure any internal delay simply by load-
ing a configuration with the probe outputs properly programmed (this is done
automatically by the XACT EDA software). The JTAG facilities of the XC4000 have
not been used, because the PEs, simple as they are, only require a couple of hundred
stimuli to excite all modes in them.

The full-scale prototype (256 PEs) can run in 10MHz with very comfortable timing
margins. More memory and additional communication networks can easily be added if
need arises.

1. Some of the I/O-blocks in the XC4005-PC84 have no connections to pads. However, these
blocks can be used to get a connection to their edge decoder.

CONTROL

DATA
IN

DATA
OUT

Control signal routing area
PE 1

Multipliers for PE1 and 2

Xilinx XC4005

PE 2
PE 3

208

5 Other Usage of FPGAs to Run ANN Algorithms

There are other FPGA implementations of ANN models besides ours. A short descrip-
tion of some of them are given below.

A group at North Carolina State University has developed a PC-card called Any-
board [19], which in principle only contains Xilinx chips (4 XC3020s) and RAM. It is
part of a “rapid prototyping” environment, where user-specified digital designs can
quickly be implemented and tested. One early project using this card was the imple-
mentation of a stochastic ANN model called TInMANN [20]. A quite fast and dense
implementation was obtained. They used a special purpose architecture, tuned to their
algorithm.

Another project, using 25 XC3020s to implement a stochastic Boltzmann machine
ANN, was carried out by Skubiszewski [15]. In this implementation the architecture
was more like ours (identifiable PEs similar to conventional bit-serial PEs), but no sup-
port for the multiplications was included.

Cox and Blanz [4] built an ANN simulator with impressive performance, out of 28
XC3090s. In contrast to the two implementations above and our implementation, they
have used a highly specialized bit-parallel approach, which implements a feed-forward
neural network of a fixed size (12x14x4).

Another, more specialized, use of FPGAs for ANN computations is made by a
group at Tampere University of Technology, Finland [13]. In this group’s hardware im-
plementation of Kanerva's Sparse Distributed Memory (SDM), FPGAs are used to im-
plement the main controller as well as more specialized computations like an adder
tree. The architecture is highly specialized for SDM and no identifiable processing ele-
ments exist.

Xilinx circuits are also used in general hardware emulators such as the Quickturn
RPM emulator [21], which emulates designs with from 10K up to 1M gates at a speed
of 1MHz. This type of emulators could of course be used to simulate all the designs
described in this paper, but with drastically lower speed and CLB utilization.

6 Conclusions and Future Directions

With the REMAP computer, we have a platform from where we can test and evaluate
different types of interconnection networks, PE complexities and architectures. This is
not restricted to simple bit-serial PEs as the one described in this text, also complex
ones such as bit-serial floating point arithmetic units and up to eight bit wide PEs can
be implemented. Floating point arithmetic for this platform has been examined by
members of the group [1], and will be included. When we have found a good PE archi-
tecture we will transfer it to silicon, this decreases the size and increases the system
speed. Our aim is to get 256 processing elements, with floating point arithmetic, on
each chip running at an internal speed of 200–300MHz.

A robot arm with 12 motors and a number of sensors all controlled in parallel from
the array-parallel interface on the REMAP computer is being developed at the Centre
for Computer Architecture, Halmstad University. A CCD camera is also planned to be

209

connected to the byte-wide interface on REMAP as a further step towards a real-time
action-oriented system.

To speed up the development cycle in the future some sort of high-level description
of the PEs and their interconnections would be needed. From this description it should
be possible to generate FPGA layout, VLSI layout, a PE array simulator, and a high
level language compiler back-end. Both text-based and graphics based high-level de-
scriptions are considered.

While, in this design of a hardware simulator, we are more interested in the possi-
bilities of changing the processor architecture than to get maximum performance, we
have added (retained) the feature that design changes can be made during execution.
For example in some parts of an application we may need a counter instead of a multi-
plier. It is easily accomplished, via program control, to stop the control unit during ap-
proximately 400ms and reprogram the Xilinx circuits.

7 References

1. Åhlander, A. and B. Svensson. "Floating point calculations in bit-serial SIMD
computers." In

Fourth Swedish Workshop on Computer Systems Architecture

,
Linköping, Sweden, 1992.

2. Arbib, M. A. "Schemas and neural network for sixth generation computing."

Jour-
nal of Parallel and Distributed Computing

. Vol. 6(2): pp. 185-216, 1989.

3. Bengtsson, L., A. Linde, T. Nordström, B. Svensson, M. Taveniku and A. Åhlander.
"Design and implementation of the REMAP

3

 software reconfigurable SIMD paral-
lel computer." In

Fourth Swedish Workshop on Computer Systems Architecture

,
Linköping, Sweden, 1992.

4. Cox, C. E. and W. E. Blanz. "GANGLION — A fast field programmable gate array
implementation of a connectionist classfier." (RJ 8290 /75651/), IBM Research Di-
vision, Almaden Research Centre, 1990.

5. Fernström, C., I. Kruzela and B. Svensson.

LUCAS Associative Array Processor -
Design, Programming and Application Studies

. Vol 216 of

Lecture Notes in Com-
puter Science

. Springer Verlag. Berlin. 1986.

6. Hertz, J., A. Krogh and R. G. Palmer.

Introduction to the Theory of Neural Compu-
tations

. Addison Wesley. Redwood City, CA. 1991.

7. Kohonen, T. "An introduction to neural computing."

Neural Networks

. Vol. 1: pp.
3-16, 1988.

8. Linde, A. and M. Taveniku. "LUPUS — a reconfigurable prototype for a modular
massively parallel SIMD computing system." (Masters Thesis 1991:028 E), Uni-
versity of Luleå, Sweden, 1991. [In Swedish]

9. Lippmann, R. P. "An Introduction to Computing with Neural Nets."

IEEE Acous-
tics, Speech, and Signal Processing Magazine

. Vol. 4(April): pp. 4-22, 1987.

10. Nordström, T. "Designing parallel computers for self organizing maps." (Res. Rep.
TULEA 1991:17), Luleå University of Technology, Sweden, 1991.

11. Nordström, T. "Sparse distributed memory simulation on REMAP3." (Res. Rep.
TULEA 1991:16), Luleå University of Technology, Sweden, 1991.

210

12. Nordström, T. and B. Svensson. "Using and designing massively parallel comput-
ers for artificial neural networks."

Journal of Parallel and Distributed Computing

.
Vol. 14(3): pp. 260-285, 1992.

13. Saarinen, J., M. Lindell, P. Kotilainen, J. Tomberg, P. Kanerva and K. Kaski.
"Highly parallel hardware implementation of sparse distributed memory." In

Inter-
national Conference on Artificial Neural Networks

, Vol. 1, pp. 673-678, Helsinki,
Finland, 1991.

14. Schmitt, R. S. and S. S. Wilson. "The AIS-5000 parallel processor."

IEEE Transac-
tion on Pattern Analysis and Machine Intelligence

. Vol. 10(3): pp. 320-330, 1988.

15. Skubiszewski, M. "A hardware emulator for binary neural networks." In

Interna-
tional Neural Network Conference

, Vol. 2, pp. 555-558, Paris, 1990.

16. Svensson, B. and T. Nordström. "Execution of neural network algorithms on an ar-
ray of bit-serial processors." In

10th International Conference on Pattern Recogni-
tion, Computer Architectures for Vision and Pattern Recognition

, Vol. II, pp. 501-
505, Atlantic City, New Jersey, USA, 1990.

17. Thinking Machines Corporation. "C* User's guide and C* Programming Guide."
(Version 6.0), T M C Cambridge, Massachusetts, 1990.

18. Unnebäck, M. "Gate array implementations of processing elements for a reconfig-
urable, modular, massively parallel SIMD computer." (Masters Thesis 1991:117
E), Luleå University of Technology, 1991. [In Swedish]

19. Van den Bout, D. E., J. N. Morris, D. Thomae, S. Labrozzi, S. Wingo and D. Hall-
man. "AnyBoard: An FPGA-based, reconfigurable system."

IEEE Design & Test of
Computers

. (September): pp. 21-30, 1992.

20. Van den Bout, D. E., W. Snyder and T. K. Miller III. "Rapid prototyping for neural
networks."

Advanced Neural Computers

. Eckmiller ed. North-Holland. Amster-
dam. 1990.

21. Wolff, H. "How Quickturn is filling a gap."

Electronics

. (April): 1990.

22. XILINX.

The Programmable Gate Array Data Book

. 1990.

1

On-Line

Localized Learning Systems

Part I – Model Description

Tomas Nordström

Division of Computer Science & Engineering
Luleå University of Technology, Sweden

E-mail: tono@sm.luth.se

ABSTRACT

The concept of localized learning systems (LLSs) is introduced in this paper.
This concept makes it possible to combine many commonly used artificial
neural network (ANN) models into a single “superclass”. The LLS model is
a feedforward network using an expanded representation with more nodes
in the hidden layer than in the input or output layers. The main characteris-
tics of the model are local activity with respect to input space, and localized
learning in active nodes.

The principal structure is the same for all the included ANN models
whereas they differ in how locality is defined (that is, using different dis-
tance measures, receptive field forms, and kernel functions) and in the
methods used to train the free parameters. Different ways to vary the LLS
concept is studied in detail in this paper. We will however restrict ourselves
to methods that can be used in an on-line learning situation.

The connection between a number of well known ANN models and the
possible variations of the LLS model is demonstrated. Additionally, these
connections let us suggest new variants of “old” ANN models.

The LLS model (that is, the ANN models which constitute this super-
class) has been shown to perform classification and approximation tasks
very well in comparison to other non LLS models like, for example, multi-
layer perceptrons trained with error back-propagation, while needing only a
fraction of its training time. The LLS model can also easily be shown to be
suitable for implementation on parallel computers, a possibility which will
be further explored in a companion paper.

This document was created with FrameMaker 4.0.4

TULEA 1995:01

2

1. Introduction

This is the first paper in a series of papers investigating a new class of neural network algo-
rithms which we will refer to as localized learning systems (LLSs). By the concept of LLSs
we have extracted a “superclass” of powerful artificial neural network (ANN) models which
have so much in common that it seems worthwhile to study a common hardware platform
for them. In this first paper we will characterize the LLS model and the ANN it contains. In
a companion paper [51] implementations of these models on parallel computers will be dis-
cussed. The LLS concept also allows us to find connections between a number of well
known ANN models and the possible variations of LLS model. Furthermore, these connec-
tions let us suggest new variants of “old” ANN models.

The idea of localized learning (and response) can in some respects be found in Hebb’s
work [25], dated 1949. Many others have used this idea in the first wave of ANN, i.e., up to
the early seventies, concepts like “winner-take-all” [68], potential functions [5, 15], BOXES
[44], cerebellar model arithmetic computer (CMAC) [2, 3, 4], competitive learning and self-
organization [37, 81], were used to explore the ideas of localized learning. The development
of radial basis functions (RBFs) [61] and the revival of the ANN field during the last ten
years have resulted in a number of new models containing the idea of localized learning,
many built around the concept of RBF networks [8, 46, 47, 58, 59]. This recent interest in
ANNs contained in the LLS class has resulted in many important theoretical results. For in-
stance, the universal approximation property shown for the commonly used multilayer per-
ceptrons (MLPs) [12, 17, 28] has also been proven [54] for RBFs and its generalizations.
This property implies that any continuous function can be approximated to a given degree of
accuracy by a sufficiently large network. One important feature found in all the LLS models
is the parallelism in the many nodes used, all using local operations, making these systems
eligible for parallel computer implementations.

In earlier studies we have analyzed how to implement ANNs efficiently on parallel com-
puters [49, 50, 52, 77, 78]. In this and the companion paper we continue these studies by an-
alyzing the LLS model.

In the next section we will define the LLS and in the following section we will outline a
theoretical foundation for LLSs. This will primarily be based on generalized radial basis
functions (GRBFs) [59, 61], one of the most general ANN models in the LLS group. In Sec-
tion 4 – 6 the feedforward and learning phases are analyzed. In Section 7 we show the simi-
larities and differences between two different LLS variations, the GRBF network and the
sparse distributed memory (SDM) model [34, 36]. (Other ANN models are discussed in Ap-
pendix A). In this section we also discuss the similarities and differences to the much used
MLP trained with back propagation (BP) which is not an LLS model. We end with conclu-
sions and future directions to our research.

On-Line Localized Learning Systems Part I – Model Description

3

2. Localized learning systems (LLSs)

Using the ANN attributes suggested by Lippmann [41]: network topology, node characteris-
tics, and learning rules we define an LLS as:

• Network topology: An LLS is a feedforward artificial neural network, with only one
hidden layer, cf. Figure 1A. The model forms an expanded representation (ER)
[76]—the first weight layer performs a nonlinear expansion of the input space into a
high dimensional feature space, residing in the hidden layer. Cover shows in [11] that
a nonlinear mapping from low-dimensional to high-dimensional space can transform
a nonlinear separation problem to a linear one. This fact contributes to the usefulness
of ER. The output weight layer is usually linear, and can therefore often be adapted
without the local minima problem. The structure is similar to a table lookup where
the input is looking up the output value associated with the current input region.

• Node characteristics: In an LLS the activity of a node is high only in a section of the
input space, that is, localized activation. This is often accomplished by a Gaussian
function, but also box-like functions are used by some models. In some of the models
(e.g., self-organizing maps) this also corresponds to locality among the nodes, but the
LLS model does not demand this.

• Learning rules: Only the nodes with high activity will update their parameters, thus
the localized activity will result in localized learning [45, 46]. This fact can be used
in an on-line system [76], that is, where learning must be done incrementally and in
real-time, with the results of learning being available soon after each new example is
acquired. As the title of the paper indicates, the on-line aspect is important and will
be used to select among the variations of the LLS.

Figure 1 A) The LLS model is a feedforward neural network model with localized activity at the
hidden nodes. B) shows the data flow and data organization of the LLS model (feedforward phase).

24 -6 62 1

97
115
78
102
112

•
•

128
109

1
1
0
1
4
•
•
0
0

0
0
-2
0
1
•
•
1
-3

1
3
1
1
0
•
•
0
0

0
-1
0
5
1
•
•
1
0

1
0
1
1
0
•
•
0
1

Output

Distance ActivationCompare

Calculate node output

Weighted

1
1
0
1
4
•
•
0
0

0
0
-2
0
1
•
•
1
-3

1
3
1
1
0
•
•
0
0

0
-1
0
5
1
•
•
1
0

0
1
-3
0
1
•
•
2
0

2
1
0
0
-1
•
•
1
0

•
•
•

•
•
•

•
•

•
•

1 0 1 1 • • 0 1

Input

sum of
nodes

•
•
•

A B

input
output

hidden
layer

Σ
Σ

y
x

TULEA 1995:01

4

The LLS algorithm can be divided into two phases, a feedforward phase and a learning
phase. Furthermore the feedforward phase can be divided into three main steps, found in all
LLS variations.

1. Calculate the distance between kernel centers (templates) and input , using a
distance measure like Euclidean distance, inner product, or Hamming distance.

2. Calculate the node outputs for nodes in the hidden layer, where is used
to control the size and form of the receptive field. is known as a kernel or ra-
dial-basis function. A node with a significant output is called a selected or active
node, that is, a node is in the set of active nodes if , with being
a constant. In many variations of the LLS model is a Gaussian function with
its center located at , and a covariance matrix of .

3. Calculate the output as a weighted sum of the (active) nodes, that is

, (1)

where are the free parameters. This equation can easily be ex-
panded to multiple outputs as well.

These three steps correspond to the first weight layer, the hidden node layer, and the second
weight layer respectively in Figure 1A. In Figure 1B we also illustrate the dataflow and data
organization of the LLS. This figure will be the starting point for the discussion in the com-
panion paper on how to map the LLS onto parallel computers.The learning phase adapts the
free parameters . The methods for learning are much more differentiated and will only be
described in later sections.

r i ci x

ϕ r i Si,() i Si
ϕ r i Si,()

A ϕ r i Si,() α≥ α 0≥
ϕ r i Si,()

ci Si
1–

y

y F x Θ,() wiϕ r i Si,()
i A∈
∑= =

Θ wi ci Si, ,{ }M
i 1==

Θ

On-Line Localized Learning Systems Part I – Model Description

5

3. LLS framework

In this section we introduce the function approximation aspect of LLS. We also discuss
methods to formally derive the LLS concept using regularization techniques. The basic con-
cept is then expanded and in the end we show the whole class of LLS variations.

As most signal processing tasks can be seen as functions mapping an input to
an output , the function approximation aspect of LLS is of great importance. This
will be only briefly described in this section, but a more thorough analysis can be found in
[24, 59, 61, 62].

Given a set of data, which is a partial specification
of a function belonging to some space of functions defined on , the function approxi-
mation problem is to recover the function , or its approximation, even in the presence of
noise.

If both input and output spaces and are real valued, i.e., and
, we have the general function approximation problem (we sometimes simplify

the reasoning to , without loss of generality). If, instead, the output space is binary,
i.e , we have a classification problem. Moreover, if both input and output spaces

 and are binary valued, i.e., and , we have a Boolean func-
tion approximation problem.

It should be noted that the function approximation problem is ill-posed [10, 80] as there
is not enough information in the data available to find a unique solution for the function .
That is, in areas where data are not available nothing can be said about . By imposing some
a priori knowledge, which will make the problem well-posed, a solution can be found. Mao
and Jain present in [43] a taxonomy of regularization techniques, or ways to describe the a
priori knowledge, in the ANN field: Type I Architecture-inherent which specifies network
sizes and topology; Type II Algorithm-inherent which specifies learning algorithm, e.g.,
stopping criteria, noise addition; Type III Explicitly-specified which explicitly specifies the
stabilizer based on knowledge of the underlying solution, e.g., smoothness or variance con-
straints. By smooth we mean that small changes in some input parameters determine a corre-
spondingly small change in the output.

LLSs can be derived using all three techniques, but most common are the architecture-
inherent and the explicitly-specified. For the former the structure is specified a priori, for in-
stance, deciding on a structure like the one described in Eq. (1). With the explicitly-speci-
fied, often referred to as regularization theory, we can choose between fitness to data, e.g.,

 and the degree of regularization (generalization) . The
trade-off is controlled by a regularization parameter . In the operator P the prior informa-
tion is incorporated, and therefore P will be problem-dependent, often P is taken to be a dif-
ferential operator. P is also referred to as a stabilizer in the sense that it stabilizes the solution

. So instead of only using data fitness error we want to minimize:

(2)

The radial basis functions (RBFs) is a powerful group of function approximators which orig-
inally has been derived from function approximation theory [8, 61]. The RBF network can

f x S in∈
y Sout∈

D dp xp yp(,) Sd Sm×∈={ }N

p 1==
f Sd

f

S in Sout S in Rd
=

Sout Rm
=

m 1=
Sout B m

=
S in Sout S in B d

= Sout B m
=

f
f

F xp Θ,() y–
p

() 2

p 1=
N∑ PF Θ() 2

λ

F

F xp Θ,() y–
p

() 2

p 1=
N∑ λ PF Θ()

2
+

TULEA 1995:01

6

also be derived from regularization theory, as shown by Poggio et al. [58, 59]. By restricting
P to be invariant under both rotations and translations the RBF networks can be derived, and
by further specifying P, the resulting radial function can be made to be a Gaussian function.
Given these restrictions and minimizing Eq. (2) with respect to leads to a solution, an
RBF network, where the approximating function is constructed from a set of ra-
dial functions:

(3)

As in Eq. (1), is a set of kernel or radial-basis functions. The distance
where denotes a norm, is usually taken to be the Euclidean. The centers (or templates) of
the kernels are denoted . The free parameters to be set, usually by training, are

. Typically, the Gaussian is used as the radial-function. Accord-
ing to regularization theory other radial functions, like multiquadratics, , or
thin-plate splines, , are possible, but as most of them are not conforming to the local-
ity concept they will not be considered further here. This non-conformance also means that
some RBF networks are not LLSs. We also find that in regularization theory [59] it is not un-
usual to add a polynomial to Eq. (3) in the form of () where is a
basis of the linear space of algebraic polynomials of degree at most from
to , with given. This however destroys the locality we want. It is still possible to add a
bias to Eq. (3) if needed An easy way to accomplish this is by letting one of the kernels al-
ways be equal to one.

Other variations of the LLS model are derived in a more architecture-inherent way. A
large family of LLS variations is found by varying such things as input and output spaces
(Real, Integer or Boolean); distance measures (e.g., cityblock, L1, or Euclidean, L2); recep-
tive field (e.g., sphere or elliptic); kernel function (exponential, threshold, min/max etc.);
and how to initiate and adapt the free parameters. Many of these variations are well known
ANN models by themselves, but by using the LLS concept the connection between these
models becomes clearer. In the following two Sections the LLS variations shown in Table 1
will be discussed.

Θ
F x Θ,() M

F x Θi,() wiϕ r i()
i 1=
M∑=

ϕ r i()
i 1=
M r i x ci–=

.

ci
Θi wi ci,{ }= ϕ r() e r– 2=

r2 a2+() 1 2⁄–

r2 rlog

vi pi x()
i 1=
n∑ n d≤ pi i 1=

d

πk 1– Rd
() k 1– Rd

R k

On-Line Localized Learning Systems Part I – Model Description

7

From a theoretical point of view it is interesting to note that when the desired network output
is binary and a square error cost function (or a cross entropy cost function) is minimized, the
actual network outputs are estimates of the optimal Bayesian conditional probabilities. This
is nicely derived, and demonstrated by simulations, for MLP and RBF networks by Richard
and Lippmann in [66]. Then the suggested normalized version of Eq. (3) [47]:

, (4)

becomes natural, if the node outputs are to be interpreted as true probability densities [82]. It
has no effect on the classification the network performs, but it does affect the evaluation of
the “confidence” in classification. The normalization is also sometimes found to speed up
convergence, see for instance Saha et al. [71]. Unfortunately it can also make the network
emphasize “outliers” which is clearly undesirable. More importantly, this normalization is
global in its nature and therefore does not fit into the LLS concept.

Input Distance
Receptive

Field initiation
Out

R
L1

(cityblock)
1 exp Random Fixed

Pseudo-
inverse

Fixed R

I
L2

(Euclidean)
Radial Uniform Gradient Gradient Gradient I

B L∞
Threshold
logic unit

Subset of
data

Competitive
learning

Occurrence
(Hebb)

RCE B

Dot
product

Min/Max
All
data

+ Topology

Hamming
distance

Incremental
addition

Genetic
algorithm

Hierarchical

Sample/Hash

Table 1 Variations of LLS models. The pseudoinverse is neither local nor on-line, but is com-
monly used and therefore will be further discussed in Section 4.1

ϕ ci c∆ w∆ S∆

sI

si I

diag sj[]

diag sj[]
i

Si j

F x Θi,()
wiϕ r i()

i 1=
M∑

ϕ r i()
i 1=
M∑

--------------------------------=

TULEA 1995:01

8

3.1 Number of Kernels

Maybe the most fundamental parameter is the number of kernels . The original formula-
tion of RBF networks uses the same number of kernels as there is data, that is, .
This means that if a large training set is used, the number of nodes becomes large. Another
problem is that this method is batch oriented, and therefore not suitable for an on-line LLS.
For generalizations of RBFs (GRBFs) the number of kernels is reduced to a subset and the
number is fixed. Usually this number is set prior to learning in a more or less ad hoc manner.
The optimal number of kernels depends on the problem at hand, but unfortunately the prob-
lem properties are usually not known prior to training.

One possible solution is to use a method which incrementally adds new nodes to the net-
work when needed (to meet some performance criteria). These methods are structurally
adapting in contrast to the commonly used adaptation of weights. The two basic problems
involved are: when to add a new node, and where it should be placed (possibly adjusting
other nodes simultaneously). The easiest incremental method is first checking to see if the
input is close enough to any of the previously added nodes, and if not, to add a node at the
input data position. This is similar to the resource-allocation network (RAN) suggested by
Platt [57]. RAN has later been enhanced by Kadirkamanathan and Niranjan [33]. More com-
plicated structural adaptation methods exist (e.g., with deletion) both with topology con-
straints (Tan [79]) and without (Fritzke [16]). For the Boolean approximation problems a
number of interesting structurally adapting methods can be found. One area where it is com-
monly used is the identification and classification of bacteria, see for instance the idea of cu-
mulative classification in [20, 21].

When the input dimension increases there is a problem with the “curse of the dimension-
ality”, i.e., the exponentially increasing input space, needing an exponentially increasing
number of nodes to have the same coverage of the input space. A number of solutions have
been suggested [19, 22, 59, 71, 83] to overcome the dimensionality problem. For instance;
transforming the input space, both by globally transforming the input , and by locally
transforming the receptive fields of the nodes (see Section 4.2); distributing the centers ac-
cording to the data distribution (see Section 5.2); or pre-processing the features by any of the
dimension reduction methods available, e.g., principal component analysis.

M
M N=

x

On-Line Localized Learning Systems Part I – Model Description

9

4. The feedforward calculations

For the feedforward phase we find three things that decide locality: distance measurement
used, receptive field size and form, and kernel function used. In the next three subsections
we will discuss them in detail, using the variations found in Table 1. In subsection 4.4 the
calculation of the weighted sum required for the network output will be discussed. In Sec-
tion 6 a simplified complexity analysis is carried out on both the feedforward phase and the
adaptation phase discussed in Section 5.

Throughout this section we will use as the number of inputs, as the number of
nodes, as the set of active nodes, and as the number of outputs.

4.1 Distance measurement

The distance or the similarity between two vectors can be measured in many ways, see for
instance [38] where Kohonen discusses the matter. There it is also noted that distance and
similarity actually are reciprocal concepts, so in principle we could call distance dissimilari-
ty. Simard et al. have suggested [72, 73] a distance measurement suitable for the LLS model
called tangent distance, which can be made locally invariant to any set of the input, and can
be computed efficiently. However, in most approximation problems the Lp-norms with

 and are used as a distance measurement. For finite the Lp-norm in has
the value

. (5)

For and 2 the Lp-norms can be written as:

L1 (City block): , (6)

L2 (Euclidean): . (7)

The L∞-norm has the value

. (8)

With and the Hamming distance can be used as a distance measurement, in-
dicating how many bits (positions) of the two vectors that are different. Usually it is calcu-
lated as a sum of bits after doing an exclusive-or between and . It is actually equal to
both L1 and (L2)

2 distances, used with binary inputs.
For self-organizing maps (SOM) the dot-product often replac-

es the L2 distance, typically after normalization of and to unit lengths, which in fact
makes the dot-product proportional to the (negative) L2 distance as

. The search for a node with minimum L2 distance is corre-
spondingly changed to a search for the maximum dot-product. The dot-product is also re-
garded as more “neural” than other distance measurements. The Hamming distance is the
natural distance for binary input, so it is typically used in SDM and CMAC. The L2 (Euclid-

d M
A m

p 1 2,= ∞ p Rd

r i x ci–
p

x j ci j–
p

j 1=

d∑[]
1 p⁄

= =

p 1=

r i x ci– x ci–
1

x j ci j–
j 1=

d∑= = =

r i x ci– x ci–
2

x j ci j–[] 2

j 1=

d∑() 1 2⁄
= = =

r i x ci– ∞ max
1 i d≤ ≤

x j ci j–= =

x B d∈ ci B d∈

x ci

r i x
T
ci x jci jj 1=

d∑= =
x ci

x ci– x ci 2 x
T
ci()–+=

TULEA 1995:01

10

ean) distance is the commonly used distance for real-valued inputs. The L∞ distance has
been used by Prager et al. [63, 64] to extend the SDM model to integer input values. The L1
distance has for instance been used for some hardware implementations of restricted Cou-
lomb energy (RCE) [48].

4.2 Receptive field

The receptive field, that is the part of the input domain which causes a significant output, is
determined by a parameter . A general form of distance measure can be defined as

 where is a positive definite matrix. This
measure is also named Mahalanobis distance. Note that it implicitly uses the square of the L2
norm, i.e., . We can identify as the inverse of the covariance matrix,
given that we use a Gaussian kernel function. The special cases ,

 or are usually the receptive fields used for LLSs. The parameter deter-
mines the receptive field or the support of the function
with being a constant. In other words, the receptive field is a subset of the input do-
main such that takes a value larger than a previously defined con-
stant .

In the original version of RBF networks the receptive field parameter (is
the standard deviation of the gaussian) was fixed, i.e., . Many times it has been set
by some heuristics, one such heuristic “global first nearest neighbor” is described by Moody
and Darken [47]. The value is a global average of the Euclidean distance between all
nodes and their closest neighbor . The parame-
ter decides the degree of smoothing that will occur. By letting the radius approach zero
() the operation becomes a table look-up. That is, each input becomes associated with
only one node and that node’s output.

The form of the receptive field will depend on the kind of basis function used. In the case
of a Gaussian function and , the shape is a hypersphere with a radius determined by

. This should be contrasted to the hyperplanes that an MLP generates. When
 the shape will be an ellipsoid, the axes of which will coincide with

the coordinate axes of the input domain, thus a local rescaling of the input. This type of net-
work is called elliptic basis function (EBF) network and has been studied by Park and Sand-
berg [55]. If only a global rescaling of the parameters is done these

Si r i
r i

2 x ci–() TSi x ci–() x ci–
S

= = Si d d×

x ci–
S

x ci–
2 S,
2

= S
Si diag s1 … sd, ,[]

i
=

Si si I= Si I= Si
F x() ϕ x ci–[] T

Si x ci–[]() α–=
α 0≥

ϕ x ci–[] T
Si x ci–[]()

α
s 1 σ2⁄= σ

Si sI=

σ2

s 1– σ2= 1 M⁄() min
j

xi x j–
S

()
i 1=
M∑=

σ σ
s ∞→

Si si I=
si
Si diag s1 … sd, ,[]

i
=

S diag s1 … sd, ,[]=

On-Line Localized Learning Systems Part I – Model Description

11

parameters will reflect the importance of each input dimension [71]. In Figure 2 we see
where different versions of fit into the feedforward dataflow.

Figure 2 The data flow for the feedforward phase. While calculating the distances (Dist), the in-
puts are compared to each row in C, using as a weighting or receptive field. Different versions
of are shown to indicate where in the dataflow they are used. After calculating the node outputs
(Activation) using the distances, the network outputs are calculated as a weighted sum of the node
outputs.

Complex receptive fields
Most of the time the forms of receptive fields described above will be sufficient. Still, more
powerful forms are available. One example is if non-zero off-diagonal elements are allowed,
were with being a diagonal matrix determining the shape of the ellipsoid,
and being a rotational matrix determining its orientation. As the number of parameters to
be adapted increases dramatically if a general is used, the more specialized forms are of-
ten preferred. Therefore, while discussing the number of operations needed, the diagonal
form will be used as a reasonable “maximum” number of operations needed.

Another interesting form of receptive fields is found in the conic section function net-
work developed by Dorffner [14]. His model makes it possible to go continuously (via a sin-
gle parameter) from a linear separation (hyperplane) to a circle (hypersphere) with
intermediate types like ellipses and hyperboles. A similar thing would also be possible with
a complete second order polynomial (cf. Section 3). However, this would result in a much
larger number of free parameters. Unfortunately, it seems that this method needs global in-
formation during learning and therefore does not have localized learning.

As problems can contain both high frequency regions (requiring many nodes with small
receptive fields) and low frequency regions (requiring fewer nodes but with large receptive
fields) methods to cope with this multiscale problem might be needed. Poggio and Girosi
[59] have suggested a solution based on regularization theory called HyperBF. This model
uses a hierarchy of fixed receptive fields with different radii. It also makes an interesting
connection to Gabor filters and Wavelet neural networks, which some researchers have start-
ed to explore, e.g., [7].

In competitive learning, self-organizing maps (SOM), and learning vector quantization
(LVQ) [39], the receptive field is reduced to a point, that is, only one node is active (the clos-

Si

Si si I=

•
0

3.4

•
1
-2

•
0.2
0.5

•
0.4
-1

-7
1
-3
-1.5
1
•
•
2

1.3

-3
1.1
0.4
0.4

-1.2
•
•

0.5
0.3

•
•

•
•

0.78

12.3
34.7
1.9
102
45.3

•
•

42
4.8

Output

Dist ActivationCompare

Calculate node output

Weighted

1
0.4
0

-1.2
4
•
•
0

1.2

0.9
0
-2
0
1
•
•
1
-3

1
3

1.5
1

0.3
•
•

0.2
0

0
-1
0
5
1
•
•

0.4
-3

-7
1
-3
-1.5
1
•
•
2
0

2
1
0
0.2
-1
•
•
1
0.2

•
•
•

•
•
•

•
•

•
•

1.2 0 -1 0.2 • • -2 1

Input

sum of
nodes

0.1
0.03
0.89
0.01
0.02

•
•

0.02
0.25

C

W
-4

2.34
-0.6
0.01
-0.53

•
•

-0.8
1.2

•
•

•
•

• •

12.3
34.7
1.9
102
45.3

•
•

42
4.8

Si diag s1 … sd, ,[]
i

=

0.5 0.2 0.6 0.5 • • 0.9 0.1

S diag s1 … sd, ,[]=

Si
Si

Si Ri
T
Di Ri= Di

Ri
Si

sr

TULEA 1995:01

12

est one). Anyhow, a number of researchers [40, 42] have suggested hierarchical variants of
these models, both to speed up computations (on sequential computers) and to improve the
clustering.

If the input is of high dimension, and a uniform distribution of nodes is used, the number
of nodes can be very high. This often shows up in binary models where each real valued in-
put is coded using a multibit encoding. One solution commonly used for binary models like
CMAC is to map the input vector to lower dimension using a hashing function, which in fact
maps multiple input regions to the same node. Another variation on the same theme is the se-
lected coordinate method suggested by Jaeckel [30] for the SDM model.

4.3 Kernel function

As noted in Section 3, a large number of radial functions can be found using regularization
theory [59, 61]. Still the Gaussian function is the one commonly used. Both its
property of having a “nice” derivative, and the many results from probability theory, make
the Gaussian function a natural choice. Many of the other radial functions are global in their
nature, and can for our purpose be rejected. It can be argued that the Gaussian function really
is not local as its tail never goes down to zero. However, for most implementation the activ-
ity can be set to zero for nodes far from the input. This is also the result of many commonly
used approximations of the exponential function [51].

For the more binary oriented methods a threshold logic unit (TLU) is often used as the
kernel function. This gives the receptive field the form of a hypercube instead of a hyper-
sphere typically found in GRBF networks.

In the SOM model by Kohonen [38] the formation of localized responses is attained by
using nodes with lateral feedback, that is, a topology among the nodes is assumed. This lat-
eral interaction among the nodes is often described as a “Mexican-hat function”. To speed
up the computations needed Kohonen suggests a computationally simpler “shortcut” method
to achieve the same clustering effect. In the shortcut method the most active node (the win-
ner) is found through a global search and only this node and its topological neighbors will be
active, thus, a form of “winner-take-all”.

4.4 Network output

The network output is computed as a weighted sum of the hidden node outputs
. This is a global reduction operation where all active nodes in the

hidden layer contribute to the output. The degree of locality spans from the case when a win-
ner-take-all operation is used and only contains one node (the winner), to the case where
a non-local kernel function is used and contains all the hidden nodes. As the amount of
update is proportional to how close a given node is to the target the latter can be seen as a
“softer” form of competition compared to the “hard” competition found in winner-take-all
models. In [53] Nowlan suggests that the “soft” competition gives better performance on
classification tasks. On a sequential computer the number of operations needed will depend
on the number of active nodes contributing to the weighted sum. Thus, the simulation can

ϕ r() e r– 2=

y
y wiϕ r i()

i A∈∑= A

A
ϕ A

On-Line Localized Learning Systems Part I – Model Description

13

run faster if fewer nodes are active. This is however not necessarily true for parallel comput-
er implementations.

For parallel computer implementations reduction operations are of general concern as
they require extra communication means. Anyhow, for many LLS variations the reduction
operations seem unavoidable, and in the companion paper [51] we discuss way to support
these operations on parallel computers. Note for instance that to find the winner for a win-
ner-take-all computation a global minimum is required, that is, a reduction using the mini-
mum operation is required.

TULEA 1995:01

14

5. Setting the Free Parameters

The free parameters to be set by training are , where is the number
of kernels. In the following subsections, one for each of the free parameters, we describe the
adaptation methods typically used.

Many of the methods can be used together and/or used in sequence. A typical scenario in
an off-line situation is to start with a subset of data as initiation of centers, and use a cluster-
ing method to start adapting the centers, e.g., competitive learning. After this initial cluster-
ing a “global first nearest neighbor” heuristic is used to set the receptive field sizes and the
weights are set using the pseudoinverse described below. Finally all the free parameters are
adapted using a gradient method. There are of course many other ways to combine the dif-
ferent methods of adaptation described below.

We also note that many of the methods used to speed up learning for MLPs can be ap-
plied for LLS variations that use gradient descent learning (especially GRBFs). Such meth-
ods are for instance addition of a momentum term [69], conjugate gradient learning, or other
higher-order optimization methods [24].

5.1 Adaptation of

To simplify the derivation of an update rule for we temporary assume that all nodes
are included in the active set . Then for each training example , we can write =

 = = , where =
and . The problem is to find given the simultaneous equations, that
is, solving:

, (9)

where . The classical solution to Eq. (9) is to minimize the sum of the
squared error, that is

, (10)

which is the same as Eq. (2) with the regularization parameter . The gradient

, (11)

can either be used “as is” in a gradient search method, or a closed form can be derived by
setting the partial derivative to zero. This yields the condition , which has
the pseudo inverse solution:

, (12)

where is the Moore-Penrose pseudoinverse of . If no duplicate kernels exist (i.e.,
 if) then is invertible. This inverse can be computed in oper-

ations using a singular value decomposition method1. Because of the many operations (hard

Θi wi ci Si, ,{ }
i 1=
M= M

wi
wi M

A p yp
F xp Θi,() wiϕ xp ci–()

i 1=
M∑ Φp

T
w Φp ϕ xp c1–() … ϕ xp cM–(), ,[] T

w w1 … wM, ,[]T= w N

Y Φw=

Φpi ϕ xp ci–()=

E Φw Y–
2

=

λ 0=

E∂
w∂

------ 2ΦT Φw Y–()=

ΦTΦw ΦT
y=

w ΦTΦ()
1–
ΦT

Y Φ†Y= =

Φ† Φ
xp xq≠ p q≠ ΦTΦ() O M

3
()

On-Line Localized Learning Systems Part I – Model Description

15

to calculate in an on-line fashion) and its non-local nature, we are interested in other meth-
ods, despite the fact that Eq. (12) is optimal in the least-square sense.

The direct gradient search method will use Eq. (11) to update as

(13)

where is the learning rate.
By updating after each training pattern presented, there is a deviation from the true

gradient descent in . This method, sometimes called incremental or on-line gradient learn-
ing, is related to stochastic gradient methods [23]. For the learning to converge, special care
is needed, for instance, the learning rate should be reduced compared with the batch method,
and the order of the training patterns becomes important. Still this incremental gradient
method has been successfully used both for MLPs [69] and LLSs [23], and it is an important
concept for any on-line gradient descent method.

Using a weighted Euclidean distance measurement the per-pattern error can be written as

, (14)

and (for scalar output) the update equation for the weights can be written as

. (15)

Under the assumption that all nodes are included in the active set the total number of op-
erations for updating all the weights is multiplications and additions/subtractions.
If instead a subset of nodes is active Eq. (15) is only applied to those weights where

, and the total number of operations for updating is reduced accordingly. Note that
the node output is already calculated in the feedforward process, and that the
factor 2 can be incorporated into the learning rate .

Hebbian rule or occurrence
It is also possible to use the Hebbian learning rule described by Hebb 1949 in [25]. There he
postulates that a connection should be strengthened by any co-occurrence between input
(presynaptic) and output (postsynaptic) activities. As a special case of this rule, suitable for
the “output nodes” of an LLS, we can write

. (16)

In the case of multiple output nodes, the weight update becomes an addition of an outer-
product matrix (the outer-product is between the vector consisting of the kernel outputs and

1. As Aho et al. [1] have shown that taking the matrix inverse is no harder than matrix multiplication,
and as Coppersmith and Winograd [9] have developed a matrix multiplication algorithm with an as-
ymptotic running time of , there must be a matrix inversion algorithm with an asymptotic
running time less that . However, for practical purposes, especially on parallel hardware, we
need to use an algorithm that on a sequential machine has an asymptotic running time of .

O M2.376()
O M3()

O M3()

w

w t 1+() w t() η– w
E∂
w∂

------=

ηw
w

E

Ep ep
2

F xp Θi,() yp–() 2
wiϕ xp ci–

S
()

i 1=
M∑ yp–()

2
= = =

wi

wi t 1+() wi t() 2ηwe
p
ϕ xp ci–

S
()–=

M
wi 2M M

A
i A∈ wi

ϕ xp ci–
S

()
ηw

wi t 1+() wi t() ηwypϕ xp ci–
S

()+=

TULEA 1995:01

16

the output vector). In the case of binary node activity (TLU kernel function) and binary out-
puts, this update equation results in a counting of co-occurrences between node activity and
output. This update rule is used in SDM models with the modification that the output is tak-
en to be and 1 instead of 0 and 1.

The Hebbian rule in its original form will lead to an unlimited growth of the weights,
which is clearly undesirable. To avoid this problem some sort of limit on the weights, or
their growth, is needed, see for instance [24] for a discussion on various methods. For the
SDM model the weights are assumed to have a soft overflow, where any attempt to incre-
ment a weight above the maximum value will keep the weight at the maximum.

5.2 Position of the kernel centers

Both adaptive and non-adaptive methods to set suitable centers exist. If no a priori informa-
tion exists, two natural methods are to distribute the centers either randomly or uniformly
over the input space. As soon as some training data is available this new information can be
used to decide better center positions. The simplest method is to use the data (or a subset of
the data) itself as center positions. In Table 2 some of the variations to initiate the position
centers are listed.

5.3 Adaptation of kernel centers

The adaptation of centers can be divided into unsupervised or supervised methods. The un-
supervised methods usually are in the form of competitive learning (CL), like k-means clus-
tering or SOM. All of these unsupervised methods will distribute the nodes according to the
input density (with varying success), and for many problems this will be sufficient or possi-
bly close to optimal. The SOM suggested by Kohonen [37, 39] uses a spatial topology con-
straint to aid the clustering effect of the method. Among the many variations of CL the rival
penalized competitive learning (RPCL) will later serve as an example.

If the network is to be used for classification, it is not certain that the best node distribu-
tion is the input distribution. Both clustering and principal component analysis (PCA) can
fail for cases where there is an uneven sampling of classes.

However, if training examples with desired outputs are available a supervised method
can be used. For example, methods like LVQ [39] or gradient descent. In Section 5.3.1 the
gradient descent method will be discussed. In [18] Ghosh and Chakravarthy show that under

Position method ANN model

Random SDM [34], SOM and LVQ [39]

Uniform CMAC [4]

Data or a subset RBF [61], SDM [31], probabilistic neural net-
works (PNN) [75]

Table 2 Methods to initiate position centers used in different ANN models.

1–

ci

On-Line Localized Learning Systems Part I – Model Description

17

some general conditions the positions of the centers obtained by SOM are similar to those
for a GRBF network used in an unsupervised fashion (constant output), and updated with a
per-pattern gradient descent method. The clustering effect of centers using gradient descent
GRBF network have also been noted by Poggio and Girosi [58]. As discussed in Section 3.1
a number of incremental methods exists. For the SDM model Rogers has suggested [67] a
genetic algorithm [27] as a way to adapt the kernel centers. All the methods mentioned
above have been used by different LLS variations. References to some of them are shown in
Table 3.

5.3.1 Gradient descent

As an example of adaptation of the kernel centers we here describe the gradient descent
method. For this method the update equation for the kernel centers can be found using the
same approach as for in Eq. (15). The per-pattern kernel center gradient update equa-
tion can be written as

(17)

where is the derivative of . We note that and are already calculated
in the feedforward phase and can be reused (if storage is available). If the kernel function is
a Gaussian function it is not even needed to calculate , as the derivative of an
exponential function is equal to itself. If, for instance, a diagonal is used the total number
of operations for updating all the vectors are multiplications and addi-
tions. This is under the assumption that all nodes are included in the active set . If in-
stead a subset of nodes is active the Eq. (17) is only applied to those weights where ,
and the total number of operations for updating is reduced accordingly.

When using gradient descent, a careful initialization of the nodes is needed. This is espe-
cially true when localized learning is used as the network might end up with many nodes too
far from any training data to become part of the learning process. One solution to this prob-
lem is to initiate the network with a selection of the data, another is to use a clustering meth-
od (like RPCL) to find good starting points.

Position method ANN model

Competitive Learning RBF [47], SDM [70], RPCL + RBF [84], SOM and LVQ [39],
Counter Propagation [26]

Genetic algorithms SDM [67]

Incremental addition RCE [6], Growing-RBF [16], RAN [57]

Gradient methods GRBF [58]

Table 3 Methods to adapt position centers used in different ANN models.

wi ci

ci t 1+() ci t() 4ηcwi
e

p
ϕ' xp ci–

S
()Si xp ci–()+=

ϕ' ϕ xp ci–() xp ci–
S

ϕ' xp ci–
S

()
Si

ci 3 2d+() M dM
M A

i A∈
ci

TULEA 1995:01

18

5.3.2 Rival penalized competitive learning (RPCL)

As an example of a CL method we have chosen the rival penalized competitive learning
(RPCL) developed by Xu et al. [84]. This expands the basic CL algorithms in two areas, it
introduces a rivalry among the winner node and the runner up, and it uses a frequency com-
pensation (conscience) to get all nodes actively taking part in the competition.

The update equations for RPCL are:

(18)

(19)

for and . Usually . Moreover,
(which is equal to), and is the cumulative number of occurrences of . We
see that the parameter functions as a receptive field size parameter. As shown by Xu et al.
[84], this simple but powerful update rule performs very well in an LLS.

Note the similarity between Eq. (17) and (18) where corresponds to
. We can see as the credit assignment factor missing in CL

methods and as a locality assignment similar to in Eq. (19).
The total number of operations for updating all the vectors, which include a feedfor-

ward sequence, is multiplications and additions (if
partial results are reused). This leads us to conclude that the gradient and RPCL methods use
approximately the same number of operations per pattern.

5.4 Adaptation of

As noted in Section 4.2 the receptive field sizes can be fixed either to a scalar or a set in a hi-
erarchy. Among the adaptive methods the gradient descent method is the most common, but
also the more ad hoc method of RCE adaptation have been used as an LLS variation. These
two variations are discussed below.

Gradient descent
Using the same approach as for in Eq. (15) and in Eq. (17) the gradient update equa-
tion for can be written as:

, (20)

where is the derivative of , and is the outer-product of the
distance. If then Eq. (20) can be simplified (with respect to the num-
ber of calculations needed) to

. (21)

Likewise if we can simplify Eq. (20) to

ci t 1+() ci t() ui xp ci–()+=

where ui

ηk

ηr–

0

=
if such that ,i k= γ k xp ck–

2
minj γ j xp c j–

2
=

if such that ,i r= γ r xp cr–
2

minj k≠ γ j xp c j–
2

=

otherwise,
i 1 … M, ,= 0 ηk ηr, 1≤ ≤ ηk t()>>ηr t() γ j n j nii 1=

M∑()⁄=
n j N⁄ ni ui 1=

γ j

ui
4ηcwi

e
p
ϕ' xp ci–

S
()Si wiep

ϕ' xp ci–
S

()Si ui
ci

M d 1+() 2d+ 2d 1+() M 2d 2–+

Si

wi ci
Si

Si t 1+() Si t() 2ηSw
i
e

p
ϕ' xp ci–

Si
()Qpi–=

ϕ' ϕ Qpi xp ci–() xp ci–() T
=

Si diag si1 … sid, ,[]=

Si t 1+() Si t() 2ηSw
i
e

p
ϕ' xp ci–

Si
() diag xp1 ci1–() 2 … xpd cid–() 2, ,[]()–=

Si si=

On-Line Localized Learning Systems Part I – Model Description

19

. (22)

If global rescaling is used we get an update such as

, (23)

where for the diagonal form we have

, (24)

and similarly for the scalar form

. (25)

RCE (Restricted Coulomb energy) adaptation
Another form of receptive field size adaptation is found in the RCE method [29, 65]. It is a
structurally adapting model similar to the ones discussed in Section 3.1. However, in this
method the node positions usually are fixed at input data positions, while the receptive field
sizes are adapted. Three update rules can be described, where the simplest rule applies to the
case where the input is correctly classified, and nothing needs to be done. If no node is close
enough to the input, a new node is added (with a certain radius). And in the case of incorrect
classification the radii of the conflicting nodes are reduced until they become inactive, and a
new node is added at the data position.

Si t 1+() Si t() 2ηSw
i
e

p
ϕ' xp ci–

Si
() xp ci–() T

xp ci–()–=

Si t 1+() Si t() 2ηS Si∆
i 1=
M∑–=

Si∆ wiep
ϕ' xp ci–

Si
() diag xp1 ci1–() 2 … xpd cid–() 2, ,[]()=

Si∆ wiep
ϕ' xp ci–

Si
() xp ci–() T

xp ci–()=

TULEA 1995:01

20

6. Complexity analysis

Due to the many variations possible a thorough analysis of the complexity is not performed
in this paper. This is also best done while discussing different mappings to parallel computer
hardware. A discussion on suitable mappings and complexity analysis is found in Part II
[51]. Instead we give an example using a Euclidean distance, a hyperbolic receptive field
(), a Gaussian kernel, and gradient learning in Eq. (3), (15), (17), and (21). This is
a common configuration and gives, as discussed earlier, a reasonable upper limit on the
number of operations needed.

Note that the node output is already calculated in the feedforward process, and
that the factor 2 or 4 can be incorporated into the learning rates . While updating we try
to reuse as many of the previously calculated partial results as possible, that is,

, , and are reused.
There are computations of the kernel function. Depending on which type of approxi-

mation is used, and if special support for its calculation exists in the hardware, this will
translate to different numbers of primitive operations. To calculate the network output for an
LLS using a full “tail” multiplications are needed. Having localized activity with
nodes active only multiplications are needed. If the normalization in Eq. (4) is used
another additions and divisions are required.

Variation
Type

Variation Result Operation Additions Mult. Other ops.

Distance L2

Receptive field diag , ()

Kernel function exp 2-10 ops.

Output

Error

Gradient

Gradient
(L2, exp,

diag)

2-10 ops.

Gradient:
(L2, exp,

diag)

Table 4 The number of operations needed for the feedforward phase of an LLS variation using a
Euclidean distance, a hyperbolic receptive field (), a Gaussian kernel, and gradient
learning. For all operations except for the gray row, the number of operations is found by multiply-
ing by .

diag sk[]
i

δk xk cik–() 2
d d

sj[]
i

r i r i
2 skδ

kk∑ d 1– d

ϕ() exp r i
2–()

F x Θ,() wiϕ()
i∑ m M 1–() mM

ep F x Θ,() y– m

∆w
∆w ηwe

p
ϕ() 1 m+

wi t 1+() wi t() ∆w+ m

∆c
sj[]

i

εip epjwi jj 1=
m∑ m 1– m

ϕ' r i
2–()

r2∂ c∂()⁄ Si xp ci–() d

∆c ηcεipϕ' r i
2–()

r2∂
c∂

------- 1 d+

ci t 1+() ci t() ∆c+ d

∆S
sj[]

i

r2∂ S∂()⁄ xp1 ci1–() 2 d

∆S ηSεipϕ' r i
2–()

r2∂
S∂

------- 1 d+

Si t 1+() Si t() ∆S+ d

diag sk[]
i

M

ϕ xp ci–
S

()
η Si

εipϕ' xp ci–
S

2
() xp ci–() T xp ci–() xpj ci j–()

M

mM A
A m

M 1– M

On-Line Localized Learning Systems Part I – Model Description

21

7. Similarities and Differences Between Different LLS Variations

Within the LLS concept we have already identified a number of common ANN algorithms.
In the following subsections we will study two of these ANN models using Table 1 as a
starting point. In Table 5 and Table 6 we show the basic form of GRBF and SDM models, to-
gether with a number of their variations, all contained within the concept of LLSs. These ta-
bles show the close connection among a number of ANN models and variations. We can also
identify new variations of old ANN models. Some of the other ANN models recognized as
LLS variations are discussed in Appendix A.

The main or basic form is indicated by black ellipses and the variations are marked with
gray.

7.1 Radial Basis Function, and generalizations

In Table 5 we show the original formulation of an RBF network [61] in comparison with a
number of variations suggested by Poggio and Girosi [59]. These variations concern mainly
the initiation and adaptation of the free parameters as discussed in Section 5.

Input Distance
Receptive

Field initiation
Out

R
L1

(cityblock)
1 exp Random Fixed

Pseudo-
inverse

Fixed R

I
L2

(Euclidean)
Radial Uniform Gradient Gradient Gradient I

B L∞
Threshold
logic unit

Subset of
data

Competitive
learning

Occurrence
(Hebb)

RCE B

Dot
product

Min/Max
All
data

+ Topology

Hamming
distance

Incremental
addition

Genetic
algorithm

Hierarchical

Sample/Hash

Table 5 The original RBF network and the generalizations suggested by Poggio and Girosi [58,
59] The black circles are the default value or main model for each column.

ϕ ci c∆ w∆ S∆

sI

si I

diag sj[]

diag sj[]
i

Si j

RBF [61]

Generalizations [58, 59]

TULEA 1995:01

22

7.2 Sparse Distributed Memory

One of the binary oriented models (for the network input and output) is SDM. The binary
nature of the input makes it natural to use a Hamming distance. SDM uses a “radius of acti-
vation” () as receptive field, and a threshold as kernel function. The radius is chosen
to allow only a small number of nodes to be active at the same time.

The original SDM model [34] used a random, and fixed, distribution of kernel centers.
This is far from optimal if the input data is unevenly distributed. As this is common when
natural data is used a number of variations have been developed [36]. Many of the variants
are shown in Table 6. It is interesting to see that almost all the variations of SDM can be
mapped into this table of LLS variations. In [31] Joglekar suggests the usage of data or sub-
sets of data to initiate the kernel centers. As we noted in Section 4.2 Jaeckel’s selected coor-
dinate method [30] is an idea similar to the hash coding of the CMAC. Rogers [67] has
suggested using genetic algorithms, and Saarinen et al. competitive learning [70], to im-
prove the kernel positions. Pohja and Kaski [60] discuss methods to set the receptive field
sizes to force all nodes to participate an equal number of times. In [35] Kanerva heuristically
employs a global rescaling to adjust for different importances of the inputs.

Some of the natural extensions to the SDM model found by studying Table 6 are the use of
exponential kernel function, the use of topology for the competitive learning variation, the
use of local rescaling of input (), and the use of a RCE-like algorithm to
adapt for GRBF networks.

S si I=

Input Distance
Receptive

Field initiation
Out

R
L1

(cityblock)
1 exp Random Fixed

Pseudo-
inverse

Fixed R

I
L2

(Euclidean)
Radial Uniform Gradient Gradient Gradient I

B L∞
Threshold
logic unit

Subset of
data

Competitive
learning

Occurrence
(Hebb)

RCE B

Dot
product

Min/Max
All
data

+ Topology

Hamming
distance

Incremental
addition

Genetic
algorithm

Hierarchical

Sample/Hash

Table 6 Variations of the SDM model. The black circles are the default value or main model for
each column.

ϕ ci c∆ w∆ S∆

sI

si I

diag sj[]

diag sj[]
i

Si j

[67]

[31]

[31] [70][64]

[30]

[35]

[60]

SDM [34]

SDM Generalizations

Si diag sj[]=
Si

On-Line Localized Learning Systems Part I – Model Description

23

7.3 Comparing LLSs to multilayer perceptrons (MLPs)

The main difference between an LLS and the much used feedforward network MLP, which
is not an LLS, is that while the LLS is computing a local approximation, the MLP computes
a global approximation. Many times the LLS variations have been shown to learn faster (two
orders of magnitude faster is not uncommon) [47], while the global approximation capabili-
ty makes the MLP a better approximator in regions where none or very few training data ex-
ist. On the other hand, the local learning seems to be better to learn disjoint regions and is
less sensitive to the order of the training patterns shown to the network during training.
When comparing the performance of these networks they seem capable of similar accuracy,
at least if both are trained correctly.

Other differences between LLSs and MLPs are that while LLSs have one hidden layer
the MLPs use one or many hidden layers; LLSs commonly use Euclidean distance while
MLPs use dot-product; and LLSs use different kinds of nodes for hidden layer and output
layer whereas MLPs commonly have the same kind of nodes for all layers. The structure of
the LLS, especially the local activity and learning concept as well as the expanded represen-
tation, seems to be more biologically “plausible” than a MLP with error back propagation
(BP).

A drawback with an LLS is that many times there are more nodes needed in the hidden
layer to achieve a certain degree of accuracy. This should not come as a surprise, since an
expanded representation is used for an LLS. This can however lead to a slower network
when (and if) the training is completed and only a feedforward phase is running (i.e., not
learning on-line), at least on a sequential computer.

Another drawback that many LLS variations suffer from (maybe even more than the
MLP) is the curse of dimensionality, referring to the exponential increase in the number of
hidden nodes with the dimension of the input space. This can to some degree be reduced
(some of the methods are mentioned in Section 3.1) but a universal solution to this problem
has not yet been suggested and is therefore an area needing more research.

TULEA 1995:01

24

8. Conclusion

We have defined a “superclass” of artificial neural networks (ANNs), called localized learn-
ing systems (LLSs), with the characteristic features of feedforward network, expanded rep-
resentation, localized activity, and localized learning. The LLS concept incorporates both
binary and non-binary input; both simple and complex receptive fields; both smooth kernel
functions and threshold units; and a number of variations on how to adapt the free parame-
ters, like competitive learning and gradient methods. It also incorporates methods that use
structural adaptation instead of weight adaptation.

One objective of this paper is to study these different variations of the LLS model in de-
tail. Additionally we show how a number of well known ANN models are connected through
the concept of LLS. Another important objective for this paper is to lay a foundation for an
analysis of parallel computer implementations of LLSs to be carried out in Part II [51]. To
better suit applications where continuous learning is needed, the possibility to do on-line
computations has been emphasized, thus restricting the possible variations.

Our description of LLS variations also makes it easy to see and suggest new variations to
many of the constituent ANN models. One such variation would be the use of local rescaling
of input for SDM (), another would be to use a RCE-like algorithm to adapt

 for GRBF networks. For the other ANN models in the LLS class, many new variations
can be found as well.

There are still some investigations that should be done to make the picture of LLSs com-
plete, for instance, the choice of kernel function needs to be further studied to find truly local
receptive fields while keeping the approximation performance high. Another important as-
pect to be investigated is the introduction of multi-modular networks with many cooperating
(and competing) LLS modules. One such model is the “hierarchy of experts” model de-
scribed by Jordan and Jacobs in [32]. In [13] Davis, Nordström and Svensson note a need for
a modular style of computer architecture to match the modular structure of these ANN algo-
rithms. We hope to return to these and other subjects regarding LLSs in a forthcoming paper.

The natural and massive parallelism found in LLSs, together with the locality of activity
and learning, and the usefulness of the constituent ANN models makes it very interesting to
find hardware suitable for LLSs. In part II we will continue our analysis of LLSs but then the
goal is to suggest a suitable (parallel) computer architecture for this class of networks.

8.1 Acknowledgments

The author would like to thank Prof. Bertil Svensson Chalmers University of Technology,
Assoc. Prof. Anders Lansner Royal Institute of Technology (KTH), Assoc. Prof. Timo Koski
Luleå University of Technology, Assoc. Prof. Lennart Gustafsson Luleå University of Tech-
nology, and Lic. Tech. Per Ödling Luleå University of Technology for valuable discussions.

Si diag sj[]
i

=
Si

On-Line Localized Learning Systems Part I – Model Description

25

Appendix A

In Section 7 we discussed two ANN algorithms in the context of LLS. In this appendix some
of the other well known ANN algorithms in the LLS class will be studied, using Table 1 as a
starting point. In Table 7 to Table 10 these ANN models are described using our LLS frame-
work.

The main or basic form of a certain ANN model is indicated by black ellipses while re-
ported variations of that ANN model are marked with various forms of gray.

A.1 Pre-RBF, RBF, and generalizations of RBF

The original form of radial basis function (RBF) networks, where every kernel is located at a
data position, is closely related to the ad hoc probability density function estimation meth-
ods of Parzen windows, and potential functions [15, 56]. The difference is mainly how to de-
rive the kernel weighting . Specht [75] has extended the ideas of Parzen windows to a
class of neural networks called probabilistic neural networks (PNN). These models and their
different variations are shown in Table 7.

In section 7.1 we showed the original formulation of RBFs in comparison with a number
of variations suggested by Poggio and Girosi and others. These variations concern mainly
the initiation and adaptation of the free parameters as discussed in Section 5. This can be
compared to the algorithms found in Table 7 where the variations only concern the distance
measurement, the receptive field, and the radial function.

wi

Input Distance
Receptive

Field initiation
Out

R
L1

(cityblock)
1 exp Random Fixed

Pseudo-
inverse

Fixed R

I
L2

(Euclidean)
Radial Uniform Gradient Gradient Gradient I

B L∞
Threshold
logic unit

Subset of
data

Competitive
learning

Occurrence
(Hebb)

RCE B

Dot
product

Min/Max
All
data

+ Topology

Hamming
distance

Incremental
addition

Genetic
algorithm

Hierarchical

Sample/Hash

Table 7 Parzen, Potential function, probabilistic neural networks (PNN)

ϕ ci c∆ w∆ S∆

sI

si I

diag sj[]

diag sj[]
i

Si j Parzen window [56]

Potential function [15]

PNN [75]

TULEA 1995:01

26

A.2 Competitive learning

Competitive learning (CL) is commonly used to update kernel positions and has been dis-
cussed in Section 4.3 and 5.3. One of the CL models, self-organizing map (SOM), has been
extended with a linear output layer which is trained in a supervised fashion, to become the so
called Counter Propagation (CP) model [26]. This model is the base model in Table 8. In this
table we have also shown two variations of structurally adapting CL, called growing cell by
Fritzke [16].

Restricted Coulomb energy (RCE), developed by Reilly [65], is another form of structur-
al adaptation where new nodes are incrementally added at data positions and the receptive
field is adapted to always classify seen data correctly, as described in the end of Section 5.4.
In Table 9 we see a description of the original RCE and two variations [48, 74] which are
generalizations of the original model. These variations are also done to fit better into a paral-
lel computer concept and will be discussed in more detail in Part II.

On-Line Localized Learning Systems Part I – Model Description

27

Input Distance
Receptive

Field initiation
Out

R
L1

(cityblock)
1 exp Random Fixed

Pseudo-
inverse

Fixed R

I
L2

(Euclidean)
Radial Uniform Gradient Gradient Gradient I

B L∞
Threshold
logic unit

Subset of
data

Competitive
learning

Occurrence
(Hebb)

RCE B

Dot
product

Min/Max
All
data

+ Topology

Hamming
distance

Incremental
addition

Genetic
algorithm

Hierarchical

Sample/Hash

Table 8 Competitive Learning

ϕ ci c∆ w∆ S∆

sI

si I

diag sj[]

diag sj[]
i

Si j
SOM and CP [26, 39]

Growing Cell [16]

Growing Cell RBF [16]

Input Distance
Receptive

Field initiation
Out

R
L1

(cityblock)
1 exp Random Fixed

Pseudo-
inverse

Fixed R

I
L2

(Euclidean)
Radial Uniform Gradient Gradient Gradient I

B L∞
Threshold
logic unit

Subset of
data

Competitive
learning

Occurrence
(Hebb)

RCE B

Dot
product

Min/Max
All
data

+ Topology

Hamming
distance

Incremental
addition

Genetic
algorithm

Hierarchical

Sample/Hash

Table 9 Restricted Coulomb Energy (RCE)

ϕ ci c∆ w∆ S∆

sI

si I

diag sj[]

diag sj[]
i

Si j RCE [65]

RCE (Intel/HCE) [48]

RCE (TI) [74]

TULEA 1995:01

28

A.3 Cerebellar Model Arithmetic Computer (CMAC).

The two models that are binary oriented (for the network input and output) are SDM (dis-
cussed in section 7.2) and CMAC. The binary nature of the input makes it natural to use a
Hamming distance. Both methods use a “radius of activation” as receptive field, and a
threshold as radial function. The radius is chosen to let only a small number of nodes be ac-
tive at the same time.

What makes CMAC unique is the method to initiate the kernel centers to be uniformly
distributed, cf. Table 10. As a consequence the large number of hidden nodes (especially for
high dimensional input) have forced the method to include a hashing function between the
“logic” kernel position and the “physical” position.

Moody [45] extends the CMAC concept by using radial functions with graded response
instead of the threshold units usually used by the CMAC method. He also suggest a hierar-
chy of receptive fields. This makes this model a precursor to the HyperBF model previously
mentioned, in the discussion of complex receptive fields, in Section 4.2.

Input Distance
Receptive

Field initiation
Out

R
L1

(cityblock)
1 exp Random Fixed

Pseudo-
inverse

Fixed R

I
L2

(Euclidean)
Radial Uniform Gradient Gradient Gradient I

B L∞
Threshold
logic unit

Subset of
data

Competitive
learning

Occurrence
(Hebb)

RCE B

Dot
product

Min/Max
All
data

+ Topology

Hamming
distance

Incremental
addition

Genetic
algorithm

Hierarchical

Sample/Hash

Table 10 Cerebellar Model Arithmetic Computer (CMAC)

ϕ ci c∆ w∆ S∆

sI

si I

diag sj[]

diag sj[]
i

Si j

[45]

[45]

CMAC [4]

Generalizations

On-Line Localized Learning Systems Part I – Model Description

29

References

[1] Aho, A. V., J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[2] Albus, J. S., “A theory of cerebellar function,” Mathematical Biosciences, vol. 10, no. 1/2, pp.
25-61, 1971.

[3] Albus, J. S., “A new approach to manipulator control: the cerebellar model articulation con-
troller (CMAC),” American Society of Mechanical Engineers, Transaction G (Journal of Dy-
namic Systems, Measurement, and Control), vol. 97, no. 3, pp. 220-227, 1975.

[4] Albus, J. S., Brains, Behavior, and Robotics, Petersborough, NH, USA: BYTE/McGraw-Hill,
1981.

[5] Bachkirov, O. A., E. M. Braverman and I. B. Muchnik, “Potential function algorithms for pat-
tern recognition learning machines,” Automation and Remote Control, vol. 25, pp. 629-631,
1964.

[6] Bachmann, C. M., L. Cooper, A. Dembo and O. Zeitouni, “A relaxation method for memory
with high storage density,” Proceedings of the National Academy of Sciences, vol. 84, pp.
7529-7531, 1987.

[7] Bakshi, B. R. and G. Stephanopoulos, “Wavelets as basis functions for localized learning in a
multi-resolution hierarchy,” in IJCNN International Joint Conference on Neural Networks,
Baltimore, MD, USA, 1992, vol. 2, pp. 140-145.

[8] Broomhead, D. S. and D. Lowe, “Multivariate functional interpolation and adaptive net-
works,” Complex Systems, vol. 2, pp. 321-355, 1988.

[9] Coppersmith, D. and S. Winograd, “Matrix multiplication via arithmetic progressions,” in Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, 1987, pp. 1-6.

[10] Courant, R. and D. Hilbert, Methods of mathematical physics, vol. 2 London, England: Inter-
science, 1962.

[11] Cover, T. M., “Geometric and statistical properties of systems of linear inequalities with appli-
cations in pattern recognition,” IEEE Transaction on Electronic Computers, vol. EC-14, pp.
326-334, 1965.

[12] Cybenko, G., “Approximation by superpositions of sigmoidal function,” Mathematics of Con-
trol, Signals, and Systems, vol. 2, pp. 303-314, 1989.

[13] Davis, E. W., T. Nordström and B. Svensson, “Issues and applications driving research in non-
conforming massively parallel processors,” in Proceedings of the New Frontiers, a Workshop
of Future Direction of Massively Parallel Processing, I. D. Scherson Ed., McLean, Virginia,
1992, pp. 68-78.

[14] Dorffner, G., “A unified framework for MLPs and RBFs: introducing conic section function
networks,” Cybernetics and Systems, vol. 25, no. 4 to appear, 1994.

[15] Duda, R. O. and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons,
Inc., 1973.

[16] Fritzke, B., “Growing cell structures — a self-organizing network for unsupervised and super-
vised learning,” Tech. Rep. TR-93-026, International Computer Science Institute, 1993.

[17] Funahashi, K.-I., “On the approximate realization of continuous mapping by neural networks,”
Neural Networks, vol. 2, no. 3, pp. 183-192, 1989.

[18] Ghosh, J. and S. V. Chakravarthy, “The rapid kernel classifier: a link between the self-organiz-
ing feature map and the radial basis function network,” Journal of Intelligent Material Systems
and Structures, vol. 5, no. 2, pp. 211-219, 1994.

TULEA 1995:01

30

[19] Girosi, F., M. Jones and T. Poggio, “Priors, stabilizers and basis functions: from regularization
to radial, tensor and additive splines,” A.I. Memo 1430, Massachusetts Institute of Technology,
1994.

[20] Gyllenberg, H. G., “Development of reference systems for automatic identification of clinical
isolates of bacteria,” Archivum Immunologiae et Therapiae Experimentalis, vol. 24, pp. 1-19,
1976.

[21] Gyllenberg, H. G., “Continuous cumulation of identification matrices,” Helsingin Ylioposton
Mikrobiologian Laitoksen Julkaisuja, vol. 20, 1981.

[22] Hartman, E. and J. D. Keeler, “Predicting the future: advantages of semilocal units,” Neural
Computation, vol. 3, no. 4, pp. 566-578, 1991.

[23] Haykin, S., Adaptive Filter Theory, 2nd ed. Englewood Clifs, NJ: Prentice Hall, 1991.
[24] Haykin, S., Neural Networks, a Comprehensive Foundation, New York: IEEE Computer So-

ciety Press, 1994.
[25] Hebb, D. O., The Organization of Behavior, New York: John Wiley & Sons, inc., 1949.
[26] Hecht-Nielsen, R., “Applications of counterpropagation networks,” Neural Networks, vol. 1,

pp. 131-139, 1988.
[27] Holland, J. H., Adaptation in Natural and Artificial Systems, 2nd ed. The MIT Press, 1992.
[28] Hornik, K., M. Stinchcombe and H. White, “Multilayer feedforward networks are universal

approximators,” Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.
[29] Hudak, M. J., “RCE classifiers: theory and practice,” Cybernetics and Systems, vol. 23, pp.

483-515, 1992.
[30] Jaeckel, L. A., “An alternative design for sparse distributed memory,” Tech. Rep. 89.28 RI-

ACS, NASA Ames Research Center, Moffet Field, CA, 1989.
[31] Joglekar, U. D., “Learning to read aloud: a neural network approach using sparse distributed

memory,” Tech. Rep. 89.27 RIACS, NASA Ames Research Center, Moffet Field, CA, 1989.
[32] Jordan, M. I. and R. A. Jacobs, “Hierarchies of adaptive experts,” in Neural Information Pro-

cessing Systems 4, J. E. Moody, S. J. Hanson and R. P. Lippmann Eds. Denver, CO, USA,
1991, pp. 958-992.

[33] Kadirkamanathan, V. and M. Niranjan, “A function estimation approach to sequential learning
with neural networks,” Neural Computation, vol. 5, no. 6, pp. 954-975, 1993.

[34] Kanerva, P., Sparse Distributed Memory, Cambridge, MA: MIT press, 1988.
[35] Kanerva, P., “Efficient packing of patterns in sparse distributed memory by selective weighting

of input bits,” in Proceedings of the 1991 International Conference Artificial Neural Networks,
T. Kohonen, et al. Eds. Espoo, Finland, 1991, vol. 1, pp. 279-284.

[36] Kanerva, P., “Sparse distributed memory and related models,” Associative Neural Memories;
Theory and Implementations, M. H. Hassoun Ed. Oxford, UK: Oxford Univ. Press, 1993.

[37] Kohonen, T., “Self-organized formation of topologically correct feature maps,” Biological Cy-
bernetics, vol. 43, pp. 59-69, 1982.

[38] Kohonen, T., Self-Organization and Associative Memory, 2nd ed. Berlin: Springer-Verlag,
1988.

[39] Kohonen, T., “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464-
1480, 1990.

[40] Lampinen, J., “Distortion tolerant pattern recognition using invariant transformations and hier-
archical SOFM clustering,” in Artificial Neural Networks. Proceedings of the 1991 Interna-
tional Conference. ICANN-91, Espoo, Finland, 1991, vol. 1, pp. 99-104.

[41] Lippmann, R. P., “An Introduction to computing with neural nets,” IEEE Acoustics, Speech,
and Signal Processing Magazine, vol. 4, pp. 4-22, 1987.

On-Line Localized Learning Systems Part I – Model Description

31

[42] Lutterell, S. P., “Hierarchical vector quantization,” IEE Proceedings (London), vol. 136, Part I,
pp. 405-413, 1989.

[43] Mao, J. and A. K. Jain, “Regularization techniques in artificial neural networks,” in World
Congress on Neural Networks, Portland, OR, USA, 1993, vol. 4, pp. 75-79.

[44] Mitchie, D. and R. Chambers, “BOXES: An experiment in adaptive control,” Machine Intelli-
gence 2, E. Dale and D. Mitchie Eds. Edinburg: Oliver and Boyd, pp. 137-152, 1968.

[45] Moody, J., “Fast learning in multi-resolution hierarchies,” in Neural Information Processing
Systems 1, D. Touretzky Ed., Denver, CO, 1988, pp. 29-39.

[46] Moody, J. and C. J. Darken, “Learning with localized receptive fields,” in Proceedings of the
1988 Connectionist Summer School, D. Touretzky, Hinton and Sejnowski Eds. 1988,

[47] Moody, J. and C. J. Darken, “Fast learning in networks of locally-tuned processing units,”
Neural Computation, vol. 1, pp. 281-294, 1989.

[48] Neural Networks Group, “Design and implementation of a recognition accelerator,” To appear
in 1993 Proceedings of the Canadian Conference on Very Large Scale Integration. Intel Corpo-
ration, Santa Clara, CA, USA, 1993.

[49] Nordström, T., “Designing parallel computers for self organizing maps,” in DSA-92, Fourth
Swedish Workshop on Computer System Architecture, Linköping, Sweden, 1992,

[50] Nordström, T., “Hardware for sparse distributed memory simulations,” to be submitted, 1995.
[51] Nordström, T., “On-line spatially localized learning systems, part II - parallel computer imple-

mentation,” to be submitted (Also available as Res. Rep. TULEA 1995:2, Luleå University of
Technology, Sweden), 1995.

[52] Nordström, T. and B. Svensson, “Using and designing massively parallel computers for artifi-
cial neural networks,” Journal of Parallel and Distributed Computing, vol. 14, no. 3, pp. 260-
285, 1992.

[53] Nowlan, S. J., “Maximum likelihood competitive learning,” in Neural Information Processing
Systems 2, D. Touretzky Ed., Denver, CO, 1989, pp. 574-582.

[54] Park, J. and I. W. Sandberg, “Universal approximation using radial-basis-function networks,”
Neural Computation, vol. 3, no. 2, pp. 246-257, 1991.

[55] Park, J. and I. W. Sandberg, “Nonlinear approximations using elliptic basis function net-
works,” Circuits Systems Signal Processing, vol. 13, no. 1, pp. 99-113, 1993.

[56] Parzen, E., “On estimation of a probability density function and mode,” The Annals of Mathe-
matical Statistics, vol. 33, no. 1962, pp. 1065-1076, 1962.

[57] Platt, J. C., “Learning by combining memorization and gradient descent,” in Neural Informa-
tion Processing Systems 3, R. P. Lippmann, J. E. Moody and D. S. Touretzky Eds. Denver,
CO, USA, 1990, pp. 714-720.

[58] Poggio, T. and F. Girosi, “Networks for Approximation and Learning,” Proceedings of the
IEEE, vol. 78, no. 9, pp. 1481-1497, 1990.

[59] Poggio, T. and F. Girosi, “A theory of networks for approximation and learning,” A.I. Memo
1140 (first released 1991), Massachusetts Institute of Technology, 1994.

[60] Pohja, S. and K. Kaski, “Kanerva's sparse distributed memory with multiple Hamming thresh-
olds,” Tech. Rep. 92.10, RIACS, NASA Ames Research Center, 1992.

[61] Powell, M. J. D., “Radial basis functions for multivariable interpolation: a review,” in IMA
Conference on Algorithms for the Approximation of Functions and Data, RMCS, Shrivenham,
UK, 1985, pp. 143-167.

[62] Powell, M. J. D., “Radial basis function approximations to polynomials,” in Numerical Analy-
sis 1987, Dundee, UK, 1988, pp. 223-241.

TULEA 1995:01

32

[63] Prager, R. W., T. J. W. Clarke and F. Fallside, “The modified Kanerva model: results for real
time word recognition,” in First IEE International Conference on Artificial Neural Networks,
London, UK, 1989, pp. 105.

[64] Prager, R. W. and F. Fallside, “The modified Kanerva model for automatic speech recogni-
tion,” Computer Speech and Language, vol. 3, pp. 61-81, 1989.

[65] Reilly, D. L., L. N. Cooper and C. Elbaum, “A neural model for category learning,” Biological
Cybernetics, vol. 45, pp. 35-41, 1982.

[66] Richard, M. D. and R. P. Lippmann, “Neural network classifiers estimate Bayesian a posteriori
probabilities,” Neural Computation, vol. 3, no. 4, pp. 461-483, 1991.

[67] Rogers, D., “Predicting weather using a genetic memory: a combination of Kanerva's sparse
distributed memory with Holland's genetic algorithms,” in Neural Information Processing Sys-
tems 2, D. Touretzky Ed., Denver, CO, 1989, pp. 455-464.

[68] Rosenblatt, F., “The Perceptron: a probabilistic model for information storage and organization
in the brain,” Psychological Review, vol. 65, pp. 386-408, 1958.

[69] Rumelhart, D. E. and J. L. McClelland, Parallel Distributed Processing; Explorations in the
Microstructure of Cognition, vol. I and II Cambridge: MIT Press, 1986.

[70] Saarinen, J., S. Pohja and K. Kaski, “Self-organization with Kanerva's sparse distributed mem-
ory,” in Artificial Neural Networks. Proceedings of the 1991 International Conference.
ICANN-91, T. Kohonen, et al. Eds. Espoo, Finland, 1991, vol. 1, pp. 285-290.

[71] Saha, A., C.-L. Wu and D.-S. Tang, “Approximation, dimension reduction, and nonconvex op-
timization using linear superpositions of Gaussians,” IEEE Transactions on Computers, vol.
42, no. 10, pp. 1222-1233, 1993.

[72] Simard, P., Y. L. Cun and J. Denker, “Efficient pattern recognition using a new transformation
distance,” in Neural Information Processing Systems 5, C. L. Giles, S. J. Hanson and J. D.
Cowad Eds. Denver, CO, USA, 1992, pp. 50-58.

[73] Simard, P., B. Victorri, Y. L. Cun and J. Denker, “Tangent prop – a formalism for specifying se-
lected invariances in an adaptive network,” in Neural Information Processing Systems 4, J. E.
Moody, S. J. Hanson and R. P. Lippmann Eds. Denver, CO, USA, 1991, pp. 895-903.

[74] Smith, D., M. Shetti, M. Harward, W. Bean, R. Pawate and G. Doddington, “A VLSI imple-
mentation of the Nestor RCE neural network,” Texas Instruments Technical Journal, vol. 7, no.
6, pp. 34-41, 1990.

[75] Specht, D. F., “Probabilistic Neural Networks,” Neural Networks, vol. 3, no. 1, pp. 109-118,
1990.

[76] Sutton, R. S. and S. D. Whitehead, “Online learning with random representations,” To appear,
1993.

[77] Svensson, B. and T. Nordström, “Execution of neural network algorithms on an array of bit-se-
rial processors,” in 10th International Conference on Pattern Recognition, Computer Architec-
tures for Vision and Pattern Recognition, Atlantic City, NJ, USA, 1990, vol. II, pp. 501-505.

[78] Svensson, B., T. Nordström, K. Nilsson and P.-A. Wiberg, “Towards modular, massively paral-
lel neural computer,” Connectionism in a Broad Perspective: Selected Papers from the Swed-
ish Conference on Connectionism - 1992, L. F. Niklasson and M. B. Bodén Eds. Ellis
Horwood, pp. 213-226, 1994.

[79] Tan, S. and Y. Yu, “On-line stable nonlinear modelling by structurally adaptive neural nets,”
Neuroprose: yuyi.online_rbf.ps.Z (yuyi@ee.nus.sg), 1993.

[80] Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-posed Problems, Washington DC: W. H.
Winston, 1977.

[81] von der Malsburg, C., “Self-organization of orientation sensitive cells in the striate cortex,”
Kybernetik, vol. 14, pp. 85-100, 1973.

On-Line Localized Learning Systems Part I – Model Description

33

[82] Wan, E. A., “Neural network classification: a Bayesian interpretation,” IEEE Transaction on
Neural Networks, vol. 1, no. 4, pp. 303-305, 1990.

[83] Wong, Y., “How Gaussian radial basis functions work,” in International Joint Conference on
Neural Networks, Seattle, WA, USA, 1991, pp. 133-138.

[84] Xu, L., A. Krzyzak and E. Oja, “Rival penalized competitive learning for clustering analysis,
RBF net, and curve detection,” IEEE Transactions on Neural Networks, vol. 4, no. 4, pp. 636-
649, 1993.

1

On-Line

Localized Learning Systems

Part II – Parallel Computer

Implementation

Tomas Nordström

Division of Computer Science & Engineering
Luleå University of Technology, Sweden

E-mail: tono@sm.luth.se

ABSTRACT

This is the second paper in a series of two analyzing localized learn-
ing systems (LLSs). Whereas the first paper concentrated on the
model, this paper will study parallel computer implementations of
this model. The LLS is a superclass of important and commonly used
artificial neural network models with many useful properties. Besides
performing classification and approximation tasks well, the LLS
model has shown promising possibilities to run efficiently on parallel
computers, a possibility which will be explored in this paper. After
analyzing the number and type of computations required we make
suggestions on how to implement the models on parallel computing
hardware.

It is established that a mapping which combines two forms of par-
allelism (node and weight) is the preferred form of mapping. To sup-
port this “mixed parallelism” a very simple structure is found to be
sufficient, consisting of a linear single instruction stream, multiple
data streams (SIMD) array using broadcast communication. In addi-
tion most variations of LLSs require extra support for reduction op-
erations. In this paper we suggest and analyze effective means to do
reduction-sum and minimum (winner-take-all) operations.Three im-
plementations of global-sum are identified and studied. It is found
that a bit-serial tree of adders gives the best performance/size ratio.
For the global-minimum operation a new bit-serial structure is pro-
posed. This new min/max network has the advantage of not needing
a global-or network as the standard bit-serial way of finding mini-
mum does. This also results in a speed advantage in most cases.

This document was created with FrameMaker 4.0.4

TULEA 1995:02

2

1. Introduction

This paper is our second paper about on-line localized learning systems (LLSs). We have de-
scribed and analyzed LLSs in a companion paper, Part I [29], and we assume the reader is
familiar with that material. Here we will concentrate on the parallel computer implementa-
tion aspects of this model. LLSs can be seen as a “superclass” of artificial neural network
(ANN) models. Some of the LLS variations are sometimes referred to as kernel or basis
function networks. In essence the LLS model is a feedforward ANN forming an expanded
representation (most nodes are in the hidden layer), having local activity (only a subset of
nodes are causing significant output at a certain time), and localized learning (only active
nodes are updated). In these papers we further restrict ourselves to variations that can be
used in an on-line fashion (learning done incrementally and in real-time).

A number of ANN models can be found as variations of the LLS model. Therefore by
implementing the LLS model a number of well known ANN models will also be implement-
ed. Models found to be LLSs are generalized radial basis functions (GRBF) [33, 34], self-or-
ganizing feature maps (SOFM) and learning vector quantization (LVQ) [22], restricted
Coulomb energy (RCE) [6, 17], probabilistic neural network (PNN) [41], sparse distributed
memory (SDM) [21], and cerebellar model arithmetic computer (CMAC) [2]. All these
models are commonly used and it is interesting to look for a common hardware platform for
all these ANN models, and this is provided through the LLS concept. We hope to utilize the
natural parallelism in the many nodes, and the use of local activation and learning, to be able
to find efficient parallel computer implementations.

This paper is one paper in a series of papers [26, 27, 30, 42] studying the implementation
of ANNs on parallel computers. In our earlier studies we have found that a surprisingly sim-
ple architecture is enough to get good performance on many ANN simulations. That is, we
have found a linear array, with broadcast and support for multiplication, to be suitable for al-
most all the ANN models we have studied so far. This is also the starting point for this paper.
However, it will be found that some extra supporting hardware can be useful if improved
performance is required for LLS computations.

1.1 Types of architectures

There is always a choice between dedicated designs and general purpose designs. The high-
est performance is possible by dedicated design, but as long as the algorithmic details are not
decided, it can be risky to make a special design only to find it implementing an outmoded
algorithm. In other words, one often pays in flexibility for high performance. We have found
that many times the linear array computing in SIMD (single instruction stream, multiple data
streams) mode is a good trade-off between flexibility and performance. This style of com-
puting is also called associative array processor [12]. It is interesting to note that the LLS
model in some respects implements an associative memory, which might indicate a good fit
to this style of computing.

In [23] S. Y. Kung discusses systolic implementations of ANN, mostly multilayer per-
ceptrons (MLP) with back propagation (BP) learning. It is noted that 2-D arrays can only be

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

3

efficiently used if training data parallelism (batch processing) is utilized. For the on-line (per
pattern) learning the “best” structure becomes a linear systolic array. In his design there is
only nearest neighbor communication, whereas we allow broadcast as well.

In the next section we shortly restate the LLS algorithm and some of its variants. Then a
general discussion on parallelism found in ANN calculation and how to map these calcula-
tions onto a parallel computer follows. Next there is a section with a detailed analysis of
each step in the LLS algorithm.

We also discuss two areas with difficult implementation aspects, the calculation of the ra-
dial function and the reduction operations. This is followed by a section where we summa-
rize the architectural support which LLSs need. After an overview of related work we
conclude the paper.

TULEA 1995:02

4

2. Recapture of the main aspects of LLS

In this Section we briefly summarize the main aspects of the LLS model. As noted in the in-
troduction the LLS is a feedforward ANN forming an expanded representation (most nodes
in the hidden layer). The feed-forward phase can be visualized as in Figure 1a. In Figure 1b
the data flow and data organization of the feedforward phase are shown.

The main characteristic of the model is the local activity (only a subset of nodes are ac-
tive at the same time in the hidden layer), and the localized learning (only active nodes are
updated). We are mainly interested in variations which allow training to take place after each
new training data, that is the LLS is used in an on-line fashion.

Figure 1 a) The LLS model is a feedforward neural network model with localized activity at the
hidden nodes. b) The data flow and data organization of the LLS model (feedforward phase).

The feedforward phase for an LLS with nodes and multiple outputs, can be written as

, (1)

where is the th node output, is the set of active nodes, is the input, and is
the weight connecting node with output . The node output will depend on the distance
measurement used to calculate the distance to some centers (templates) , size and form
of the receptive field , and type of kernel function . A node with a significant output is
called a selected or active node, that is, a node is in the set of active nodes if ,
with being a constant. The free parameters to be set, usually by training, are

. A number of variations exists and the variations discussed in this pa-
per are shown in Table 1. To exemplify we will use the Euclidean distance, a Gaussian ker-
nel function , and a general receptive field, that is,

, where can be recognized as the inverse of the co-
variance matrix.

The equations for training the free parameters of Eq. (1), using a gradient descent meth-
od, were developed in Part I [29]. We found that the hyperbolic receptive field, that is

, can serve as a reasonable example (the most complex receptive field
still useful for the parallel computer implementations). Using

 as the network output vector with elements,

24 -6 62 1

97
115
78
102
112

•
•

128
109

1
1
0
1
4
•
•
0
0

0
0
-2
0
1
•
•
1
-3

1
3
1
1
0
•
•
0
0

0
-1
0
5
1
•
•
1
0

1
0
1
1
0
•
•
0
1

Output

Distance ActivationCompare

Calculate node output

Weighted

1
1
0
1
4
•
•
0
0

0
0
-2
0
1
•
•
1
-3

1
3
1
1
0
•
•
0
0

0
-1
0
5
1
•
•
1
0

0
1
-3
0
1
•
•
2
0

2
1
0
0
-1
•
•
1
0

•
•
•

•
•
•

•
•

•
•

1 0 1 1 • • 0 1

Input

sum of
nodes

•
•
•

a) b)

input
output

hidden
layer

Σ
Σ

y
x

M

F j xp Θ,() wi j ϕ r i()
i A∈
∑=

ϕ r i() i A xp wi j
i j

r i ci
Si ϕ

A ϕ r i() α≥
α 0≥

Θ wi ci Si, ,{ }M
i 1==

ϕ r i() exp r i
2–()=

r i
2 xp ci–

S
x ci–() T

Si x ci–()= = Si

Si diag s1 … sd, ,[]
i

=

F x p Θ,() F1 xp Θ,() … Fm xp Θ,(), ,[] T
= m

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

5

we can write the network error vector as . Below we have the update
equations for a per pattern gradient descent using a least squares error:

, (2)

, (3)

, (4)

for and .
Not all variations update all these free parameters, and still others do not use the gradient

update at all. Another common way to update the kernel centers is to use competitive learn-
ing which, in a refined form (rival penalized competitive learning [47]), becomes:

, (5)

(6)

for and . Usually . Moreover, ,
which of course is equal to , and is the cumulative number of occurrences of

. That is to say that the node closest to the input (node) is moved towards the in-
put and that the second best node (the runner up) is moved away. To involve all nodes the
distances are weighted with the number of inputs assigned to a certain node.

Many other variations exist both on how to initiate the parameters and how to adapt
them. The variations used in LLSs are shown in Table 1. We refer to Part I for a more thor-
ough discussion on the variations found in Table 1. This paper assumes fixed-point (integer)
numbers unless otherwise stated. Variations with floating-point (real) or Boolean input will
not be discussed.

ep F x p Θ,() yp–=

wi t 1+() wi t() 2ηwe
p
ϕ xp ci–

S
()–=

ci t 1+() ci t() 4ηcεipϕ' xp ci–
S

()Si xp ci–()+=

Si t 1+() Si t() 2ηSεipϕ' xp ci–
S

() diag xp1 ci1–() 2 … xpd cid–() 2, ,[]()–=

i A∈ εip epjwi jj 1=
m∑=

ci t 1+() ci t() ui xp ci–()+=

where ui

ηk if i k such that = γ k xp ck–
2

minj γ j xp c j–
2
,=

ηr– if i r such that = γ r xp cr–
2

minj k≠ γ j xp c j–
2
,=

0 otherwise,

=

i 1 … M, ,= 0 ηk ηr, 1≤ ≤ ηk t()>>ηr t() γ j n j nii 1=
M∑()⁄=

n j N⁄ ni
ui ηk= k

r

TULEA 1995:02

6

Some of the LLS variants shown in Table 1 are not analyzed further, namely the variants
with genetic algorithm, sample/hash, or incremental addition of nodes (structural adapta-
tion), as they are not main stream LLS models. Due to the non-local nature of the pseudoin-
version method, and its computational demand making it hard to use in on-line situations,
the pseudoinversion method to set is not studied either.

Input Distance
Receptive

field initiation
Output

R
L1

(cityblock)
1 exp Random Fixed

Pseudo-
inverse

Fixed R

I
L2

(Euclidean)
Radial Uniform Gradient Gradient Gradient I

B L∞
Threshold
logic unit

Subset of
data

Competitive
learning

Occurrence
(Hebb)

RCE B

Dot
product

Min/Max
All
data

+ Topology

Hamming
distance

Incremental
addition

Genetic
algorithm

Hierarchical

Sample/Hash

Table 1 Variations of the LLS model. A large family of LLS variations is found by varying such
things as input and output spaces (Real, Integer or Boolean); distances, e.g., cityblock (L1), or Eu-
clidean (L2); receptive field (e.g., sphere or elliptic); kernel function
(exponential, threshold, min/max etc.); and how to initiate and adapt the free parameters.

ϕ ci c∆ w∆ S∆

sI

si I

diag sj[]

diag sj[]
i

Si j

S si I= S diag sj[]
i

=

wi

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

7

3. Types of parallelism

Because of the regular structure and repeated calculations over a large number of nodes, the
natural computer implementation will use a highly or massively parallel architecture (these
terms are defined in [30]). Before the best mapping can be found it is important to identify
the kind of parallelism found in the algorithm.

The different types of parallelism typically found in ANN algorithms [30] are:

Training session parallelism
Training example parallelism

Layer and Forward-Backward parallelism
Node (neuron) parallelism

Weight (synapse) parallelism
Bit parallelism

The training session parallelism uses the parallelism in sessions with different training pa-
rameters. The training example parallelism exploits the parallelism in the large number of
training examples available, this will however make the algorithm batch (off-line) oriented.
One example is the pseudoinverse method to determine . The layering (or pipelining) par-
allelism is not large and is seldom used. Both the parallelism in nodes (the many neurons)
and weights (the many synapses per neuron) are commonly used. The bit parallelism is often
taken for granted but becomes visible for bit-serial approaches. The greatest parallelism is
found in training example parallelism, node (neuron) parallelism, and weight (synapse) par-
allelism, therefore these three are the most interesting to exploit for parallel computer imple-
mentations. As this paper focuses on on-line methods, we conclude that the node and weight
parallelism are the most attractive forms of parallelism.

If we expand Eq. (1) we get, using a Euclidean distance without weighting,

, (7)

where is the number of inputs, , and if , with
 being a constant. This condition for activity can usually be written as , with
 being a constant. Thus, each and every node needs to calculate this distance to find the

active set. A node parallel solution for this calculation uses nodes operating in parallel,
while a weight parallel solution uses nodes. That is, the computational time for the dis-
tance calculation is proportional to for a node parallel solution, and for a weight paral-
lel solution. As we assume that we have an expanded representation we know that ,
and we can conclude that the node parallel solution is the most efficient one for the distance
calculating phase. Using the same reasoning for the output layer, that is, Eq. (7), and noting
that , we find the weight parallelism potentially faster. This, however, will be depend-
ing on the support available to combine (sum) the weight parallel calculations. Later, in Sec-
tion 4.2, we will discuss how to implement an global-sum and other reduction operations.

A combination of the weight and the node parallelism while calculating a single layer is
of course also possible. This combination is in fact the maximally parallel solution in the on-

wi

y j wi j ϕ r i()
i A∈∑=

d ri xk cik–() 2

k 1=
d∑= Nodei A∈ ϕ r i() α≥

α 0≥ r i ρ≤
ρ 0≥

M
d

d M
M d>

m M<

TULEA 1995:02

8

line case. Inspecting Table 2 we find that a typical feedforward phase computes subtraction,
squaring, weighting with , the sum , weighting with , and the final
sum . For the worst case scenario, with , a maximally parallel solution
for the feedforward phase only uses steps, where is a small constant
(≈5). Similarly, updating all free parameters using a gradient method can be done in

 steps where , , and are small constants (≈4, ≈6, and ≈4, respec-
tively). However, this maximally parallel solution is unrealistic due to the hardware resourc-
es it needs. For the feedforward phase alone we need multipliers, adder trees of
length , adder trees of length , and multipliers. The hardware would probably
also need to be specialized towards certain network sizes.

skj skj xk cik–() 2

k 1=

d∑ wi j
wi j ϕi 1=

M∑ A M=
Mlog dlog c1+ + c1

cw mlog cc cS+ + + cw cc cS

dM M
d m M mM

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

9

4. Detailed analysis of the LLS algorithm

Our analysis of the LLS algorithm will be based on an implementation which uses node par-
allelism for the hidden nodes and weight parallelism for the output nodes. For computations
we will use addition and multiplication as the basic operations and relate other operations to
them, e.g., we can assume that a subtraction and the calculation of an absolute value to take
the same time as an addition. In Table 2 most of the variations for the feedforward phase are
analyzed. This is followed by an analysis of the updating phase summarized in Table 3. We
will continue to use as the number of inputs, as the number of nodes, and as the
number of outputs.

For the different variations of distance measurements we see that the dot product is the
fastest, unless normalizations are needed. For the Hamming distance (HD) it is possible to
make use of the fact that all inputs are binary and use an exclusive-or operation followed by
counting the bits in the result. While using the Mahalanobis distance (MD) we implicitly use
an, L2 distance. The shown receptive fields are special cases of the MD as long as the L2 dis-
tance is used. The large number of operations for the MD, especially for long input vectors,
makes it less interesting for high performance applications.

As a kernel function the Gaussian is much used, but the calculation of it needs special
consideration. Ways to calculate it, or approximate it, will be discussed later. To support LLS
variations using winner-take-all it is required to find the minimum or maximum across a
node parallel mapping. Likewise, a weight parallel mapping will require a global sum across
the same nodes. Different ways to support these two forms of reduction operations (marked
with gray in Table 2) will be discussed in Section 4.2.

The error can either be calculated in the host/controller or in the processor array if the
network output vector and the target vector are broadcast.

d M m

F x p Θ,() y

TULEA 1995:02

10

We also need to analyze the means of communication that these computations need. For
most computations the only communication needed is broadcast, that is, a one to many com-
munication (broadcasting of the input vector , the radius , and the error). The “in-
verse” of broadcasting is a reduction operation needing many to one communication. This
operation is found while calculating the distance L∞, the output , or finding the win-
ning node (minimum/maximum). The type of operation used for the combination of the val-
ues will determine the type of reduction, e.g., global-or, minimum, or global-sum. We note
that in a SIMD computer there already exists a broadcast from the controller to the process-
ing elements (PEs) namely the instruction.

In Table 3 we show the number of operations which are needed for the updating of the free
parameters. Note that the node output is already calculated in the feedforward
process, and that the factor 2 or 4 can be incorporated into the learning rates . While up-
dating we try to reuse as much of the previously calculated partial results as possible, that
is, , , and are reused. The number of opera-

Variation
Type

Variation Result Operation Additions Mult. Other ops.

Distance

L1

L2

L∞

Dot product

HD “ ” exclusive-or

Mahalanobis
distance (MD)

Receptive field

1 , ()

, ()

, ()

Kernel function

exp 2-10

TLU index set = all where

Min/Max
index ,

()
, ()

Output and er-
ror

exp

TLU

•

Table 2 The number of operations needed for the feedforward phase of the LLS algorithms for
most of the variations given in Table 1. is the number of inputs, the number of active nodes,

 is the number of outputs, and the number of bits used to represent node activity. For all oper-
ations, except for the ones in the gray rows, the number of operations is found by multiplying the
shown figure by the number of nodes . That is, this is the number of steps needed for a node par-
allel solution.

δk xk cik– 2d

δk xk cik–() 2 d d

δk mink xk cik–() 2d dlog or d,
δk xkcik d

δk xk cik–() 2

Si j r i
2 xk cik–() TS xk cik–() d2 d 1–+ d2 d+

r i r i
2 δkk∑ d 1–

sI ri r i
2 s δkk∑ d 1– 1

diag sk[]
i

r i r i
2 skδ

kk∑ d 1– d

ϕ() exp r i
2–()

A A i r i ρ≤ 1

k
k2

minj r j secondj r j q Alog,

F x Θ,() wiϕ()
i∑ m Alog m

F x Θ,() wiϕ()
i A∈∑ m Alog m

ep F x Θ,() y– m

d A
m q

M

xp ρ ep

F x Θ,()

ϕ xp ci–
S

()
η

Si
εipϕ' xp ci–

S

2
() xp ci–() T

xp ci–() xpj ci j–()

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

11

tions needed while updating and will depend on the chosen receptive field. We show
the numbers for , , and . For the global versions, that is, and , the

 becomes with a correspondingly larger number of operations. Note
that this summation is a global-sum across the PEs.

Comparing methods to calculate in Table 3 we see that a gradient method using
 as receptive field has a similar time consumption as the competitive learning

methods. For the gradient method more nodes are updated at the same time. For a sequential
computer we can utilize the fact that only one or two nodes should be updated, but that is not
the case for a parallel computer (at least not on the mapping suggested). As the methods are
very different (e.g., supervised versus unsupervised) it is not certain that the lesser number
of nodes updated will lead to worse performance (it could even lead to better performance in
some situations). The addition of a topological constraint leads to a larger number of nodes
being updated for each training pattern, this without taking a significantly longer time on our
suggested architecture.

To find the neighboring nodes for LLS variations that use topological constraints, the
fastest way is often to broadcast the winning nodes’ “topological position” and let all nodes
calculate their respective “topological distance” to the winning node. About three operations
per topological dimension should be sufficient.

We can also note that, as for the feedforward phase, the Mahalanobis distance (general
) is not advantageous for long input vectors because of the operations needed.

∆c ∆S
si I diag si[] Si j sI diag sj[]

S t 1+() S t() ∆S∑+

∆c
diag si[]

Si j O d2()

TULEA 1995:02

12

Variation
Type

Variation Result Operation Additions Mult.
Comments

and other ops.

Gradient

Occurrence
Normalization

is needed

•

Gradient
(L2, exp)

2-10 ops.

–, –, , ,

CL
,

for index or all

RPCL
Actually local
to one or two

nodes

CL +
topology.

,
where is the topological

distance to

Need to calcu-
late the topolog-

ical distance

•

Gradient:
L2, exp,

– –

Gradient:
L2, exp,

Gradient:
L2, exp,

RPCL
global

Table 3 The number of operations needed for updating the free parameters of the LLS algorithms.
For all operations the number of operations is found by multiplying the figures by .

∆w

∆w ηwe
p
ϕ() 1 m+

∆w wk t() y+ m

wi t 1+() wi t() ∆w+ m

∆c

εip epjwi jj 1=
m∑ m 1– m

ϕ' r i
2–()

r2∂ c∂()⁄ Si xp ci–() d2 d–
1 d
d2

∆c ηcεipϕ' r i
2–()

r2∂
c∂

------- 1 d+

∆ck
ηk x ck–()

k k A∈ d

∆ck ηk x ck–() d

∆cr ηr– x cr–() d

nk nk 1+ 1

∆ck

ηkNk x ck–()
Nk

k
2d

ci t 1+() ci t() ∆c+ d

∆S

si I

r2∂ S∂()⁄ xp1 ci1–() T xp1 ci1–()

∆S ηSεipϕ' r i
2–()

r2∂
S∂

------- 2

Si t 1+() Si t() ∆S+ 1

diag sj[]
i

r2∂ S∂()⁄ xp1 ci1–() 2 d

∆S ηSεipϕ' r i
2–()

r2∂
S∂

------- 1 d+

Si t 1+() Si t() ∆S+ d

Si j

r2∂ S∂()⁄ xp1 ci1–() xp1 ci1–() T d2

∆S ηSεipϕ' r i
2–()

r2∂
S∂

------- 1 d2+

Si t 1+() Si t() ∆S+ d2

nk nk 1+ 1

si t 1+() nk 1 N⁄() 1 1 N⁄

A

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

13

Timing example
Using a Euclidean distance, a hyperbolic receptive field (), a Gaussian kernel, and
gradient learning in Eq. (1)-(4), we can compute the per pattern update time (using a node
parallel mapping onto a linear array with processors) as

=
+
+
+

= (8)

The times and are the lengths of time consumed by an addition and a multiplica-
tion, respectively. The times and are the times needed to compute the radial function
and its derivative. The time is the time needed to calculate a global-sum across the lin-
ear array. The trivial solution using only local (nearest neighbor) communication will calcu-
late this global-sum in (i.e., in worst case) steps. This is clearly undesirable, as we
usually have an expanded representation where the number of kernels is much larger than
both the input vector length and the output vector length . If an adder tree is used, as de-
scribed later, we can assume for the worst case (cf. end of Section 4.2),

.
For a bit-parallel computer two reasonable assumptions are that and

 = . Altogether these assumptions lead to a per pattern total time of

. (9)

With mixed parallelism and support for reduction operations the term dependent on be-
comes and the critical term for is the term .

Most LLS variations are used with networks using maximally inputs,
outputs, and nodes. This maximum gives a maximum . If a
25MHz clock is used and an add takes one clock cycle this maximally sized network could
be updated at rate of 15000 updates/s. This is sufficient for many real-time applications, and
is very high in situations involving humans.

By introducing the concept of virtual PEs it is possible to reduce the hardware required
with the sacrifice of update speed. By virtual PEs it is meant that each PE is simulating many
virtual PEs (giving the impression of having more PEs than what is actually available). The
introduction of virtual PEs demands little or no extra support from the hardware, but re-
quires more memory to be available for each PE. For a low level of virtualization (2-8 times)
the update rate can be expected to be reduced in proportion to the level of virtualization.

4.1 Radial functions

It is well known how to implement the addition and multiplication operations [10, 18, 43].
However, for radial functions like the Gaussian, it is not as obvious which methods are
available and which one should be preferred. This is especially true if reduced precision can
be allowed as a way to achieve higher speed. A standard way to calculate an exponential

diag sk[]
i

M
Ttot dTadd dTmul d 1–() Tadd dTmul Tϕ mTmul mTGS mTadd+ + + + + + +

1 m+() Tmul mTadd+
m 1–() Tadd mTmul Tϕ' dTmul 1 d+() Tmul dTadd+ + + + +

dTmul 1 d+() Tmul dTadd+ +

4d 3m 2–+() Tadd 6d 3m 3+ +() Tmul Tϕ mTGS Tϕ'+ + + +

Tadd Tmul
Tϕ Tϕ'
TGS

A M
M

d m

TGS Mlog() Tadd=
Tmul 2Tadd=

Tϕ Tϕ'+ 10Tadd

T'tot 16d 9m Mlog 14+ + +() Tadd=

M
Mlog T'tot 16d

d 64= m 64=
M 2048= T'tot 1625Tadd=

TULEA 1995:02

14

function is to use its truncated power-series as an approximation [18]. If we truncate all but
one term we get an approximation in the form:

(10)

where and for best fit to a Gaussian [32]. If even lower precision
is acceptable a version with should be considered, as it makes Eq. (10) easier to cal-
culate.

The cut-off at makes the kernel function truly local, which is not true for the expo-
nential function we try to approximate. In a sense, a Gaussian kernel function does not con-
form to the LLS concept of locality, due to its infinite tail. Usually this can be resolved by
introducing a cut-off for the implemented kernel function. This “reintroduction” of locality
is especially needed if the method to do global-sum depends on the fact that there are few
active nodes.

If trigonometric calculations already are implemented, or if they are calculated faster
than the exponential, then the kernel function

(11)

could be considered. There are actually many other types of kernel functions that could be
considered, both approximations that are close to a Gaussian, like the ones above, and others
like a triangle function. Wong [46] actually suggests that the Gaussian kernel function is
“too smooth” for some problems where there are high frequency sections to be mapped, and
that a first order spline like the triangle function is better.

Another method to quickly compute an arbitrary function is to use a table lookup. This
however needs the PEs to be autonomous enough to generate local addresses. Most SIMD
computers do not have local address modification available for this kind of operation. For a
discussion on autonomy of PEs in SIMD computers see [8]. The CNS computer from ICSI
[4] will use a table lookup to calculate the sigmoid of the multilayer perceptrons (MLP),
which is a similar problem to calculating the exponential. This method will need memory for
the table in each PE, making strong restrictions on how long tables can be, and therefore on
the precision. (A precision of 8 bits is used in [4].)

In [30] various approximations of the sigmoid for MLPs are discussed in greater detail,
and many of the methods there can be applied to the exponential as well. It should for in-
stance be easy to generate a piecewise linear approximation.

ϕi r i() exp r i
2

–()

≈

=
1

1

q

r

i

–

2

 0 otherwise

if

r

i

q

<

r i
2 x ci–

S
= q 2.67=

q 2=

r i q<

ϕi r i()

=

1

r

i

cos+

()

2

⁄

 0 otherwise

if

r

i

π<

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

15

4.2 Reduction operations

For both node parallel, weight parallel, and maximally parallel implementations it is inter-
esting to find fast ways of doing reduction operations. In the following sections we will
study methods to calculate a global-sum and methods to find a global minimum (which is
needed for “winner take all” algorithms).

Global-sum

There are many possible ways to add numbers together in parallel, but the most efficient
way is to use a (binary) tree structure. Here we study three variants: the

fully parallel

 adder
tree which uses parallel adders in all stages; the

partly parallel

 adder tree which is sequential
over the inputs, but adds the bits in each bit-slice with parallel adders; and a completely

bit-
serial

 adder tree.

•

The

fully parallel

 method is the most complex, using a complete adder for each
crossing in the tree. The reduction will be completed in pipelined steps, need-
ing -bit (and larger) adders, where is the number of bits in the numbers to
be summed. We also need pipeline registers. The critical operation is a
()-bit adder. This structure can easily be extended to other reduction op-
erations by modifying the arithmetic/logic unit (ALU). In [39] Raynolds et al. de-
scribed a general reduction network, similar to the one described above, capable of
all important operations including minimum.

Figure 2

Part of a fully parallel adder tree to sum numbers with maximally
bits each. Not shown are the pipeline registers between each layer of adders.

M

Mlog
M 1– q q

M 1–() 2⁄
q Mlog 1–+

16

16

17

17

•
•
•

•
•
•

•
•
•

V
a

lu
e

s
to

 b
e

 s
u

m
m

e
d

in
 p

a
ra

lle
l

•
•

•

23

23

24

18

18

•
•

•

Pipeline stages

M 256= q 16=

TULEA 1995:02

16

•

The

partly parallel

 adder tree forms an accumulated sum by adding up bit-slices
from all the numbers, sent to the adder tree bit by bit. After steps the
sum is complete. This solution needs “ -bit to -bit sum” arithmetic
units, adders with a length starting from , and an accumulator
with the length . There are also pipeline registers. The critical
operation is the ()-bit and ()-bit addition. The structure is inflexi-
ble and cannot be extended to other reduction operations.

Figure 3

Part of a partly parallel adder tree to sum numbers with maximally
 bits each. “L” is the logic to add 8 bits into a 4-bit sum. Not shown are the pipeline regis-

ters between each layer of logic or adders.

q M p⁄()log+
M p⁄ p plog

M p⁄()log 1– plog
q Mlog+ 2 M p⁄()

Mlog 1+ q Mlog+

A
cc

um
ul

at
or

4

4

8

8

5

5

6

6

7

7 9

24

•
•
•

•
•
•

•
•
••

•
•

V
a

lu
e

s
to

 b
e

 s
u

m
m

e
d

b
it

b
y

b
it

8

8•
•
•

L

L

24

Pipeline stages

M 256=
q 16=

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

17

•

The cheapest solution, with respect to hardware, is to use a

bit-serial

 adder tree com-
pleting the sum in steps. This solution utilizes full adders with car-
ry-save technique, and latches. This method does not restrict the precision
of the numbers to a specific maximum, and is faster for shorter numbers (i.e., smaller

). This structure can be extended with logic operations like global-and, global-or,
and global-exclusive-or, but faster ways of doing global-or exist. It seems difficult,
however, to directly extend a bit-serial adder tree to include reduction with minimum
(or maximum). These operations can, however, be easily implemented by other
means in a bit-serial fashion, cf. next section. If there are long wires between nodes
or if they go outside a single chip, it is possible to reuse the wires in the adder tree for
broadcast. This is accomplished by introducing backward bypasses on each full adder
(FA), like the ones suggested by Pachanek et al. in [31].

Figure 4

Part of a bit-serial adder tree to sum numbers with maximally bits
each.

In Table 4 we have analyzed the three different variants of adder trees. The analysis has been
done for a global-sum of numbers with bits each. This was
chosen as a maximum number of PEs on one chip. From the approximate analysis in this ta-
ble we see that the partly parallel solution is the slowest method and thus not very interesting
for further studies. We also note that the fully parallel and the bit-serial solution achieve sim-
ilar speed. This is under the assumption that the bit-serial adder tree pipeline can be clocked
four times faster than the fully parallel adder tree pipeline (which should be possible due to
the simplicity of the bit-serial pipeline stages). The number of gates is not a very accurate
measure of the area needed for each of the solutions, still it is an indication that the fully par-
allel solution is around 10 times larger than the partly parallel and bit-serial solutions. We

q 2 Mlog+ M 1–
2 M 1–()

q

V
a

lu
e

s
to

 b
e

 s
u

m
m

e
d

b
it

b
y

b
it

CFA
S

•
•
•

•
•
•

•
•

•

•
•

•

•
•
•

CFA
S

CFA
S

CFA
S

CFA
S

CFA
S

CFA
S

CFA
S

Pipeline stages

M 256= q 16=

M 256= q 16= M 256=

TULEA 1995:02

18

conclude that the bit-serial adder tree is the most promising way to expand an architecture
with an adder tree. This is true even if the rest of the PEs run in bit-parallel mode, although
some fast shift registers will then be needed for the conversion of parallel to serial data.

Besides using the adder tree to calculate the output sum it can be used to help the LLS calcu-
lations if a normalized version of Eq. (1) is used and while using Hebbian or occurrence up-
date of a normalization is sometimes required. Additionally can the adder tree be useful
if global rescaling is used (diagonal or scalar). Furthermore, an adder tree is not only advan-
tageous for LLSs, it has also been found useful [42] for multilayer perceptrons with back
propagation learning, on a SIMD processor array.

Using the local activity

An interesting prospect is to see if the local activity present in LLSs can be exploited to
speed up the reduction operations. If we assume that a reasonable maximum is 2048 nodes
(otherwise it could be split into multiple networks), then a bit-serial global-sum of 16-bit
numbers takes steps to calculate. If we assume that only 1-2% of the
nodes are active, the sum would minimally take steps. That is, the potential
gain is relatively small. This is true at least if we keep the mixed parallel implementation and
use an adder tree. However, in [28] it is shown that there are certain situations where the
need for an adder tree can be avoided. This is accomplished by using a

transposed mapping

,
where a node parallel mapping is used throughout the whole implementation as shown in
Figure 5b.

Fully parallel Partly parallel Bit-serial

Steps to complete a global-sum 8 23 32

Most time consuming operation add 23+23 add 9+24 FA

Unit delays , for this operation 12 12 3

Speed (steps*) 96 276 96

Number of parallel adders 255 (

16–23 bits in size

) 31 (

4–8 bits in size

) —

Other logic — 32 (

8 bits to 4-bit sum

) 255 FA

Number of gates 28930 4084 3060

Latches 4582 330 510

Table 4

 Approximate analysis of the three adder tree alternatives. It is assumed that
numbers, having bits each, are to be added. We denote the logic gate propagation delay
with . All methods are pipelined and for parallel adders four-bit carry-lookahead adders are used
as described in [43].

∆

∆

M 256=
q 16=

∆

wi

16 11 11+ + 38=
16 6 6+ + 28=

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

19

Figure 5 (a) shows a mixed parallel solution, used in this paper, while (b) shows the transposed
mapping (node parallel) useful for the SDM algorithm, cf Figure 1b. The adder tree needed in (a) is
not shown.

This was developed for the sparse distributed memory (SDM) model where no adaptation of
the kernel positions takes place. SDM is designed to have very few active nodes and of-
ten works as an associative memory with many outputs. These are also the reasons why the
mixed mapping works well for SDM. It becomes possible to iterate over each active node,
and the PEs will only operate on local data. Given this transposed mapping
will compute the output sum faster than a mixed parallel mapping will. If for example

, that is, we only have 10% active nodes, then given the transposed
mapping will be faster if , and given it will be faster if .

This solution needs additional PEs. Depending on the memory each PE needs, it
might be possible to reuse the “first layer PEs” for this new task. For each new PE we need

 extra storage locations. There are also other things to consider, for example, means to
translate the active PEs to addresses for the “second layer PEs” is needed. If the “first layer
PEs” are reused for problems with few outputs then only a small number of assigned PEs
will take part in the computations, leading to low efficiency.

We can conclude that for cases where the transposed mapping is not efficient we still
want to have an adder tree available for the global-sum operation. Anyhow, means to imple-
ment transposed mapping should be provided as there is a lot to be gained from that map-
ping in certain cases.

4.3 Finding a minimum

Finding a minimum or reduction with a minimum operator is similar in structure to the other
reduction operations like global-sum or global-or. The main difference is that we are not
only interested in the resulting minimum value, but also in the index of the PE containing
that value. As mentioned before, Raynolds et al. have described a general reduction network
[39] capable of all important reduction operations including minimum. For the minimum op-
eration they have added an extra path in the tree structure to be able to send along the index-
es of the values reduced. The comparison is accomplished using a subtraction and the sign
decides which value and tag to send forward. But, in correspondence to the global-sum,
there are also bit-serial ways of finding minimum. Inspired by the bit-serial sorter by Afgha-
hi [1] we now suggest a bit-serial minimum (or maximum) circuit.

PE array

A D

Sel

•

•
•

PE array

A D

Sel

•

•
•

• • •

(a) (b)

A

A m Mlog<

A 0.1M< M 128=
m 2> M 512= m 6>
m

M

TULEA 1995:02

20

The basic element is the bit-serial minimum or maximum filter found in Figure 6a. The
input and are transmitted serially, with the most significant bit (MSB) first. Figure 6b
shows the state diagram of the element. The reset signal sets the state back to the
state. While there is no difference on the inputs there is no change in state. However, if a dif-
ference is detected the element either goes to the or the state as indicated in
Figure 6b. In both these states the output transmitted will also depend on whether the mini-
mum or maximum is wanted.

These basic elements are then connected into a binary tree structure.

Figure 6 (a) A bit-serial min/max element of a binary tree. (b) State diagram of the min/max ele-
ment.

As mentioned above the desired result of this operation usually is the index of the winning
node instead of the minimum value. This can easily be achieved just by transmitting the in-
dex after the values to be compared. A nice by-product is that an automatic resolution of ties
is also attained. The total number of steps will then be (the index has a length of

 bits). For the whole adder tree of these elements are needed, where each ele-
ment is not much more complex than a full adder.

Finding the runner-up, which is needed for some of the competitive learning methods, is
easy as well. We just have to use a sorter element [1] as the root of the tree. The sorter has
the same states as the min/max element but has two outputs: high and low.

Another way to find the maximum (which easily can be converted to finding the mini-
mum) is described in [30] where a global-or network is used. The search starts by comparing
the most significant bit for all values. It determines if any PE has a one using a global-or op-
eration, in that case all PEs with zeros are turned inactive. For the case that all PEs show a
zero, the search just continues to the next bit without changing the activity of any PE. The
search continues in the next bit position and so on, until all bit positions have been treated.
The time for this search is, in principle, independent of the number of data compared; it de-
pends only on the data length . The computation of the global-or will however depend on
the number of data, and there is also a need for a select-first network [12] to resolve multiple
maxima which will also depend on the number of data used. The total number of steps for
the worst case is then , where is the time to do global-or,

 is the time to do select-first, and is the index length in bits.

A B
A B=

A B> A B<

A B> A B= A B<

A B=

A 1 B, 0= = A 0 B, 1= =

O AM BM+= O AM BM+=

M Min/Max=

B

A

Min/Max
O

O A B= =

(a) (b)

q 2 Mlog+
Mlog M 1–

q

q TGO 1+() TSF Mlog+ + TGO
TSF Mlog

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

21

Comparing the two bit-serial methods to search for a minimum we find that the first bit-seri-
al method is to be preferred if . As this is true under most circumstances
(note that is sometimes even equal to) the first method is promoted. This meth-
od also seems to put less demand on the controller.

qTGO TSF Mlog>+
TGO Mlog

TULEA 1995:02

22

5. Architecture requirements (summary)

In this Section we summarize the arithmetic and memory demands LLSs have on the pro-
cessing elements (PEs). We also summarize our findings regarding communication net-
works, and also discuss what type of control is needed. An overview of the connection
between different parts of the architecture is found in Figure 7.

Figure 7 A simplified view of the suggested architecture. This is an array of processing elements
(PEs) controlled by a single controller (SIMD). Besides a broadcast bus an adder tree and a mini-
mum/maximum network have been added. Inter chip or inter module communication structures
are not shown.

Note that the fact that the architecture is a linear array is not really used while implementing
the LLS model. It could instead be considered as a set of PEs. The locality concept in the in-
put space is usually not reflected in the order of the nodes.

The number of PEs should maximally be around 2048. If more nodes are desired by the
LLS algorithm the nodes should be split into separate modules instead. If modern VLSI
technology is used 128 – 256 PEs could be fitted onto one chip, possibly even with enough
memory on-chip for some low level virtualization. This large number of PEs is easier to ac-
complish if low complexity PEs with bit-serial arithmetic are used. Fewer PEs or an off-chip
memory solution might be required if bit-parallel PEs are to be used.

Arithmetic capability for PEs
Support for multiplication and addition is essential for ANN computations in general and
that is true for LLSs as well. A useful addition would be support for absolute values. (Easily
implemented but depends on the number representation used.) If low precision is to be used
it also seems useful to have a soft overflow logic, that is, overflow should remain at max and
not “swing around”.

A general way to support the implementation of radial functions is to use a table lookup.
This solution will however require a more complex PE, and more memory per PE. This
drawback and the fact that we can usually make a good approximation using only a few (say
2-10) multiplications and additions lets us conclude that support for table look-up is not es-
sential.

The threshold logic unit operation needs a comparison which can be implemented using
a subtraction and an “if then else” control.

PE array

Broadcast bus

Adder tree and

Control Unit

Address and
PE Instruction

PE
Memory

Min/Max network

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

23

Memory capacity for PEs
If we use a hyperbolic RBF (i.e.) we will need memory for variables
per PE. And for RCPL with counterpropagation weight adaptation we need memory for

 variables per PE. If a momentum term is used, then the memory needed is al-
most doubled. Still the memory needed is not very high per PE. This means that we can as-
sume that the memory requirements will not be the bottleneck if we want to use the concept
of virtual PEs as discussed in the end of Section 4. This assumption is true as long as we use
external memory and do not use a very high level of virtualization (say above 32).

Communication
Besides broadcast (which is available on any SIMD computer) there is a need for an adder
tree to support global summation, and a minimum/maximum network to support winner-
take-all algorithms. These two reduction networks seem to be most efficiently implemented
using a bit-serial approach. If the processors are distributed to multiple chips the communi-
cation between the chips needs to be considered. Thus, if there is a large speed difference be-
tween on-chip and off-chip communication/computation buffers will be required together
with additional support from the controller. The more specialized approach with the trans-
posed mapping also needs some support, for instance using a select-first structure.

If general communication networks like hypercube networks or mesh networks are avail-
able an efficient way to calculate the reduction operations discussed in this paper can be
found. But for LLSs the flexibility of these networks is not needed and the extra hardware
required would be unused most of the time.

Control
We have assumed that a SIMD computer, that is, a single controller for all PEs, should be
sufficient for LLSs and found nothing to contradict this assumption. Besides the obvious op-
eration to send out instructions and addresses, the controller, assuming a mixed parallel im-
plementation, also has to:

• support a broadcast of the input vector (steps),

• be able to receive the output sum from the adder tree (times), calculate the differ-
ence to the target vector (steps), and broadcast the difference to the PEs (times);
this step can also be done as a broadcast from the adder tree to all nodes (times)
and a broadcast of the target vector from the controller (times).

As mentioned in the end of Section 4 the use of virtual PEs is a desirable method to reduce
the number of PEs needed and support for virtual PEs increases the flexibility of the archi-
tecture. However, support for virtual PEs also demands more of the controller, for example,
implementation of the reduction operation over all virtual PEs.

Fine grain PEs using bit-serial arithmetics allow for a shorter clock cycle; unfortunately
this also puts higher demands on the controller. At a certain speed the controller might need
to be split into one on-chip “loop” controller section and one off-chip main (slower) control-
ler section, that is, a hierarchical control.

diag sk[]
i

3d 2m 9+ +

2d 2m 7+ +

d

m
m m

m
m

TULEA 1995:02

24

As addressing autonomy is not needed (unless table lookup is to be used for kernel func-
tion calculation) the control unit will generate the PE memory addresses.

5.1 REMAP

REMAP (“Real-time, Embedded, Modular, Adaptive, Parallel processor project”) [7] is a
joint project between Luleå University of Technology, Chalmers University of Technology,
and Halmstad University (all in Sweden). The first prototype has been implements using
programmable logic (FPGA) to facilitate architectural experiments [24]. This prototype
mainly uses bit-serial PEs which are organized as a linear processor array controlled in
SIMD fashion. The implemented communication structures are nearest neighbor and broad-
cast. The PEs are ordinary bit-serial PEs capable of doing addition subtraction, and, or, not,
exclusive-or, load register and a tagged store. In earlier studies we have found that in order
to support ANN computations the basic PEs need to be extended with a bit-serial multiplier
[12] (for MLP [42] and SOM [27]) or a bit-counter (for SDM [28]).

To support LLSs this basic REMAP architecture only needs to be expanded with support
for reduction operations (adder-tree and min/max network). This support for reduction oper-
ations also can be useful for multi-layer Perceptrons trained with back-propagation. In an
earlier paper [30] we suggested that temporary sums could be circulated among the PEs to
achieve the same result. But, for LLSs with many more nodes in the hidden layer compared
to the output layer, that solution is not as efficient as the solution suggested in this paper.

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

25

6. Related work

In the following sub-sections we will discuss some of the more promising hardware imple-
mentations which can support LLS computations. Further discussions on parallel hardware
for ANN in general, and some special LLS variations like sparse distributed memory (SDM)
and self-organizing maps (SOM) can be found in our papers [26, 27, 30].

6.1 INTEL and Nestor

Intel and Nestor have developed the Ni1000 chip [16, 20], implementing variants of restrict-
ed Coulomb energy (RCE) [6] and probabilistic neural network (PNN) [41] algorithms. It
has two main parts, where the first part consists of 512 distance calculating units, and the
second is a DSP-like mathematical unit. The first part, as the name indicates, calculates a
distance between an input vector and kernel centers. They can only calculate a city-block
distance (L1). These units are organized in a node parallel fashion and operate at 40MHz.
Up to 1024 prototypes can be stored on the chip, each prototype with a maxima length of
256 values with 5-bit precision. The mathematical unit is used to calculate the kernel func-
tions (Gaussian or TLU) and the output sum. It uses 16 bit floating-point numbers for its cal-
culations. It can operate at 40000 patterns/s in a feedforward mode.

This chip only implements a subset of the LLS variations (e.g. only L1 distance and only
one form of receptive fields). Still, for problem areas where these restrictions can be accept-
ed the Ni1000 chip performs well.

6.2 ZISC

ZISC036 is the first in a family of ANN chips developed by IBM [11, 19]. It implements an
LLS variation similar to an RCE network. This chip implements 36 neurons organized in a
node parallel fashion and operating at 20MHz. The chips can easily be cascaded to larger
configurations. Each node contains a prototype with a maximal length of 64 values using 8-
bit precision. Only L1 or L∞ distance measurements can be used and the kernel function is
implemented as a threshold. Means to extract the closest nodes are also available. Learn-
ing is done in an RCE fashion where an unrecognized input is attached to an unassigned
node and only the receptive field sizes can be adapted (actually they can only be reduced). In
ZISC036 there is no support to implement virtual PEs.

While ZISC036 is being implemented in conservative VLSI technology (1µm) it does
not seem to improve much on the Ni1000 chip besides being designed to be easily extended
to large multi chip devices.

6.3 CNAPS

The CNAPS chip from Adaptive Solutions Inc. is a chip developed for ANN calculations
[13, 14] and has an architecture similar to the one suggested in this paper. It has been used
for many variants of ANN with impressing figures {9.6 GCPS and 2.3 GCUPS for multilay-

k

TULEA 1995:02

26

er perceptrons (MLP) with back propagation (BP) learning, with 8 chips [25]}. It contains
64 DSP-like PEs forming a linear SIMD array, where each PE is capable of doing multiply-
and-accumulate at a rate of 25 MHz. Memory for the weights is found on the chip (4Kb/PE).

There is a global maximum selection available which is useful for the SOM implementa-
tion. There is, however, no support for a global-sum. This probably means that many LLS
variations (with more than one active node) will be difficult to implement efficiently. The
only LLS variation found for CNAPS is an implementation of SOM [15]. This implementa-
tion shows relatively poor performance [27]. Even if Pulkki [35] has almost tripled these
performance figures, we do suspect that CNAPS needs to be complemented with an adder
tree to fully support the LLS model.

6.4 Other digital solutions

There is a number of other general ANN computers that could also be efficient for LLS algo-
rithms. The most promising ones seem to be the Siemens SYNAPS (MA-16)[36, 37, 38] and
ICSI’s SPERT [5] and their upcoming CNS [4]. As both ICSI’s and Siemens’ designs use
off-chip memories, larger problems can be simulated on them compared to what is possible
on Ni1000, ZISC, and CNAPS. The design of SYNAPS and CNS are directed towards batch
oriented training which suggests that the Ni1000, ZISC, and CNAPS will be better for on-
line (embedded) computing.

Moreover, we note that there are general purpose computers, especially the machines
that have support for reduction operations, like CM-5 and Intel Paragon, which potentially
can achieve good performance for LLS algorithms. However, the communication latencies
in these computers indicate that they are better in off-line situations, where batch oriented
training can be used.

For binary versions of the RCE or the SDM algorithms the SPISM (standard pinout im-
plementation of smart memory) chip could be interesting [40]. But the restricted ways to
form outputs severely reduce its general usefulness.

6.5 Analog hardware.

Analog VLSI for LLS computations seems promising for the future. The high speed of ana-
log VLSI is attractive for many ANN calculations. This is also true for LLSs. Especially the
global-sum seems to benefit much from an analog implementation. But currently analog
technology has too little flexibility for most real-world usage. Better means to train on-line,
permits different LLS variations, allow higher precision when desired, and permit multi-chip
extensions are some of the things needed before analog technology can be put into practical
use. The most promising application area for analog VLSI seems to be close to the sensors
where the input can be kept analog all the way through.

Despite the problems there are some research chips manufactured to do RBF calcula-
tions. Some have concentrated on the distance calculation and the kernel function. One such
study is the analog computation of the Euclidean norm with a varying width Gaussian made
by Churcher et al. [9]. Others, like Watkins et al., have implemented a hybrid computer for

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

27

RBF [44, 45]. They use analog technology for the first steps: calculating a Euclidean dis-
tance and a Gaussian kernel with variable width. For the (weighted) summation they use an
ordinary DSP (M56000), which is also used for learning. The computation of the Gaussian
was later moved to the DSP due to the large range of receptive field sizes the algorithm
needed. A completely analog RBF VLSI chip is described by Anderson et al. in [3].

TULEA 1995:02

28

7. Conclusion

In this paper we have analyzed the implementation aspects of localized learning systems
(LLSs) presented in [29]. The objective has been to suggest suitable parallel computer archi-
tectures for the LLSs.

Our hypothesis that a SIMD (single instruction stream multiple data stream) computer
array should be suitable for LLSs has been reinforced in this study. As we think that an ANN
computer should support many ANN models and variations, the architecture must be pro-
grammable, either in hardware or in software. Among the reported implementations of LLSs
only our own REMAP and CNAPS combine the required programmability with high perfor-
mance on-line learning capability. Besides the obvious support for addition and multiplica-
tion the radial function calculation will need some consideration. A mixed parallel
implementation has been found to best suit the LLS algorithms as long as we demand on-
line operation. Besides broadcast communication the LLS algorithm will need support to do
global-sum and find global maximum. Three implementations of global-sum are identified
and studied. It is established that this operation can be performed bit-serially at the same
speed as bit-parallel solutions with a fraction of the hardware cost. For the global-minimum
operation a new bit-serial structure is proposed. This new min/max network has the advan-
tage of not needing a global-or network as the standard bit-serial way of finding minimum
does. This also results in a speed advantage in most cases.

Even for very large LLSs (= 64, = 64, and = 2048) the suggested architecture
can accomplish update rates at many thousand updates per second, and that on a processor
array with only 256 PEs operating at 25MHz.

We had hoped to make better use of the locality aspect of LLSs than we finally could
achieve. But on the other hand we can note that the suggested architecture, especially the ad-
dition of an adder tree, makes the implementation of multilayer perceptrons with back prop-
agation learning efficient. Only in some more specialized cases we can, via a transposed
mapping, use the locality to achieve better performance than by using an adder tree.

7.1 Acknowledgments

The author would like to thank Prof. Bertil Svensson Chalmers University of Technology,
Assoc. Prof. Lennart Gustafsson Luleå University of Technology, Assoc. Prof. Glenn Jen-
nings Luleå University of Technology, and Lic. Tech. Per Ödling Luleå University of Tech-
nology for valuable discussions.

d m M

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

29

8. References

[1] Afghahi, M., “A 512 16-b bit-serial sorter chip,” IEEE Journal of Solid-State Circuits, vol. 26,
no. 10, pp. 1452-1457, 1991.

[2] Albus, J. S., Brains, Behavior, and Robotics, Petersborough, NH, USA: BYTE/McGraw-Hill,
1981.

[3] Anderson, J., J. C. Platt and D. B. Kirk, “An analog VLSI chip for radial basis functions,” in
Neural Information Processing Systems 5, C. L. Giles, S. J. Hanson and J. D. Cowad Eds.
Denver, CO, USA, 1992, pp. 765-772.

[4] Asanovic, K., et al., “CNS-1 architecture specification,” Tech. Rep. TR-93-021, International
Computer Science Institute, 1994.

[5] Asanovic, K., J. Beck, B. E. D. Kingsbury, P. Kohn, N. Morgan and J. Wawrzynek, “SPERT: a
VLIW/SIMD neuro-microcomputer,” in International Joint Conference on Neural Networks,
Baltimore, 1992, vol. 2, pp. 577-582.

[6] Bachmann, C. M., L. Cooper, A. Dembo and O. Zeitouni, “A relaxation method for memory
with high storage density,” Proceedings of the National Academy of Sciences, vol. 84, pp.
7529-7531, 1987.

[7] Bengtsson, L., A. Linde, B. Svensson, M. Taveniku and A. Åhlander, “The REMAP massively
parallel computer platform for neural computations,” in Third International Conference on Mi-
croelectronics for Neural Networks (MicroNeuro '93), Edinburgh, Scotland, UK, 1993,

[8] Blank, T. and J. R. Nickolls, “A grimm collection of MIMD fairy tails,” in Frontiers of Mas-
sively Parallel Computation (Frontiers ´92), H. J. Siegel Ed., McLean, Virginia, USA, 1992,
pp. 448-457.

[9] Churcher, S., A. F. Murray and H. M. Reeckie, “Programmable analogue VLSI for radial basis
function networks,” Electronics Letters, vol. 29, no. 18, pp. 1603-1605, 1993.

[10] Cormen, T. H., C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT Press,
1990.

[11] Eide, Å., T. Lindblad, C. S. Lindsey, M. Minerskjöld, G. Sekhniaidze and G. Zsékely, “An im-
plementation of the zero instruction set computer (ZISC036) on a PC/ISA-bus card,” in WNN/
FNN workshop, Washington DC, 1994,

[12] Fernström, C., I. Kruzela and B. Svensson, LUCAS Associative Array Processor - Design, Pro-
gramming and Application Studies, vol. 216 of Lecture Notes in Computer Science, Berlin:
Springer Verlag, 1986.

[13] Hammerstrom, D., “A VLSI architecture for high-performance, low-cost, on-chip learning,” in
International joint conference on neural networks, San Diego, 1990, vol. 2, pp. 537-543.

[14] Hammerstrom, D. and E. Means, “System design for a second generation neurocomputer,” in
International Joint Conference on Neural Networks, Washington D.C., 1990, vol. 2, pp. 80-
83.

[15] Hammerstrom, D. and N. Nguyen, “An implementation of Kohonen's self-organizing map on
the Adaptive Solutions neurocomputer,” in International Conference on Artificial Neural Net-
works, T. Kohonen, et al. Eds. Helsinki, Finland, 1991, vol. 1, pp. 715-720.

[16] Holler, M., et al., “A high performance adaptive classifier using radial basis functions,” in
Government Microcircuit Applications Conference, Las Vegas, Nevada, November 9-12,
1992,

[17] Hudak, M. J., “RCE classifiers: theory and practice,” Cybernetics and Systems, vol. 23, pp.
483-515, 1992.

[18] Hwang, K., Computer Arithmetic: Principle, Architecture, and Design, New York: John
Wiley & Sons, 1979.

TULEA 1995:02

30

[19] IBM Microelectronics, “ZISC036 user's manual (preliminary),” IBM France, Component De-
velopment Laboratory, 1994.

[20] Intel Corporation, “Ni1000 Specifications,” Intel Corp. and Nestor Inc., 1993.
[21] Kanerva, P., Sparse Distributed Memory, Cambridge, MA: MIT press, 1988.
[22] Kohonen, T., “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464-

1480, 1990.
[23] Kung, S. Y., Digital Neural Networks, Englewood Cliffs, N.J.: Prentice-Hall, 1993.
[24] Linde, A., T. Nordström and M. Taveniku, “Using FPGAs to implement a reconfigurable high-

ly parallel computer,” Field-Programmable Gate Array: Architectures and Tools for Rapid
Prototyping; Selected papers from: Second International Workshop on Field-Programmable
Logic and Applications (FPL'92), Vienna, Austria, H. Grünbacher and R. W. Hartenstein Eds.
New York: Springer-Verlag, pp. 199-210, 1992.

[25] McCartor, H., “Back propagation implementation on the Adaptive Solutions CNAPS neuro-
computer chip,” in Neural Information Processing Systems 3, R. P. Lippmann, J. E. Moody
and D. S. Touretzky Eds. Denver, CO, USA, 1990, pp. 1028-1031.

[26] Nordström, T., “Sparse distributed memory simulation on REMAP3,” Res. Rep. TULEA
1991:16, Luleå University of Technology, Sweden, 1991.

[27] Nordström, T., “Designing parallel computers for self organizing maps,” in DSA-92, Fourth
Swedish Workshop on Computer System Architecture, Linköping, Sweden, 1992,

[28] Nordström, T., “Hardware for sparse distributed memory simulations,” to be submitted, 1995.
[29] Nordström, T., “On-line spatially localized learning systems, part I - model description,” to be

submitted (Also available as Res. Rep. TULEA 1995:1, Luleå University of Technology, Swe-
den), 1995.

[30] Nordström, T. and B. Svensson, “Using and designing massively parallel computers for artifi-
cial neural networks,” Journal of Parallel and Distributed Computing, vol. 14, no. 3, pp. 260-
285, 1992.

[31] Pachanek, G. G., S. Vassiliadis and J. G. Delgado-Frias, “Digital neural emulators using tree
accumulation and communication structures,” IEEE Transaction on Neural Networks, vol. 3,
no. 6, pp. 934-950, 1992.

[32] Platt, J. C., “Learning by combining memorization and gradient descent,” in Neural Informa-
tion Processing Systems 3, R. P. Lippmann, J. E. Moody and D. S. Touretzky Eds. Denver,
CO, USA, 1990, pp. 714-720.

[33] Poggio, T. and F. Girosi, “A theory of networks for approximation and learning,” A.I. Memo
1140 (first released 1991), Massachusetts Institute of Technology, 1994.

[34] Powell, M. J. D., “Radial basis functions for multivariable interpolation: a review,” in IMA
Conference on Algorithms for the Approximation of Functions and Data, RMCS, Shrivenham,
UK, 1985, pp. 143-167.

[35] Pulkki, V., Helsinki University of Technology, 1994, Personal communication.
[36] Ramacher, U., “SYNAPSE — a neural computer that synthesizes neural algorithms on a paral-

lel systolic engine,” Journal of Parallel and Distributed Computing, vol. 14, no. 3, pp. 306-
318, 1992.

[37] Ramacher, U., et al., “Design of a 1st generation neurocomputer,” VLSI Design of Neural Net-
works, U. Ramacher and U. Rückert Eds. Dordrecht, The Netherlands: Kluwer Academic
Publishers, 1991.

[38] Ramacher, U., et al., “Multiprocessor and memory architecture of the neurocomputer SYN-
APSE-1,” in International Conference on Artificial Neural Networks-93, Amsterdam, The
Netherlands, 1993, pp. 1034-1039.

On-Line Localized Learning Systems Part II – Parallel Computer Implementation

31

[39] Raynolds, P. F. J., C. M. Pancerella and S. Srinivasan, “Design and performance analysis of
hardware support for parallel simulations,” Research Report CS-92-20, University of Virginia,
1992.

[40] Smith, D., M. Shetti, M. Harward, W. Bean, R. Pawate and G. Doddington, “A VLSI imple-
mentation of the Nestor RCE neural network,” Texas Instruments Technical Journal, vol. 7, no.
6, pp. 34-41, 1990.

[41] Specht, D. F., “Probabilistic Neural Networks,” Neural Networks, vol. 3, no. 1, pp. 109-118,
1990.

[42] Svensson, B. and T. Nordström, “Execution of neural network algorithms on an array of bit-se-
rial processors,” in 10th International Conference on Pattern Recognition, Computer Architec-
tures for Vision and Pattern Recognition, Atlantic City, NJ, USA, 1990, vol. II, pp. 501-505.

[43] Waser, S. and M. J. Flynn, Introduction to arithmetic for digital systems designers, Holt,
Rinehart and Winston, 1982.

[44] Watkins, S. S., P. M. Chau and R. Tawel, “A radial basis function neurocomputer implemented
with analog VLSI circuits,” in IJCNN International Joint Conference on Neural Networks,
Baltimore, MD, USA, 1992, vol. 2, pp. 607-612.

[45] Watkins, S. S., P. M. Chau, R. Tawel, B. Lambrigtsen and M. Plutowski, “A hybrid radial basis
function neurocomputer and its applications,” in Neural Information Processing Systems 6,
Denver, CO, 1993,

[46] Wong, Y., “How Gaussian radial basis functions work,” in International Joint Conference on
Neural Networks, Seattle, WA, USA, 1991, pp. 133-138.

[47] Xu, L., A. Krzyzak and E. Oja, “Rival penalized competitive learning for clustering analysis,
RBF net, and curve detection,” IEEE Transactions on Neural Networks, vol. 4, no. 4, pp. 636-
649, 1993.

1

Nordström, T., “Hardware for sparse distributed memory simulations,” to be submitted for publication,
1995. An earlier version is available as a research report: Nordström, T., “Sparse distributed memory
simulation on REMAP3,” Res. Rep. TULEA 1991:16, Luleå University of Technology, Sweden, 1991.

Hardware for

Sparse Distributed Memory

Tomas Nordström

Division of Computer Science & Engineering
Luleå University of Technology, Sweden

E-mail: tono@sm.luth.se

ABSTRACT

Sparse distributed memory (SDM) has been used to solve problems in
areas such as speech recognition, pattern matching and temporal en-
coding. It has been found to be suitable for implementation on paral-
lel computers. SDM can be described in terms of an artificial neural
network model as well as a very large computer memory.

The computer model we map SDM onto is among the simplest of
them all: a bit-serial linear array with SIMD control. A prototype,
called REMAP, is used as an example of this kind of architecture.

The implementation of a normal problem using 256 REMAP pro-
cessing elements is estimated to run 10 times faster than the normal
Connection Machine (CM-2) simulation, where 8k processing ele-
ments are used. This is due to an efficient mapping of the SDM mod-
el onto our computer, and to the possibility of configuring the
architecture especially for the type of calculations needed for SDM.

This document was created with FrameMaker 4.0.4

2

1. INTRODUCTION

In problem areas like vision, optimization and speech processing, humans often perform
well. Still, these problems have been very hard for ordinary computers. Inspired by the mas-
sively parallel and highly interconnected structure of the brain, artificial neural networks
(ANN) have been suggested to solve these problems.

Localized learning system (LLS) models [22] is a large group of ANN models which
have attracted interest lately. All the LLS models are feed-forward networks using an ex-
panded representation (large number of hidden nodes) [36], and having the important feature
of localized activity and learning. These properties have been shown to make efficient paral-
lel computer implementations possible [23]. Examples of LLS models are: generalized radi-
al basis functions (GRBF) [25, 26], self-organizing feature maps (SOFM) and learning
vector quantization (LVQ) [18], probabilistic neural network (PNN) [35], and cerebellar
model arithmetic computer (CMAC) [1]. This paper will concentrate on another LLS model,
the sparse distributed memory (SDM) developed by Kanerva [13]. Due to the binary nature
of SDM some special care is needed for efficient implementations.

SDM has been used in pattern matching and temporal sequence encoding [12, 13, 15]. It
can also be used as an associative memory [14, 40]. Kanerva [13, 14] has argued that SDM
is a biologically plausible model. Prager, Fallside and Clarke have used a modified version
of SDM for real-time speech recognition [5, 27, 28]. Rogers [30] stresses that sparse distrib-
uted memory is an ideal artificial neural network for massively parallel computer implemen-
tation.

In this paper we try to identify architectural properties which are important for the simu-
lation of SDM. We also estimate the performance on a bit-serial linear processor array called
REMAP. Further, we review other SDM implementations on special hardware and on the
Connection Machine. Finally, we draw some conclusions about the suitability of REMAP
for the simulation of SDM.

Hardware for Sparse Distributed Memory

3

2. THE REMAP COMPUTER

REMAP (Real-time, Embedded, Modular, Adaptive, Parallel processor project) and is a
long-term project addressing questions related to the usage of massively parallel, distributed
computing in embedded systems [3, 7, 19, 38]. Of specific interest is the potential of making
“action-oriented” systems [2] that interact with the environment by means of highly parallel
sensors and actuators. The project is done as a joint project between Luleå University of
Technology, Chalmers University of Technology, and Halmstad University.

Within the current project, a small prototype of a software configurable processor array
module has been implemented. Different variations are possible by reprogramming. Howev-
er, this possibility has not been fully used due to the poor quality of the design tools. Still, an
architecture tuned for neural network computations, including a fast bit-serial multiplier, has
been designed [19]. Between 8 and 16 processing elements (PEs) can be configured in one
logic chip Xilinx 4005. The PEs typically have four one-bit registers for ordinary bit-serial
computations and are not very different from the PEs of array computers like DAP, Blitzen
or Connection Machine.

In this paper two models of the REMAP PEs are analyzed. One uses the basic REMAP
PE without extra supporting hardware. This PE includes a bit-serial multiplier needed for
many other ANN algorithms. However, for SDM no such multiplier is needed and for the
second model, the multiplier is replaced by a counter preceded by an exclusive-or gate. This
speeds up the selection phase by three to four times.

4

3. THE SPARSE DISTRIBUTED MEMORY MODEL

The Sparse Distributed Memory (SDM) model developed by Kanerva [13] can be described
in two ways: as a computer memory or as a two layer feedforward network. By viewing
SDM as a computer memory it can be compared to the random access memory (RAM) of
conventional computers. Both SDM and RAM store data at an address accessed by a “refer-
ence address.” The difference from conventional RAM is that instead of having 32-bit ad-
dresses, SDM may have 1000-bit addresses. As it is impossible to have a physical memory
with 21000 addresses, only a small part of it can be populated, i.e. it will be sparsely populat-
ed. Reference addresses with no physical addresses available must somehow be associated
with one or many other (physical) addresses. Different solutions exist for different types of
associative memories. SDM is a distributed memory model (as the name indicates), and each
reference address is associated with many physical addresses. To be able to store more than
a single data item in one location address, the data is stored in counters instead of one bit
cells as in RAM, see Figure 1.

In the basic form the physical location addresses are evenly distributed as random points
in the global address space. If the reference addresses are not evenly distributed i.e. the in-
puts are correlated, the location addresses should be distributed according to the probability
distribution of the reference address [6, 17]. This can be achieved in many ways. Danforth
[6] used a collection of selected templates, Rogers used genetic algorithms in [31] and
Saarinen et al. [34] described a method to use a version of Kohonen’s self-organizing feature
maps to let the physical addresses first “self-organize” into the probability distribution, and
after that use it in the usual way. Another way to deal with correlated data, suggested by
Kanerva [16], is to weight each bit separately in the input address to improve the separability
of patterns. All these variations fit nicely into the concept of localized learning system
(LLS), and by studying LLS many other variations can be found [22, 23]. However, in this
report only the original algorithm will be described, but we note that most of the variants can
be implemented equally efficiently on the suggested hardware.

Instead of looking for an exact match for the address, SDM will look for location ad-
dresses that are close to the reference address. By close we mean the shortest Hamming dis-
tance (i.e. the minimum number of bits that differ). Usually more than one location is
considered as close and therefore selected i.e. the memory is distributed. When reading from
the memory all the selected counters are summed and thresholded (∑<0 corresponds to 0,
∑≥0 to 1). Storing is done by incrementing or decrementing the selected counters (0 corre-
sponds to a decrement and 1 to increment). The procedure is summarized in Algorithm 1.

Hardware for Sparse Distributed Memory

5

Figure 1 The organization of a Sparse Distributed Memory as an array of addressable locations.
Note that the address as well as the data can be of lengths of hundreds of bits, still there are only a
small number (usually less than a million) of memory locations.

Algorithm 1 The SDM algorithm
Training the network (i.e. Writing to the memory):

1. The address register is compared to the location addresses and the distances are
calculated.

2. The distances are compared to a threshold and those below the threshold are se-
lected.

3. In the selected rows,

where the data-in register is 1 the counter is incremented,

where the data-in register is 0 the counter is decremented.

Recall from the network (i.e. Reading from the memory):

1. The address register is compared to the location addresses and the distances are
calculated

2. The distances are compared to a threshold and those below the threshold are se-
lected.

3. The selected rows are added columnwise.

Where the sum is greater than zero the data-out register is set to one,

else it is set to zero.
The choice of radius (or threshold), r, and the address length in bits, , together with the
number of location addresses, N, will determine the performance of the memory [13]. Given
r = 111, = 256, N = 8192 the mean number of active positions will be = 160, and if we
instead have r = 451, = 1000, N = 220 it leads to = 1124.

24 -6 62 1 • • -54 7

1011....011
0101....111
0110....101
0111....011
1101....101

•••
•••

0111....111
1011....010

97
115
78
102
112

•
•

128
109

1
1
0
1
4
•
•
0
0

0
0
-2
0
1
•
•
1
-3

1
3
1
1
0
•
•
0
0

0
-1
0
5
1
•
•
1
0

0
1
-3
0
1
•
•
2
0

2
1
0
0
-1
•
•
1
0

1 0 1 1 • • 0 1

•
•
•

•
•
•

•
•

•
•

0
1
0
0
1
•
•
1
0

1 0 1 1 • • 0 11011....011

Address register Data-in register

Location
Addresses

Data-out register

Sums

Up-down
counters

Dist SelCompare

Select

Store

Retrieve

α

α A
α A

6

4. MAPPING SDM ONTO AN ARCHITECTURE

Algorithm 1 can be mapped onto a computer architecture in many ways. There are two ma-
jor ways to map SDM onto an array of PEs: rowwise and columnwise. It will later be found
that, for some architectures, a mixture of the two is the best method of mapping.

4.1 The Rowwise Mapping

The rowwise mapping, in which each PE takes care of one physical location address and its
data, is probably the most natural one. It is illustrated in Figure 2.

Figure 2 A stylized illustration of the rowwise mapping, compare to Figure 1.

Using the classification, introduced by Nordström and Svensson in [24], for implementation
of ANN models, this mapping would be called node parallelism. Another type of parallelism
called weight parallelism would correspond to having one PE for each address and data bit/
counter. The large number of PEs and the massive communication needed makes weight
parallelism unrealistic for large SDM models. (For example, a 1000-bit address and a 1000-
bit data input field, with 106 location addresses, would need 2 109 PEs and a communication
fan-in and fan-out of 106.)

The rowwise mapping is very efficient for the selection phase, that is, the first two steps
in Algorithm 1. In this phase all the calculations needed can be done locally in each PE. If
the number of PEs is the same as the number of location addresses the PE utilization can be
100%.

In the store/retrieve phase only a small portion of the processor array is actively taking
part in the computation, because a relatively small number of PEs are selected in the selec-
tion phase (can be as low as 0.1-1%). This inefficiency can be removed if the counter array is
transposed as described in the next two mappings.

During retrieve a summation of active PEs should be carried out across PEs (sum-reduc-
tion) and communication support for this type of operation must be available, for example,
using an adder-tree.

PE array

A D

Sel

•

•
•

Hardware for Sparse Distributed Memory

7

4.2 The Columnwise Mapping

By “transposing” the address and counter array we get a columnwise mapping, see Figure 2.

Figure 3 A stylized illustration of the columnwise mapping

Using columnwise mapping for the selection phase the counting of bits (Hamming distance
calculation) must be carried out across PEs. This could be done by an adder-tree [8] but even
then the rowwise mapping is found to be more efficient for this phase.

The store/retrieve phase (which needed sum-reduction across PEs in the rowwise map-
ping) can now be carried out locally, and no special communication support is needed. The
PEs will also be utilized more efficiently. For each active position we can now update/use all
PEs. Typically we have 256 data bits and only a mean of =160 active positions. The net re-
sult for the store/retrieve phase is that we now do more work with fewer PEs!

When storing, support for doing subtraction and addition simultaneously would reduce
the update time by half. This can easily be achieved in both bit-serial and bit-parallel archi-
tectures.

It should be noted that this mapping depends on the fact that the number of address and
data register bits is often large. If this is not the case, as in the extreme case where only one
bit is used for data, the rowwise mapping is more efficient.

4.3 The Transposed Model

By “transposing” only the counter array we get a mixed row- and columnwise model as in
Figure 4. The transposed model combines the best parts of the two major mappings: row-
wise mapping for the selection phase and columnwise for the store/retrieve phase.

Figure 4 The “transposed” method of mapping the SDM algorithm into a linear array.

PE arrayA D
Sel• • •

• • •
A

PE array

A D

Sel

•

•
•

• • •

8

For this model it is natural to have as many PEs as there are data input bits. Typically this is
between 256 and 1024 bits when using SDM as an associative memory. Thus a linear pro-
cessor array of size 256 to 1024 PEs would be sufficient.

Unfortunately we introduce some new problems that have to be solved as well.

• The selection phase now has fewer PEs to utilize.

• We need to be able to “move” the active positions from rowwise to columnwise
representation.

The Selection Phase Using a Transposed Model
Returning attention to the selection phase, knowing that the number of PEs for the store/re-
trieve phase is much lower than for the selection phase, we can solve the imbalance by:

• having special PEs for the selection phase, or

• using virtual PEs (thus multiplexing PEs), or

• increasing the number of PEs until a suitable trade-off is achieved.
Each method is discussed below.

Special PE chips.
To get maximal performance on the selection phase a special purpose PE array could be con-
structed in VLSI. The array would be specialized to perform Hamming distance calculations
bit-serially. If the initial loading of location addresses is done serially there would be no
need for each PE to have its own connection to the outside of the chip. After the Hamming
distance calculation and the comparison to a radius is made an internal activation flag could
be set. Ways to move this information to the controller are described in Section 4.3.1.

Mackie and Denker discuss a special purpose chip in [21] useful for the distance calcula-
tion suggested above. The number of PEs on a 0.9µm CMOS chip is 50, each storing 128
bits. A “best match list” generator is included, so after 2.5 µs a list of the 5 best matching
units (out of 50) is produced.

Using special PE chips for the selection phase makes the total system heterogeneous. If
we want a more homogenous computer array, virtual PEs or the addition of new arrays can
be used instead.

Virtual PEs
By simply partitioning the location addresses into chunks of the array size we can achieve
reasonable performance on not too large problems.

On a large problem, such as one with 103 input data bits and 106 location addresses, the
selection phase will dominate the calculation time completely. Even if the PEs are fully uti-
lized there are a lot of unused parallelism in the selection phase, and it becomes of interest to
balance the phases.

Increasing the Number of PEs
Just adding more PEs for use in the selection phase would not gain anything for the store/re-
trieve phase, and utilization would go down. We could instead add a new array and have the

Hardware for Sparse Distributed Memory

9

SDM computation partitioned according to Figure 5. This partitioning can be done repeated-
ly until the mean number of active location addresses gets too low (and the utilization rapid-
ly goes down). The performance will increase with the number of modules added. The
optimum number of PEs will depend on the performance needed for the problems being
solved. The price one has to pay is to add a new controller for each new array. Each array
should have as many PEs as there are bits in the data-in field.

This way of increasing the number of PEs leads to an architecture comprising multiple
SIMD (single instruction stream multiple data stream) modules with the same or similar
code controlling each array. The difference between the arrays is that different arrays will
have different active location addresses and therefore different addresses for the counters.
The number of active locations will also differ.

Figure 5 How to partition the transposed mapping into twice the number of PEs in a multi modu-
lar fashion.

4.3.1 Moving Data From Row to Column Representation

After the selection phase, using rowwise mapping, we have one bit in each location address
indicating whether the corresponding data counter is to be active (selected) in the store/re-
trieve phase. The controller could find out which counters are selected in at least three ways:

1. One bit at a time could be shifted out of the array (using nearest neighbour com-
munication). This will be done in the same number of clock cycles as there are lo-
cation addresses.

2. If there exists a serial to parallel output like a corner-turner it could be used to re-
duce the time by a factor of 8 (for an 8 bit corner-turner). This is only useful if
each PE is used for many location addresses, i.e. virtual PEs.

3. The last and quickest method is to use a select first network [8] to find the active
ones and for each one send out its processor number to the control unit. This can
be done in one or two cycles for each active location, plus the time to send the PE
identification number.

Note that the order of the counters does not need to be the same as the order of the bits in the
selection vector. The only requirement is that the same order is used from time to time and is
the same for both store and retrieve.

To the second array

A D

Sel

10

5. THE TRANSPOSED MAPPING DONE BIT-SERIALLY

Many of the massively parallel processors like Blitzen [4], REMAP, and Connection Ma-
chine [10, 39] are bit-serial. That imposes some restrictions on what data types and calcula-
tions are suitable for them. By analyzing each step of the SDM algorithm we can determine
the suitability of bit-serial arithmetic for this problem.

Hamming Distance Calculation.
The difference between the reference and the location addresses is obtained by an exclusive-
or operation on each bit position. The distance is the number of ones in the difference. The
sum can be calculated in (number of bits in the address) steps if there is support for a
counter in the architecture. If there is no counter the summation of bits can utilize the “recur-
sive” structure of the many short sums in the beginning and few long sums in the end. The
sum can be calculated in ≤1409 steps for 256 bits and ≤5723 steps for 1024 bits using a bit-
serial adder. (These figures are for a summation starting with three bits at the time, and later
partitioned into sums from 32 bits. Any controller overhead is not included.)

These types of calculations are very well suited for bit-serial computers compared to bit-
parallel computers. Using a conventional microprocessor like MC68030 the Hamming dis-
tance of 256 addresses with 256 bits each could be computed in about 84000 clock cycles,
using a table lookup for the bit counting. This should be compared to the number of steps
above.

Compare to Threshold
In the store/retrieve phase of the algorithm the counters are compared with a threshold (the
radius). This can be carried out bit-serially in 2b steps, where b is the length of the bit-
counter (typically 16-20 steps).

Moving the Selection Vector to the Controller
All methods described in Section 4.3.1 could be used in a bit-serial architecture. Each meth-
od needs some “special” communication: nearest neighbor, corner-turner, or select/first. In
almost all bit-serial architectures at least one is present. The number of steps will depend on
what method is used to move the data and what kind of communication is available.

Add/Sub one to Selected Counters, Sum All Selected Counters
During the store phase the data-in register can be sent in parallel into the array. If no parallel
I/O channels are available the data-in register can be shifted in bit by bit or by using a cor-
ner-turner. After the data is moved each processor will have one bit each of the data-in regis-
ter. These data bits control the PE operation: add one or subtract one. This can easily and
efficiently be accomplished, as implemented in Blitzen [4] just by adding an extra register
bit controlling the addition-subtraction. Then one field of counters in the memory can be up-
dated in just 2 clock cycles (where is the counter length).

During the retrieve phase there is no need to input the data register. Instead the values of
the active counters should be added together. For each counter the number of cycles is +2s

α

σ σ

σ

Hardware for Sparse Distributed Memory

11

where is the length of the counter and s is the length of the sum. The sum will have bits
at the start and have +log2A bits at the end, where A is the number of active location ad-
dresses. If = 8 and A = 160 we get s = 8 at the start and s = 16 at the end, and maximally 8
+ 2(16) = 40 cycles per counter are needed. This gives a total maximum below 5500 (≈138 *
40).

σ σ
σ

σ

12

6. TIMING OF SDM USING REMAP

Using the figures in Section 5, we now estimate the performance for two different configura-
tions (with or without counters) of REMAP on two differently sized problems. We assume a
transposed mapping is used, and that a select first network (cf. Section 4.3.1) is used. For the
updates/s figures a 20 MHz clock is assumed. There is some control unit overhead for things
like address calculation and subroutine calls which is not included in the figures above. This
overhead could be estimated to be between 20 and 50% for a typical controller.

• The small model (=256, =256, =8192, =8, r=111 => =160) using 256 PEs.

• The large model (=1024, =1024, =220, =12, r=451 => =1124) using 1024
PEs.

For very large SDM models, like the latter model above, the selection phase is totally domi-
nating and adding new PE arrays as suggested in the end of Section 4.3 would have a large
positive impact on the computation time. For the first hundred arrays an almost linear speed-
up could be expected. As an example, using 16 modules of SIMD arrays the performance on
the above model would be well above 100 cycles per second (using Hamming distance
counters).

α δ N σ A

With counter Without counter

Selection
Store
Retrieve

Storing
Total cycles
Updates/s

Retrieving
Total cycles
Updates/s

Separate phases

Total

17152
5696

<9600

22900
875

<27000
740

58240
5696

<9600

63900
310

<68000
290

α δ N σ A

With counter Without counter

Selection
Store
Retrieve

Storing
Total cycles
Updates/s

Retrieving
Total cycles
Updates/s

Separate phases

Total

2.1M
53k

<89k

2.2M
9.0

<2,2M
9.0

8.0M
53k

<89k

8.0M
2.5

<8.0M
2.5

Hardware for Sparse Distributed Memory

13

7. STORAGE REQUIREMENTS

The storage requirements will depend on the number of address bits, , data bits, , loca-
tion addresses (physical addresses), , and the size of the counters, . The total memory re-
quirements (in bits), , can then be expressed as: . Having PEs we need

 bits of memory per PE.
For very small SDM models (=256, =256, =8192) both total and per PE memory

requirements cause no problems, but for the large model (=1024, =1024, =220) there
are few computers with the required amount of memory (2 - 4 GByte). If the number of PEs
is small, a very large amount of memory is needed in each PE (20-40 Mbit). If we instead
have many modules each bit-serial PE can have a normal amount of memory for typical ap-
plications (e.g. 1-4 Mbits). It is again worth noting that the use of modules also increases the
general performance of the architecture.

α δ
N σ

M M αN σδN+= n
m M n⁄=

α δ N
α δ N

14

8. OTHER IMPLEMENTATIONS

The SDM algorithm has been implemented both on commercial machines and some special-
ly built hardware. A discussion on their performance and suitability for SDM calculations
follows below.

8.1 Connection Machine (CM, CM-2)

The Connection Machine [11, 39], manufactured by Thinking Machines Corporation, is for
the moment the most massively parallel machine built (8k up to 64k processing elements).
Its strong side is the powerful hypercube connection and the sheer number of processors.
Besides the hypercube there is a mesh connection network. For the second generation (CM-
2) floating point support was added, arranged as one FP unit per 32 PEs. This means 2048
FP units on a 64k machine, giving a total of 20 Gigaflops.

Rogers [29] has used CM-2 as a workbench for exploring Kanerva’s SDM model. For
the selection phase he used rowwise mapping. But for the store/retrieve phase he used
weight parallelism (as many PEs as there are counters). As the physical number of PEs was
of the same order as one column of counters he implicitly used node parallelism and row-
wise mapping, letting the CM-2 sequencer take care of the looping over each column. Im-
plementing this in *Lisp gave a performance of only ≈3 iterations per second (=256,

=256, =8192). Using a pure rowwise mapping in C* the present author has been able to
achieve between 30 and 70 iterations per second. The difference is probably due to some un-
necessary but expensive communication needed going from 1D to 2D representation.

It should be noted that floating point values should be used for the counters using the
rowwise mapping of SDM onto a CM-2. This seems inefficient at first but for the retrieve
phase when a summation across the PEs (sum-reduction) is carried out, the performance us-
ing a float is eight times better than when using integers. It seems that the way the routers
can utilize the floating point chips doing sum-reduction will make it more efficient to use
floating point counters instead of integer counters!

For the CM-2 the transposed mapping is hard to use as the conditional processing must
be done in the host (as one can not program the sequencer to do that, or at least it is not very
well documented), and the communication between the processor array and the host is not
very efficient. Neither is there any support to do addition and subtraction at the same time in
different PEs.

α
δ N

Hardware for Sparse Distributed Memory

15

8.2 Hardware Implementations

STANFORD
Flynn et al. have, in a collaboration between RIACS and Stanford University, designed a
prototype for SDM [9]. They chose to use columnwise mapping and pipelining between the
two phases (select and store/retrieve). An ordinary MC68030 computer is used for the con-
trol module that implements a SCSI interface for the prototype. No identifiable processors
are used in the module for the select phase, instead an adder-tree together with a comparator
performs all the needed computation. It is realized using PLAs and EPROMs. The up/down
counters are contained in a separate module operated by another MC68030. The design can
use up to 256-bit addresses and 8k to 128k location addresses. Using 8k memory locations it
can run approximately 50 cycles per second.

TAMPERE
Saarinen et al. [32, 33] have suggested a hardware implementation of SDM using the work
of Flynn et al. [9] as a starting point. Like Flynn et al. they have chosen columnwise map-
ping. The address unit is very similar to that of the Stanford prototype, but newer technology
like FPGA is used to realize the adder-tree and the other logic needed for the search phase.
An analog address comparator based on summation of currents is also suggested. The
counters used in the second phase are operated by FPGAs and are based on banks of dynam-
ic RAMs. The counters are accessed 8 or 4 in parallel. To be able to experiment with modifi-
cation of the algorithm, the up/down counters are replaced with adder/subtractors of 8-bit
values.

The performance is not stated exactly, but Lindell [20] estimate their hardware to run
about 230 iterations/s for write and similar figures for read (=256, =256, =8192, =8,
r=111 => =160).

α δ N σ
A

16

9. CONCLUSIONS

The main idea of the SDM implementation suggested in this paper is to use a mapping onto
a linear array which can utilize as many PEs as possible in each step. This can be achieved
by using rowwise mapping for the selection phase and columnwise mapping for the store/re-
trieve phase. Each processing element can be very simple and bit-serial architectures are es-
pecially suitable for the otherwise time consuming selection phase. By the addition of a
counter to each PE, the selection time can be reduced by a factor of three to four.

Timing calculations using a PE with counters indicate that it is possible to run SDM at
speeds 10-30 times that of an 8k CM-2. This is accomplished with only 256 REMAP PEs. If
we normalize with respect to the clock frequency and number of PEs, the measure of speed
would be 150 times that of CM-2 per PE. The relatively poor performance on CM-2 is found
to depend on at least three factors: underutilization of PEs during the select/retrieve phase;
the natural rowwise mapping demands time consuming sum-reduction across PEs; the “opti-
mal” transposed mapping is hard to implement efficiently with the current sequencer.

In our study, the multi-modular concept is found to be a better way to increase the degree
of parallelism then just adding PEs to an ordinary SIMD array.

Communication is simple in SDM as in many other artificial neural network algorithms
[24, 37]. The form of communication needed is found in many other, conventional algo-
rithms (broadcast, nearest neighbor, select/first) and may be included at small cost in logic
and wire.

Also when comparing our REMAP computer to direct hardware implementations of
SDM, like the one described in Flynn et. al. [9], our approach seems very promising. The
first small (128 PEs) version of the REMAP computer was completed during 1993. Unfortu-
nately the FPGA reprogramming tools have made it difficult to experiment with the architec-
ture as intended. Thus, we have yet to implement a version containing counters instead of
multipliers.

Hardware for Sparse Distributed Memory

17

10. REFERENCES

[1] Albus, J. S., Brains, Behavior, and Robotics, Petersborough, NH, USA: BYTE/McGraw-Hill,
1981.

[2] Arbib, M. A., “Schemas and neural network for sixth generation computing,” Journal of Par-
allel and Distributed Computing, vol. 6, no. 2, pp. 185-216, 1989.

[3] Bengtsson, L., A. Linde, B. Svensson, M. Taveniku and A. Åhlander, “The REMAP massively
parallel computer platform for neural computations,” in Third International Conference on Mi-
croelectronics for Neural Networks (MicroNeuro '93), Edinburgh, Scotland, UK, pp. 47-62,
1993.

[4] Blevins, D. W., E. W. Davis, R. A. Heaton and J. H. Reif, “Blitzen: A highly integrated mas-
sively parallel machine,” Journal of Parallel and Distributed Computing, vol. 8, pp. 150-160,
1990.

[5] Clarke, T. J. W., R. W. Prager and F. Fallside, “The modified Kanerva model: Theory and re-
sults for real-time word recognition,” IEE Proceedings-F, vol. Vol 138, no. 1, pp. 25-31, 1991.

[6] Danforth, D. G., “An empirical investigation of sparse distributed memory using discrete
speech recognition,” in INNC 90 Paris. International Neural Network Conference, Paris,
France, vol. 1, pp. 183-186, 1990.

[7] Davis, E. W., T. Nordström and B. Svensson, “Issues and applications driving research in non-
conforming massively parallel processors,” in Proceedings of the New Frontiers, a Workshop
of Future Direction of Massively Parallel Processing, I. D. Scherson Ed., McLean, Virginia,
pp. 68-78, 1992.

[8] Fernström, C., I. Kruzela and B. Svensson, LUCAS Associative Array Processor - Design, Pro-
gramming and Application Studies, vol. 216 of Lecture Notes in Computer Science, Berlin:
Springer Verlag, 1986.

[9] Flynn, M. J., P. Kanerva and N. Bhadkamkar, “Sparse distributed memory: Priciples and oper-
ation,” Tech. Rep. 89.53 RIACS, NASA Ames Research Center, Moffet Field, CA, 1989.

[10] Hillis, W. D., The Connection Machine, Cambridge, Massachusetts: The MIT Press, 1985.
[11] Hillis, W. D. and G. L. J. Steel, “Data parallel algorithms,” Communications of the ACM, vol.

29, no. 12, pp. 1170-1183, 1986.
[12] Kanerva, P., “Adjusting to variations in tempo in sequence recognition,” in Neural Networks

Supplement: INNS Abstracts, vol. 1, pp. 106, 1988.
[13] Kanerva, P., Sparse Distributed Memory, Cambridge, MA: MIT press, 1988.
[14] Kanerva, P., “A cerebellar-model associative memory as a generalized random-access memo-

ry,” in Digest of Papers. COMPCON Spring '89. Thirty-Fourth IEEE Computer Society Inter-
national Conference: Intellectual Leverage, San Francisco, CA, USA, pp. 570-576, 1989.

[15] Kanerva, P., “Contour-Map Encoding of Shape for Early Vision,” Tech. Rep. 90.5 RIACS,
NASA Ames Research Center, 1990.

[16] Kanerva, P., “Efficient packing of patterns in sparse distributed memory by selective weighting
of input bits,” in Proceedings of the 1991 International Conference Artificial Neural Networks,
T. Kohonen, et al. Eds. Espoo, Finland, vol. 1, pp. 279-284, 1991.

[17] Keeler, J. D., “Capacity for patterns and sequences in Kanerva's SDM as compared to other as-
sociative memory models,” in Neural Information Processing Systems, D. Z. Anderson Ed.,
Denver, CO, 1987.

[18] Kohonen, T., “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464-
1480, 1990.

18

[19] Linde, A., T. Nordström and M. Taveniku, “Using FPGAs to implement a reconfigurable high-
ly parallel computer,” Field-Programmable Gate Array: Architectures and Tools for Rapid
Prototyping; Selected papers from: Second International Workshop on Field-Programmable
Logic and Applications (FPL'92), Vienna, Austria, H. Grünbacher and R. W. Hartenstein Eds.
New York: Springer-Verlag, pp. 199-210, 1992.

[20] Lindell, M., “Hardware realization of sparse distributed memory,” Technical Report 12-93,
Tampere University of Technology, Finland, 1993.

[21] Mackie, S. and J. S. Denker, “A digital implementation of a best match classifier,” in IEEE
1988 Custom integrated Curcuits Conference, Rochester, NY, pp. 10.4.1-10.4.4, 1988.

[22] Nordström, T., “On-line spatially localized learning systems, part I - model description,” to be
submitted (Also available as Res. Rep. TULEA 1995:1, Luleå University of Technology, Swe-
den), 1995.

[23] Nordström, T., “On-line spatially localized learning systems, part II - parallel computer imple-
mentation,” to be submitted (Also available as Res. Rep. TULEA 1995:2, Luleå University of
Technology, Sweden), 1995.

[24] Nordström, T. and B. Svensson, “Using and designing massively parallel computers for artifi-
cial neural networks,” Res. Rep. TULEA 1991:13, Luleå University of Technology, Sweden,
1991.

[25] Poggio, T. and F. Girosi, “A theory of networks for approximation and learning,” A.I. Memo
1140 (first released 1991), Massachusetts Institute of Technology, 1994.

[26] Powell, M. J. D., “Radial basis functions for multivariable interpolation: a review,” in IMA
Conference on Algorithms for the Approximation of Functions and Data, RMCS, Shrivenham,
UK, pp. 143-167, 1985.

[27] Prager, R. W., T. J. W. Clarke and F. Fallside, “The modified Kanerva model: results for real
time word recognition,” in First IEE International Conference on Artificial Neural Networks,
London, UK, pp. 105, 1989.

[28] Prager, R. W. and F. Fallside, “The modified Kanerva model for automatic speech recogni-
tion,” Computer Speech and Language, vol. 3, pp. 61-81, 1989.

[29] Rogers, D., “Kanerva's sparse distributed memory: an assosiative memory algorithm well-suit-
ed to the connection machine,” Tech. Rep. 88.32 RIACS, NASA Ames Research Center, 1988.

[30] Rogers, D., “Kanerva's sparse distributed memory: an assosiative memory algorithm well-suit-
ed to the connection machine,” in Proceedings of the Conference on Scientific Application of
the Connection Machine, Moffet Field, Ca, USA, vol. 1, pp. 282-298, 1988.

[31] Rogers, D., “Predicting weather using a genetic memory: a combination of Kanerva's sparse
distributed memory with Holland's genetic algorithms,” in Neural Information Processing Sys-
tems 2, D. Touretzky Ed., Denver, CO, pp. 455-464, 1989.

[32] Saarinen, J., P. Kotilainen and K. Kaski, “VLSI architectures of sparse distributed memory,” in
1991 IEEE International Sympoisum on Circuits and Systems, Singapore, vol. 5, pp. 3074-
3077, 1991.

[33] Saarinen, J., M. Lindell, P. Kotilainen, J. Tomberg, P. Kanerva and K. Kaski, “Highly parallel
hardware implementations of sparse distributed memory,” in Artificial Neural Networks. Pro-
ceedings of the 1991 International Conference. ICANN-91, Espoo, Finland, vol. 1, pp. 673-
678, 1991.

[34] Saarinen, J., S. Pohja and K. Kaski, “Self-organization with Kanerva's sparse distributed mem-
ory,” in Artificial Neural Networks. Proceedings of the 1991 International Conference.
ICANN-91, T. Kohonen, et al. Eds. Espoo, Finland, vol. 1, pp. 285-290, 1991.

[35] Specht, D. F., “Probabilistic Neural Networks,” Neural Networks, vol. 3, no. 1, pp. 109-118,
1990.

Hardware for Sparse Distributed Memory

19

[36] Sutton, R. S. and S. D. Whitehead, “Online learning with random representations,” To appear,
1993.

[37] Svensson, B. and T. Nordström, “Execution of neural network algorithms on an array of bit-se-
rial processors,” in 10th International Conference on Pattern Recognition, Computer Architec-
tures for Vision and Pattern Recognition, Atlantic City, NJ, USA, vol. II, pp. 501-505, 1990.

[38] Svensson, B., T. Nordström, K. Nilsson and P.-A. Wiberg, “Towards modular, massively paral-
lel neural computers,” Connectionism in a Broad Perspective: Selected Papers from the Swed-
ish Conference on Connectionism - 1992, L. F. Niklasson and M. B. Bodén Eds. Ellis
Horwood, pp. 213-226, 1994.

[39] Thinking Machines Corporation, “Connection Machine, Model CM-2 technical summary,”
Version 5.1 T M C Cambridge, Massachusetts, 1989.

[40] Vanhala, J. and K. Kaski, “Simulating neural networks in distributed environments,” Res. Rep.
6-89 Department of Electrical Engineering, Electronics Laboratory, Tampere University of
Technology, 1989.

1

Presented at: DSA-92
Fourth Swedish Workshop on Computer System Architecture
Linköping, January 13th-15th, 1992

Designing Parallel Computers for

Self Organizing Maps

Tomas Nordström

Division of Computer Science & Engineering

Department of Systems Engineering and Mathematics

Luleå University of Technology, Sweden

E-mail: tono@sm.luth.se

ABSTRACT

Self organizing maps (SOM) are a class of artificial neural
network (ANN) models developed by Kohonen. There are a
number of variants, where the self organizing feature map
(SOFM) is one of the most used ANN models with unsuper-
vised learning. Learning vector quantifiers (LVQ) is another
group of SOM which can be used as very efficient classifiers.
SOM have been used in a variety of fields, e.g. robotics, tele-
communication and speech recognition.

Currently there is a great interest in using parallel computers
for ANN models. In this report we describe different ways to
implement SOM on parallel computers. We study the design
of massively parallel computers, especially computers with
simple processing elements, used for SOM calculations.

It is found that SOM (like many other ANN models) demands
very little of a parallel computer. If support for broadcast and
multiplication is included very good performance can be
achieved on otherwise modest hardware.

1.0 INTRODUCTION

The algorithms we study in this report are Kohonen’s self or-
ganizing maps (SOM) and variants of them. These maps have
been used in pattern recognition, especially in speech recogni-
tion [27], but also in robotics and automatic control [40, 46]
and telecommunication tasks [3, 32]. This study is part of a se-
ries of reports [43, 44, 49] that shows how well suited bit-serial
SIMD computers are for simulating artificial neural networks.

As an example of bit-serial SIMD computers, REMAP

3

(reconfigurable, embedded, massively parallel processor
project) will be used. As the processing elements are reconfig-
urable it is possible to include different types of support for dif-
ferent kinds of algorithms. For back-propagation [47] and
Hopfield networks [18, 19, 20] a bit-serial multiplier has been
found to be essential for the performance [44, 49]. For the im-
plementation of Kanerva’s SDM model [25] the multiplier was
not needed, instead a counter was suggested [43]. In this report
we try to recognize architectural principles and components
that are essential for the efficient calculation of Kohonen’s
models.

In the next section we describe the background of SOM. After
that, two sections discuss implementation considerations and
ways to map SOM onto a computer architecture. Then follows

a section where some of the existing parallel implementations
are discussed. Finally, we draw some conclusions concerning
the task of designing parallel computers for SOM.

2.0 BACKGROUND

An overview of the different models of self organizing maps
and the application areas where they have been used can be
found in [26, 28, 29, 30, 31]. Below we only restate the basic
models and refer to the references above for more details.

2.1 Competitive Learning

In competitive learning [30, 47] the responses from the adap-
tive nodes (weight vectors) tend to become localized. After ap-
propriate training the nodes specify clusters or codebook
vectors that approximate the probability density functions of
the input vectors. Algorithm 1 is an example of a competitive
learning algorithm. If the spatial relationships of the resulting
feature sensitive nodes are not considered we get a zero-order
topology map.

Algorithm 1

Competitive learning (zero-order topology).

1.

Find the node (or weight vector) closest to input

x

.

2.

Make the winning node closer to input.

3.

Repeat from step 1 while reducing the learning rate .

2.1.1 Adding Conscience

A problem with the algorithm above is that instead of placing
the nodes according to the input point density function
the nodes are placed as . Having low dimen-
sional input vectors (i.e. small

M

) there will be a bias towards
the low probability regions. DeSieno [6] has found that adding
conscience to the competitive learning algorithm will greatly
improve the encoding produced by the map. The idea is that
the nodes should be conscientious about how many times they
have won, compared to other nodes, see Algorithm 1. That is,
every node should win the competition approximately the same

wi
x tk() wc tk()– min x tk() wi tk()–=

i

i c=

wi tk 1+() wi tk()=

wi tk 1+() wi tk() α tk() x tk() wi tk()–[]+=
Where

otherwise

α

p x()
p x() M M 2+()⁄

2

number of times. Another way to improve the clustering is to
use a higher-order topology map, like the Kohonen model, this
is especially true for non-continuous input probability density
functions.

Algorithm 2

Competitive learning with conscience (zero-or-
der topology).

1.

Find the node (or weight vector) closest to input

x

using a conscience as offset (

C

 is a scaling factor).

2.

Make the winning node closer to input.

3.

Repeat from step 1 while reducing the learning rate ,
and increasing the conscience of the winning neuron

2.2 Kohonen Learning

In the brain there are many areas, such as the visual and soma-
tosensory cortex, which are organized in a way that reflects the
organization of the physical signals stimulating the areas i.e.
they are topological maps.

Inspired by that, Kohonen has developed a class of artificial
neural network (ANN) models which develop these, so called,
self organizing maps (SOM), also referred to as topological
feature maps (TFM). They are all models with competitive
learning and use first, second, or higher order topological maps
[26].

SOM may be formed with unsupervised learning, i.e. without
any teacher saying what is right or wrong. This type of SOM is
referred to as self organizing feature maps (SOFM), see Algo-
rithm 3.

Algorithm 3

 The SOFM algorithm (higher-order topology

)

1.

Find the node (or weight vector) closest to input

x

.

2.

Find the neighbourhood .

3.

Make the nodes in the neighbourhood closer to input.

4.

Repeat from step 1 with ever decreasing neighbour-
hood and gain sequence ().

If the resulting maps are to be used as classifiers, and the train-
ing example classes are known (i.e. supervised learning), a fine
tuning of the SOFM model called learning vector quantization
(LVQ) model has been suggested [29, 30]. In the simplest ver-
sion the difference is that, in Step 3 in Algorithm 3, is
negated if belongs to the wrong class. No neighbourhood is
used for LVQ.

2.3 Stochastic Competitive Kohonen
Learning

Van den Bout and Miller III [52, 53] have suggested a modifi-
cation to competitive and Kohonen learning which simplifies
the calculations by replacing the “analog” signals with stochas-
tic binary signals. In their model, called TInMANN, the mean

wi
ci

x tk() wc tk()– min x tk() wi tk()– Cci+()=
i

wi tk 1+() wi tk()=

wi tk 1+() wi tk() α tk() x tk() wi tk()–[]+=
i c=Where

otherwise

α

ci tk 1+() ci tk() 1+=

wi

x tk() wc tk()– min x tk() wi tk()–=
i

Nc tk()

wi tk 1+() wi tk() α tk() x tk() wi tk()–[]+=
i Nc tk()∈

wi tk 1+() wi tk()=

Where

otherwise

Nc α 0 α 1< <

α tk()
wi

value of a stochastic binary signal is viewed as an analog signal
in the range [0,1]. This signal representation leads to very sim-
ple (and space efficient) digital logic for the computations
needed in the algorithms. For example, multiplication of sto-
chastic signals can be computed using only a simple AND gate.

By noting that the weight vectors slowly integrate the effects of
the environmental stimuli, this can be done by incrementing/
decrementing the weights stochastically with a probability pro-
portional to the strength of the input vector. Obviously, more it-
erations are needed, but as each step is computationally very
simple the overall computation time will decrease, see section
5.8.

3.0 IMPLEMENTATION CONSIDERATIONS

SOM models have been implemented on a large number of dif-
ferent parallel computers: Warp [39], Transputers [17, 45, 48],
Connection Machine [45], MasPar [11] and in special hard-
ware [8, 24, 37, 38, 52, 53].

Aspects that have to be considered when implementing SOM
on parallel computers are: communication facilities, computa-
tional capabilities, mapping and partitioning of the algorithm.
Some architectures benefit a great deal if floating point num-
bers can be avoided, and the integer precision needed for the
weights should be analysed.

The algorithms in section 2.0 can be divided into four steps:
1. Finding the distance from the input to the nodes.
2. Finding the node closest to input.
3. Determining the neighbourhood to the closest node.
4. Updating the neighbourhood nodes.

The rest of this section will discuss the different aspects of im-
plementing SOM based on these four steps.

3.1 Communication

The weight vectors can be assumed to be distributed over the
processing elements (PEs). Thus the first step requires the input
vector to be distributed. The most effective way to do this is by
utilizing broadcast. If the architecture does not have broadcast,
for example if Transputers are going to be used, a nearest
neighbour communication like ring or mesh must be used.

For the second step a minimum distance must be found. A min-
imum could be found by doing N–1 comparisons among the N
nodes. Some “global” or “token-ring” communication is need-
ed if the nodes are distributed over many PEs. As seen in sec-
tion 4.4 a very fast bit-serial method exists to find min/max
among PEs if a global-or function exists.

The activation/selection of the neighbours can either be solved
as a spatial distance calculation or as a nearest neighbour com-
munication. The time for communication will depend on the
neighbourhood size. When the neighbourhood size is small the
communication method can be faster than spatial distance cal-
culation. The topology of the computer should support the
communication needed, which depends on the spatial topology
of the SOM model.

If the input vector (or the difference between the node and in-
put) is stored no communication is needed during step 3.

3

3.1.1 Summary on Communication

For the basic SOM models broadcast is the most efficient way
of communication.

By computing which nodes to be considered as neighbours, in-
stead of using nearest neighbour communication, the computer
topology becomes irrelevant for the algorithm. It also makes
the time for step 3 constant with respect to the neighbourhood
size.

3.2 Computations

For all of the algorithms in section 2.0 the distance is calculat-
ed using a Euclidean metric. Another much used metric is the
dot-product metric. Both metrics are discussed in this section.

Some model parameters used in this and following sections
are:

N The number of nodes
Size of the neighbourhood (may depend on time)

M The dimension of the input vector
Bits used for weights

n The number of processing elements available.

3.2.1 Euclidean Metric

Using a Euclidean distance metric in the first step means that
the distance is calculated as

Note that the square-root function does not need to be evaluat-
ed, as the square-root is a monotonic function and the result is
used for comparison only.

We get the following estimate on the number of computations
needed in each step:

1. We must do NM subtractions, NM squarings and NM
additions. Note that the result of the subtraction can be
reused in step 3 if there is enough memory to store the
result.

2. The number of calculations needed for finding mini-
mum is N–1 comparisons (subtractions).

3. If we instead of communicating, calculate the neigh-
bourhood, it should be possible to calculate the spatial
distance in less than 3 operations (subtract, square,
add) per spatial dimension (usually 1-3).

4. For the updating part we must carry out (subtrac-
tions,) multiplications and additions. The
subtraction can be carried out in step 1 if there is
enough memory to store the result.

The total number of operations is (assuming two spatial dimen-
sions and recalculation of the subtraction)

.

Using a reasonable value for like we get approximate-
ly

 operations per training example.

3.2.2 Dot-Product Metric

By normalizing the input vector (i.e. keeping),
and keeping the nodes normalized after updating, the dot-prod-
uct can be used instead of sum of squares. The distance calcu-
lation can then be calculated as a “weight matrix times an input
vector” like in many other neural network models.

Nc

δ

x tk() wi tk()–

x j tk() wi j tk()–() 2
j∑

NcM
NcM NcM

O 3MN N 1–() 6 3MNc+ + +=

Nc N 4⁄

O 1 3.75M+() N≈

x tk() 1=

The matching law is modified to

The update law must then be modified to

Still is a monotonically decreasing function, but now
. The neighbourhood is the same decreasing as

before.

We get the following estimate on the number of computations
needed in each step:

1. For the dot-product metric the NM subtraction, used by
Euclidean distance metric, can be avoided. The squar-
ings are replaced by multiplications.

2. Same as Euclidean metric, but we want to find maxi-
mum instead of minimum.

3. Same as Euclidean metric.
4. Using dot-product distance metric we must do

multiplications and additions for the nominator.
For the denominator we must use an additional
squarings and additions. We must also do one di-
vision.

The total number of operations is (assuming two spatial dimen-
sions)

.

Using a reasonable value for like we get approximate-
ly

 operations per training example.

The dot-product calculation can in some technologies be very
fast (e.g. optical transmission filters). But for our purpose the
overhead for the normalization is too time consuming. This
will be accentuated if SIMD computers are to be used.

3.2.3 Precision Used for the Weights

If we intend to use a bit-serial architecture, where each PE only
operates on one bit at a time, the precision becomes very im-
portant. An analysis made by J. Mann [37] shows that at least 8
bits seems necessary for the weights. He also finds that Eucli-
dean distance measures are not as sensitive as dot-product met-
ric to weight precision.

It also seems that the updating rule could be changed to an in-
crement/decrement of the weight, depending on the sign of the
difference between the weight and the input without much in-
fluence on the performance of the SOM algorithm.

Hammerstrom and Nguyen have found the SOM to be sensi-
tive to error bias from bit truncation, more sensitive than to av-
erage quantization error from reduced precision. They also re-
duce the error accumulation using saturation arithmetic (on
overflow the max/min value is used).

3.2.4 Summary and Comments on Computation

Almost half of the operations computed are multiplications,
and therefore support for multiplication is very important. As

x tk() T
wc tk() max x tk() T

wi tk(){ }=
i

wi tk 1+() wi tk()=

wi tk 1+()
wi tk() α' tk() x tk()+

wi tk() α' tk() x tk()+
---=

i Nc tk()∈where

otherwise

α'
0 α' ∞< < Nc

NcM
NcM

NcM
NcM

O 2MN N 1–() 6 4MNc 1+ + + +=

Nc N 4⁄

O 1 4M+() N≈

4

calculations using short fixed-point numbers seem possible,
bit-serial computers become interesting. The Euclidean metric
uses less operations for its computation, and is less sensitive to
weight quantization, and is therefore more attractive to use
than dot-product.

Many have used CUPS (connection updates per second) as a
measure of performance on SOM algorithms. It has been used
as the number of connections MN multiplied by the number of
updates per second u i.e MNu. This despite the fact that very
few connections are actually updated when using small neigh-
bourhoods.

Even if the word updates is misleading, the CUPS measure,
used in relation to the FLOPS (floating point operations per
second) or IPS (instructions per second) measures, can be used
as an indication of the efficiency of the architecture (on SOM
algorithms). We may define an efficiency measure like:

(EQ 1)

Where IPSmax is the maximum number of operations per sec-
ond achievable on the computer. The corresponding measure
for floating point calculations is:

4.0 MAPPING SOM ONTO A COMPUTER
ARCHITECTURE

4.1 Computer Architectures

One of the most used divisions of architectures is due to Flynn
[10]. He divided the computers into groups according to the
number of instruction streams and the number of data streams:

1. SISD - Single Instruction stream, Single Data stream.
2. SIMD - Single Instruction stream, Multiple Data

streams.
3. MISD - Multiple Instruction streams, Single Data

stream. (Anomaly of the division)
4. MIMD - Multiple Instruction streams, Multiple Data

streams.

Single instruction stream multiple data stream (SIMD) com-
puters is a computer model where the same instruction is exe-
cuted in each of the processing elements (PEs). Using this
model it is possible to achieve massive parallelism at small
cost. It is found that almost all ANN algorithms fit very well
into the SIMD model [44]. The SOM algorithms in section 2.0
also seem to map easily onto the SIMD computer model. This
hypothesis will be found to be true later in this section. Below
there follows a discussion on how to implement SOM on a
SIMD computer.

4.2 Degree of Parallelism

Looking at an ANN algorithm such as SOM there are (at least)
six different ways of achieving parallelism [44]. The typical
degree of parallelism varies widely between the six different
kinds, as the table below shows.

E
operations per second

maximum number of operations

Ou

 IPS max
----------------= =

3.75

MNu

IPS

max

----------------------- 3.75
CUPS
IPS

max

----------------=

 ≈

E 375
CUPS

FLOPSmax
--------------------------=

To utilize the computing resources of a massively parallel com-
puter (thousands of processing elements) efficiently the table
indicates that we must use at least one of the following dimen-
sions:

Training session parallelism.
Training example parallelism.
Node parallelism.
Weight parallelism.

Note that the first two dimensions of parallelism are of interest
only in batch processing situations, i.e. when training the net-
work. If the network is to be to used in a real-time situation, in-
teracting with the outside world, training session and training
example parallelism would be unavailable. In those cases, node
and/or weight parallelism must be chosen, possibly in combi-
nation with e.g. bit and layer parallelism.

4.3 Node Parallelism on SIMD Computers

Unfortunately the amount of node parallelism used for updat-
ing the nodes varies with the size of neighbourhood. Still the
node parallelism is the most used and maybe the most natural
mapping for SIMD computers. The mapping may be visualized
for a 1D map topology on a linear processor array as in Figure
1.

Figure 1

Using node parallelism to map SOM onto
a linear processor array.

For the four steps we then get the following estimate of the
number of computation steps needed, using Euclidean distance
metric and having the same number of processing elements as
the number of nodes, i.e.

n

 =

N

.

1.

Calculating the distance requires

M

 subtraction steps,

M

 squaring steps and

M

 addition steps. The result of
the subtraction can be reused in step 4 if there is
enough memory to store the result.

2.

The number of calculations needed for finding the min-
imum distance varies with the communication struc-
ture. Using bit-serial arithmetic and global-or function,
as later described in section 4.4, the comparison can be
computed in less than (Two times the
number of bits in the sum of squares) steps.

Training example 10 - 107

Forward-Backward

100 - 106Node (neuron)

1 - 2

Weight (synapse) 2 - 104

Bit 1 - 64

Typical range SOM:

Training session 10 - 103

Parallelism

PE array
.
.
.

Weight
Vector
Store

Input Vector

2 2δ log2M+()

5

3.

The time to determine the neighbourhood varies with
the communication structure, but it should always be
possible to calculate in less than 3 operations per spa-
tial dimension.

4.

Updating the weights requires (

M

 subtractions),

M

multiplications and

M

 additions. Note that the efficien-
cy during this step is only i.e. the efficiency will
go down as the neighbourhood shrinks.

The total number of steps is, using a 2D map as an example,
approximately

4.4 Bit-serial SIMD Implementation

The majority of massively parallel processors use bit-serial
arithmetic, and that is also the basic mode of operation for our
own research machine, REMAP

3

. Therefore, we would like to
analyse the algorithms down to bit-level. For the majority of
operations using bit-serial PEs, the processing times grow line-
arly with the data length used. E.g. the time to do a bit-serial
addition is the same time as to read the operands and store the
result (3 cycles). This may be regarded as a serious disadvan-
tage (e.g when using 32- or 64-bit floating point numbers), or
as an attractive feature (use of low precision data speeds up the
computations accordingly). In any case, bit-serial data paths
simplify communication in massively parallel computers.

As concluded in section 3.2.4 support for multiplication is im-
portant. Unfortunately, very few bit-serial computers have sup-
port for bit-serial multiplication, and without such,
multiplication time grows quadratically with the data length.
However, with an inclusion of a bit-serial multiplier [9, 44, 55]
the multiplication of two bit numbers can be performed in
cycles (i.e. the time to read the operands and store the result).

Using the natural mapping for SIMD computers (node parallel-
ism) and having

n

 =

N

 we get the following number of cycles
for the SOM algorithm using Euclidean metric.

1.

We have to do cycles for subtraction, cycles
for squaring and cycles for addition. If the result
from the multiplier is used directly for addition (i.e.
without storing the result in memory) the total time for
squaring and adding will be .

2.

Finding minimum (or maximum) using bit-serial work-
ing mode can be implemented very efficiently. A glo-
bal-or function is needed to check a bit “slice” if all
bits are equal, also the means to turn off PEs depending
on the result of the previous operation are needed. As-
suming we want to find minimum (i.e. using Euclidean
distance metric), the search starts by examining the
most significant bit of each value. If anyone has a zero,
all PEs with a one are turned off (otherwise we restore
the previous state). The search goes on in the next posi-
tion, and so on, until all bit positions have been treated.
The time for this search is independent of the number
of values compared, it depends only on the data length.
The maximal number of cycles needed will be two
times the length of the data i.e . To re-
solve multiple minimums a select first network [9] can
be used to select the first active processor.

3.

Wanting to have constant time for this step we want to
calculate the neighbourhood (instead of communicate
it). There are a number of variants depending on the
(spatial) distance measure and the map topology. If 7

Nc N⁄

O 3M 2 2δ log2M+() 6 3M+ + +=

δ

δ 4δ

3δM 4δM
6δM

8δM

2 2δ log2M+()

bits are used for the spatial coordinates, the following
estimates for the cycle count can be given:

•

Euclidean (spatial) distance
A second order topology map can be computed in

206 cycles

•

City block (spatial) distance
A first order topology map can be computed in 48

cycles
A second order topology map can be computed in

96 cycles

4.

Updating of the weight vectors can be computed
with cycles for subtraction, cycles for multi-
plication and cycles for addition. If the global
constant is loaded in parallel from the controller, and
the result from the multiplier is used directly for the ad-
dition, the number of cycles in step 4 will be .

There are of course some cycles needed for overflow tests and
initiations but the above indicates that SOM could be calculat-
ed in typically: cycles. Note, that we assume n =

N

. Using the approximate total number of operation
, we can calculate the efficiency
.

Let

C

 stand for the clock frequency. As the time for multiplica-
tion is the IPS

max

 is . The update rate will
be and the efficiency

The asymptotic efficiency will be 83%. Already for

M

=10 and
=8 the efficiency is 73%. These figures show that a bit-serial

SIMD computer can be used very efficiently for SOM calcula-
tions.

4.5 Other Forms of Parallelism

If the input vectors are long (i.e. large

M

) and the neighbour-
hood is small, a “transposed” mapping could be considered.
This is the same as the columnwise mapping suggested for
SDM [43]. For SOM this would correspond to weight parallel-
ism with iteration over the nodes, see Figure 2.

Using this mapping the summation of squares must be done
across the PEs, and special hardware (e.g. an adder-tree)
should be included for efficiency reasons. However, with this
hardware available it is possible to pipeline the addition and
comparison (carried out in the controller) with the subtraction
and squaring (carried out in the processor array).

Figure 2

Using weight parallelism to map SOM
onto a linear processor

3δM 4δM
3δM

α

7δM

18δM 250+

O 1 3.75M+() N≈
E Ou() IPSmax⁄=

4δ Cn() 4δ()⁄
u Cn() 18δMN 250N+()⁄=

E
4 1 3.75M+() δ

18δM 250+
---------------------------------------=

δ

Nc

PE array

.

.

.
Weight
Vector
Store

Input Vector

Adder-tree

6

For the last step, weight parallelism is faster than node parallel-
ism with a factor . This will be a considerable factor
when is small and M is large. The second and third steps are
almost “for free” for weight parallelism as pipelining can be
used. As the number of nodes N often is larger than the number
of elements M in the input vector, and for weight parallelism
we only have n = M PEs, this mapping will be less efficient
than node parallelism during the first step. The factor is

.

It seems that the most efficient mapping during the first step is
node parallelism and during the fourth step weight parallelism
(as for the SDM model [43]). But we have not found any way
to achieve mixed mapping for SOM onto any normal SIMD
computer.

Note that if , no matter how fast the three last steps
are when weight parallelism is used, it will still be less efficient
than the node parallel version. This is because its first step
takes longer than the total time of the node parallel version.

5.0 IMPLEMENTATIONS ON PARALLEL
COMPUTERS

In the following subsections many of the parallel computers
used for SOM are described. Performance figures for the SOM
algorithm on these computers are also given if they are availa-
ble.

A summary of the discussed implementations is shown in Fig-
ure 3.

5.1 CNAPS

CNAPS (Connected Network of Adaptive ProcessorS) manu-
factured by Adaptive Solutions is one of the first architectures
developed especially for ANN. It was called X1 in the first de-
scription by Hammerstrom [14]. It is a 256 PE SIMD machine
with a broadcast interconnection scheme. Each PE has a multi-
ply (9x16bit) and add arithmetic unit and a logic-shifter unit. It
has 32 general (16bit) registers and a 4kByte weight memory.
There are 64PEs in one chip. 1, 8 or 16 bits can be used for
weights and 8 or 16 bits for activation.

The performance of CNAPS on SOFM was reported by Ham-
merstrom and Nguyen in [15]. The figures are based on a
20MHz version of CNAPS. Best match using Euclidean dis-
tance measure, having N=512 nodes and M=256 elements per
vector (=16), can be carried out in 215 µs. Making their
CUPS figure comparable to others the performance will be
about 183 MCUPS. A CNAPS computer can maximally
achieve 10240 MIPS on dot-product operations. The efficiency
is thus:

More figures are needed to be able to analyse where the bottle-
neck is. The low efficiency may depend on the high maximal
performance, achieved in an operation mode which can not be
utilized for SOM.

5.2 Connection Machine

The Connection Machine [16, 50] manufactured by Thinking
Machines Corporation (TMC) is for the moment the most mas-
sively parallel machine built (from 8k up to 64k processing el-
ements). In addition to its large number of processors, two of

M Nc⁄
Nc

3M() 2N()⁄

2N 5M>

δ

E
3.75 183()

10240
-------------------------- 7%= =

its strong points are its powerful hypercube connection for gen-
eral communication and the multidimensional mesh connec-
tion for problems with regular array communication demands.
In the CM-2 model TMC also added floating point support, im-
plemented as one floating point unit per 32 PEs. This means
2048 floating point units on a 64k machine, giving a peak per-
formance of 10 GFlops. CM-2 is one of the most popular paral-
lel computers for implementing ANN algorithms.

Obermayer et al. have implemented large SOM on the CM-2
[45]. They used node parallelism and up to 16k PEs (nodes).
The input vector length M was varied and lengths of up to
M=900 were tested. 48 MCUPS were achieved on a problem
with n=N=16384 and M=100. As they used a bell-shaped
Gaussian function for neighbourhood calculations, an efficien-
cy measure according to equation (EQ 1) would be meaning-
less.

The same authors have also implemented the same algorithm
on a self built computer with 60 T800 (Transputer) nodes con-
nected in a systolic ring. Besides algorithmic analysis they
have benchmarked the two architectures. Having M=100, n=30
and N=14400 they achieved 2.4 MCUPS.

The conclusion is that the CM-2 (16k PEs) with floating point
support is equal to 510 Transputer nodes for the SOM. As a
16k CM-2 has 512 Weitek floating point units, each with ap-
proximately the same performance as one T800 on floating
point calculations, it can be concluded that SOM basically is
computation bound. In a “high-communication” variant of
SOM where broadcast could not be used efficiently a 30 node
Transputer machine would run at one third of the CM-2 speed.

5.3 L-Neuro

The Laboratoires d’Electronique Philips (LEP), Paris, have de-
signed a VLSI chip called L-Neuro. It contains 16 processors
working in SIMD fashion. In association with these chips
Transputers are imagined as control and communication proc-
essors. The chip has support for multiplications with a multiply
step. Weights are represented by 2-complement numbers over
8 or 16 bits, and the states of the neurons are coded over 1 to 8
bits.

Duranton and Sirat [7, 8] have described implementations of
both SOM, Hopfield and BP networks on this architecture.
However, no figures of performance were given.

5.4 MasPar

MasPar MP-1 [1, 5, 42] is a SIMD machine with both mesh
and global interconnection style of communication. It has
floating point support, both VAX and IEEE standards. The
number of processing elements can vary between 1024 and
16384. Each PE has 40 32-bit registers, a 4-bit integer ALU,
floating point “units” for Mantissa and Exponent, addressing
unit for local address modifications, and a 4-bit broadcast bus.
MP-1 has a peak performance, for a 16k PE machine, of 1500
MFlops single-precision [42].

In [4, 12, 13] Grajski, Chin et al. have implemented BP and
SOM. The mapping of SOM into MP-1 uses node parallelism.
It was measured to give 17.2 MCUPS on a 4k machine when
16-dimensional input vectors were used. They report that high
efficiency is achieved using the MP-1 and that the performance
figures increase with the dimensionality (up to 18 MCUPS).

7

5.5 REMAP3

The goal of REMAP3 is to construct modules for ANN compu-
tation. A typical module for SOM would consist of a few thou-
sand bit-serial processors. If the processing elements needed
for ANN were integrated on a VLSI chip more than 128 PEs
per chip would be possible. On a single board, 1k processors
with memory would be possible. If implemented on VLSI a
clock frequency above 20 MHz would be of no problem. This
makes it possible to achieve an update rate of approximately
539 per second on an n = N = 2048 problem (M=128 and =
16) and more than 11800 updates per second on the smaller
problem (n = N = 1024, M = 10 and = 8). The corresponding
CUPS (and efficiency) figures would be 141 MCUPS (=>
E=83%) and 121 MCUPS (=> E=71%), respectively.

5.6 Transputer

The Transputer [22, 54] is a single chip 32-bit microprocessor.
It has support for concurrent processing in hardware which
closely corresponds to the Occam [2, 21, 23] programming
model. It contains onchip RAM and four bi-directional 20
Mbits/sec communication links. By wiring these links together
a number of topologies can be realized. Each Transputer of the
T800 type is capable of 1.5 MFlops (20MHz) and architectures
with up to 4000 Transputers are being built [54].

The SOM model has been implemented on Transputers by
Hodges et al. [17], Siemon and Ultsch [48] and Obermayer et
al. [45]. All three implementations distribute the nodes over the
PEs and use ring communication to distribute the input vector
and to find the global minimum. As long as the neighbourhood
is larger than the number of PEs this mapping is quite efficient.
Good performance will also be achieved for high input dimen-
sion.

Hodges et al. presented an equation for the performance but no
concrete implementation.

Siemon and Ultsch state a performance of 2.7 MCUPS on a 16
Transputer machine. Having N=128x128, M=17, u=25000/
2546 the total number of operations would be .
Each Transputer can give 1.5 MFlops so the maximum number
of Flops would be 24MFlops. Then the efficiency would be E =
42%

Obermayer et.al have implemented SOM on, and compared the
performance of, Connection Machine and Transputers, see sec-
tion 5.2.

A more general implementation framework, called CARELIA,
has been developed by Koikkalainen and Oja [35]. The neural
network models are specified in a CSP-like formalism [33, 34,
35]. The simulator is currently running on a network of Trans-
puters and one of the models implemented is SOM. The per-
formance of the simulator has not been reported.

5.7 Warp

Warp is a one-dimensional array of 10 or more powerful
processing elements (PEs) developed at Carnegie-Mellon Uni-
versity in 1984-87 [36]. Each cell/PE has a microprogramma-
ble controller, a 5 MFlops floating-point multiplier, a 5 MFlops
floating-point adder and a local memory. Communication be-
tween adjacent cells may be conducted in parallel over two in-
dependent channels: a left-to-right X channel and bidirectional
Y channel.

δ

δ

O 991000=

An implementation of SOM on Warp has been described by R.
Mann and Haykin [39]. When they used training example par-
allelism between 6 and 12.5 MCUPS were achieved. Because
of a fixed communication overhead (0.01s) at the start of each
batch, better performance could not be achieved. Some minor
problem with the topology ordering process when using train-
ing example parallelism were reported. They suggested that ei-
ther the map starts at some order instead of at random state, or
that the map is trained sequentially for the first 100-1000 steps,
after which the training example parallelism is “turned on”.

The Warp has 10 PEs, each having 10 MFlops, giving it a total
of 100MFlops. Having N=1024 and M=128 the implementa-
tion could run at u=5.3x18 updates per second (each batch (ep-
och) was 18 training examples), giving it 12.5 MCUPS and an
efficiency of E=47%.

5.8 TInMANN

Van den Bout et al. [41, 52, 53] have suggested a stochastic all
digital implementation of Competitive Kohonen learning (see
section 2.3) called TInMANN.

Their modifications to the SOFM model make it possible to use
very simple PEs. A typical node would consist of two registers
(10-12 bits), two adders or subtractors, two flags, memory for
weights, gated broadcast, global-or function and some control
logic. A VLSI version of TInMANN has been implemented
where each node used 4000 transistors [41]. Using 10-bit
weights the memory could be used for three to four weights per
node, i.e. the input vector length M is very limited. The update
rate, using 20MHz clock, is 267000 updates per second per
node using M = 3. If one million transistors were used a 250
node chip could be constructed and thus giving 200 MCUPS
per chip. As broadcast is used there is no problem to extend the
system outside the chip boundaries.

A “rapid prototyping” version of the architecture in reconfig-
urable logic (XILINX) is also reported [53]. To eliminate some
complexity and space, the architecture uses bit-serial nodes.
Each chip (X3020) contains 3 PEs and external RAM is used
for weights (i.e. much larger M can be used). One circuit board,
called Anyboard, contains up to 8 X3020 and thus contains up
to 21 PEs. This project was not completed. However, simple
calculations showed that the interface between the host and the
bit-serial nodes over the IBM PC bus was the major bottleneck.
Ignoring the bus interface, the nodes were quite fast [51].

8

6.0 CONCLUSION

Unless especially tuned for SOM as REMAP3, none of the
computers studied have very high efficiency. As many of the
performance figures given in the literature are measured under
vastly different experimental setups, the figures given for
MCUPS and efficiency, should be used cautiously. Still, the
figures together with our analysis, indicate that the communi-
cation structure and the control mechanism are of little impor-
tance for the calculation of SOM. When designing a high
performance SOM computer the design effort must be on im-
plementing efficient (with respect to time and area) multipliers
which can be supported with operands from the controller, e.g.
using broadcast, together with high bandwidth access to local
memory.

The fact that the neighbourhood becomes very small to-
wards the end of the training session seems easier to take ad-
vantage of on a coarse grain MIMD computer. Even if only one
PE is working there will be relatively fewer idle processors
during the updating step, thus giving the MIMD computer a
possibly better efficiency.

The analysis also indicates that SOM can be mapped efficiently
onto bit-serial SIMD computers. The only requirement is that a
bit-serial multiplier is included to support the many multiplica-
tions.

By modifying the algorithm to include a “stochastic signal” it
is possible to run competitive learning without using multipli-
cation. This makes it possible to achieve enormous update

Nc

rates, but as the updates are of a different kind, it is difficult to
compare it to the original method with respect to speed. Still,
this modification is very interesting as an alternative to ordi-
nary competitive learning algorithms, as it reduces the archi-
tectural components needed for the computation. Moreover,
bit-serial SIMD computers could be considered as one of the
prime candidates for an efficient implementation of this modi-
fied SOM algorithm.

The natural and totally dominating dimension of parallelism is
the node parallelism. Training example parallelism has been
used, but it seems that only relatively small batch sizes may be
used as there will otherwise be failures in the topological or-
dering. The weight parallelism and the mixed mapping, which
were successfully used in the computation of Kanerva’s SDM
model [43], can not be used efficiently for the calculation of the
SOM model. This is due to the fact that the adaptation is taking
place in the weight matrix which is also used for the selection
phase, whereas for SDM the adaptation is made in a separate
matrix.

Figure 3 The performance figures on SOFM simulations, for all the discussed computers. The efficiency E is cal-
culated as 3.75 CUPS/IPSmax. No efficiency figure has been given if the CUPS figure is incompatible with the
other figures.The number of processors is denoted by n, the number of nodes by N, the dimension of the input
vector by M, the number of bits used for weights by and the update rate by u.
Note that if the computer manufacturer has been given “to high” maximum performance figures, the efficiency
figure will be proportionally lower.

COMPUTER n Max MIPS N M δ u MCUPS E

(MFLOPS)
CM 16384 2500 16384 100 FP 48 -%

MasPar 4096 376 4096 16 FP 250 16 16%
4096 376 4096 256 FP 17 18 18%

Warp 10 100 1024 16 FP 522 8.6 32%
10 100 1024 128 FP 95.4 12.5 47%

Transputer
Obermayer 30 45 14400 100 FP 2.4 -%
Siemon 16 24 16384 17 FP 9.8 2.7 40%

CNAPS 256 10240 512 128 8 210 8%
256 10240 512 128 16 180 7%

REMAP3 128 80 2048 128 8 67 17.5 82%
1024 640 1024 10 8 11800 121 71%
2048 1280 2048 128 8 1070 280 82%
2048 640 2048 128 16 539 141 83%

TInMANN 250 - 250 3 10 267000 200 -%

δ

9

7.0 REFERENCES

[1] Blank, T. "The MasPar MP-1 Architecture." In Proceedings of
COMPCON Spring 90, pp. 20-24, San Francisco, CA, 1990.

[2] Bowler, K. C., et al. An Introduction to OCCAM 2 Programming.
Chartwell-Bratt. 1987.

[3] Bradburn, D. S. "Reducing transmission error effects using a self-
organizing network." In International Joint Conference on Neural
Networks, Vol. 2, pp. 531-537, Washington, DC, 1989.

[4] Chinn, G., et al. "Systolic array implementations of neural nets on
the maspar MP-1 massively parallel processor." In International
Joint Conference on Neural Networks, Vol. 2, pp. 169-173, San
Diego, 1990.

[5] Christy, P. "Software to support massively parallel computing on
the MasPar MP-1." In Proceedings of COMPCON Spring 90, pp.
29-33, San Fransisco, CA, 1990.

[6] DeSieno, D. "Adding a conscience to competitive learning." In
International Conference on Neural Networks, Vol. 1, pp. 117-
124, San Diego, 1988.

[7] Duranton, M. and J. A. Sirat. "Learning on VLSI: A general pur-
pose digital neurochip." In International Conference on Neural
Networks, Washingtin, DC, 1989.

[8] Duranton, M. and J. A. Sirat. "Learning on VLSI: A gerneral-pur-
pose digital neurochip." Philips Journal of Research. Vol. 45(1):
pp. 1-17, 1990.

[9] Fernström, C., I. Kruzela and B. Svensson. LUCAS Associative
Array Processor - Design, Programming and Application Studies.
Vol 216 of Lecture Notes in Computer Science. Springer Verlag.
Berlin. 1986.

[10]Flynn, M. J. "Some computer organizations and their effective-
ness." IEEE Transaction on Computers. Vol. C-21: pp. 948-60,
1972.

[11] Grajski, K. A. "Neurocomputing using the MasPar MP-1." (Tech-
nical Report No. 90-010), Ford Aerospace, 1990.

[12]Grajski, K. A. "Neurocomputing using the MasPar MP-1." Digital
Parallel Implementations of Neural Networks. Przytula and Pras-
anna ed. Prentice-Hall. (Forthcoming). 1992.

[13]Grajski, K. A., et al. "Neural Network Simulation on the MasPar
MP-1 Massively Parallel Processor." In The International Neural
Network Conference, Paris, France, 1990.

[14]Hammerstrom, D. "A VLSI architecture for high-performance,
low-cost, on-chip learning." In International joint conference on
neural networks, Vol. 2, pp. 537-543, San Diego, 1990.

[15]Hammerstrom, D. and N. Nguyen. "An implementation of Kohon-
en's self-organizing map on the Adaptive Solutions neurocomput-
er." In International Conference on Artificial Neural Networks,
Vol. 1, pp. 715-720, Helsinki, Finland, 1991.

[16]Hillis, W. D. and G. L. J. Steel. "Data parallel algorithms." Com-
munications of the ACM. Vol. 29(12): pp. 1170-1183, 1986.

[17]Hodges, R. E., C.-H. Wu and C.-J. Wang. "Parallelizing the self-
organizing feature map on multi-processor systems." In Interna-
tional Joint Conference on Neural Networks, Vol. 2, pp. 141-144,
Washington, DC, 1990.

[18]Hopfield, J. J. "Neural networks and physical systems with emer-
gent collective computational abilities". Proceedings of the Na-
tional Academy of Science USA. 79: pp. 2554-2558, 1982.

[19]Hopfield, J. J. "Neurons with graded response have collective
computational properties like those of two-state neurons". Pro-

ceedings of the National Academy of Science USA. 81: pp. 3088-
3092, 1984.

[20]Hopfield, J. J. and D. Tank. "Computing with neural circuits: A
model." Science. Vol. 233: pp. 624-633, 1986.

[21] INMOS Limited. Occam programming model. Prentice-Hall.
1984.

[22] INMOS Limited. "The Trasputer family 1987". 1987.

[23] INMOS Limited. Occam 2 Reference Manual. Prentice-Hall. Lon-
don. 1988.

[24]Johnson, M. J., N. M. Allinson and K. J. Moon. "Digital realisa-
tion of self-organising maps." In Neural Information Processing
Systems 1, pp. 728-738, Denver, CO, 1988.

[25]Kanerva, P. Sparse Distributed Memory. MIT press. Cambridge,
MA. 1988.

[26]Kangas, J. A., T. K. Kohonen and J. T. Laaksonen. "Variants of
self-organizing maps." IEEE Transaction on Neural Networks.
Vol. 1(1): pp. 93-99, 1990.

[27]Kohonen, T. "The 'neural' phonetic typewriter." Computer. Vol.
21(3): pp. 11-22, 1988.

[28]Kohonen, T. Self-Organization and Associative Memory. (2nd ed.
) Springer-Verlag. Berlin. 1988.

[29]Kohonen, T. "Improved versions of learning vector quantization."
In International Joint Conference on Neural Networks, Vol. 1, pp.
545-550, San Diego, 1990.

[30]Kohonen, T. "The self-organizing map." Proceedings of the IEEE.
Vol. 78(9): pp. 1464-1480, 1990.

[31]Kohonen, T. "Some practical aspects of the self-organizing maps."
In International Joint Conference on Neural Networks, Vol. 2, pp.
253-256, Washington, DC, 1990.

[32]Kohonen, T., et al. "An adaptive discrete-signal detector based on
self-organizing maps." In International Joint Conference on Neu-
ral Networks, Vol. 2, pp. 249-252, Washington, DC, 1990.

[33]Koikkalainen, P. "MIND: a specification formalism for neural net-
works." In International Conference on Artificial Neural Net-
works, Vol. 1, pp. 579-584, Helsinki, Finland, 1991.

[34]Koikkalainen, P. and E. Oja. "Specification and implementation
environment for neural networks using communication sequential
processes." In International Conference on Neural Networks, San
Diego, CA, 1988.

[35]Koikkalainen, P. and E. Oja. "The CARELIA simulator: a devel-
opment and specification environment for neural networks." (Re-
search Report No. 15/1989), Lappeenranta Univ. of Tech, Finland,
1989.

[36]Kung, H. T. "The Warp computer: architecture,implementation
and performace." IEEE Transaction on Computers. Vol. Dec:
1987.

[37]Mann, J. "The effects of circuit integration on a feature map vector
quantizer." In Neural Information Processing Systems 2, pp. 226-
231, Denver, CO, 1989.

[38]Mann, J. and S. Gilbert. "An analog self-organizing neural net-
work chip." In Neural Information Processing Systems 1, pp. 739-
747, Denver, CO, 1988.

[39]Mann, R. and S. Haykin. "A parallel implementation of Kohonen
feature maps on the Warp systolic Computer." In International
Joint Conference on Neural Networks, Vol. 2, pp. 84-87, Washing-
ton, DC, 1990.

10

[40]Martinetz, T. M., H. J. Ritter and K. J. Schulten. "Three-dimen-
sional neural net for learning visuomotor coordination of robot
arm." Transaction on neural networks. Vol. 1(1): pp. 131-136,
1990.

[41]Melton, M., et al. "VLSI Implementation of TInMANN." In Ad-
vances in Neural Information Processing Systems 3, Denver, CO,
1990.

[42]Nickolls, J. R. "The design of the MasPar MP-1: a cost effective
massively parallel computer." In Proceedings of COMPCON
Spring 90, pp. 25-28, San Fransisco, CA, 1990.

[43]Nordström, T. "Sparse distributed memory simulation on REM-
AP3." (Research Report No. TULEA 1991:16), Luleå University
of Technology, Sweden, 1991.

[44]Nordström, T. and B. Svensson. "Using and designing massively
parallel computers for artificial neural networks." (Research Re-
port No. TULEA 1991:13), Luleå University of Technology, Swe-
den, 1991.

[45]Obermayer, K., H. Ritter and K. Schulten. "Large-scale simula-
tions of self-organizing neural networks on parallel computers: ap-
plication to biological modelling." Parallel Computing. Vol.
14(3): pp. 381-404, 1990.

[46]Ritter, H. J., T. M. Martinetz and K. J. Schulten. "Topology con-
serving maps for learning visuo-motor-coordination." Neural Net-
works. Vol. 2(3): pp. 159-168, 1989.

[47]Rumelhart, D. E. and J. L. McClelland. Parallel Distributed
Processing; Explorations in the Microstructure of Cognition. Vol I
and II MIT Press. Cambridge. 1986.

[48]Siemon, H. P. and A. Ultsch. "Kohonen networks on transputers:
Implementation and animation." In International Neural Network
Conference, Vol. 2, pp. 643-646, Paris, 1990.

[49]Svensson, B. and T. Nordström. "Execution of neural network al-
gorithms on an array of bit-serial processors." In 10th Internation-
al Conference on Pattern Recognition, Computer Architectures for
Vision and Pattern Recognition, Vol. II, pp. 501-505, Atlantic City,
New Jersey, USA, 1990.

[50]Thinking Machines Corporation. "Connection Machine, Model
CM-2 Technical Summary." (Version 5.1), T M C Cambridge,
Massachusetts, 1989.

[51]Van den Bout, D. E. 1991. Personal communication.

[52]Van den Bout, D. E. and T. K. M. III. "TInMANN: The integer
Markovian artificial neural network." In International joint con-
ference on neural networks, Vol. 2, pp. 205-211, Washington,
1989.

[53]Van den Bout, D. E., W. Snyder and T. K. Miller III. "Rapid proto-
typing for neural networks." Advanced Neural Computers. Eck-
miller ed. North-Holland. Amsterdam. 1990.

[54]Whitby-Stevens, C. "Transputers — past, present, and future."
IEEE Micro. (December): pp. 16-82, 1990.

[55]Wilson, S. S. "Neural computing on a one dimesional SIMD ar-
ray." In 11:th International Joint Conference on Artificial Intelli-
gence, pp. 206-211, Detroit, Michigan, USA, 1989.

decides its action on an instruction from the control unit, but some
property of the data in the memory or registers of that PE.

- An interconnection network defines a topological relationship
between PEs.

A commonly used organization of the BAP is to place the
interconnection network between the memory part and the logic
part of the PE as shown in Figure 1. This does not mean that
memory and logic are physically apart - on the contrary, they are
seen as a whole and should preferably be put on the same chip.

Figure 1. Organization of a Bit-serial Array Processor.

A BAP is defined by the characteristics of five parts: data
storage, processing, data alignment, input/output, and control.

Data storage is organized as Memory Modules (MMs). One bit
from each MM is accessible at a time. A number of such bit-slices,
normally consecutive, form a field.

The Processing part is an ensemble of Arithmetic and Logic
Units (ALUs) which implement functions on a set of one-bit
arguments. The complexity of the ALU may vary from boolean
functions of two variables through bit-serial multipliers to full bit-
serial floating point units.

One of the registers in the ALU is the one-bit Activity Register,
the contents of which determines whether or not the ALU takes
part in the specified operation. To choose only one ALU for
activity, a select first facility is included. In more elaborate models
multi-bit registers may be used to determine one out of a set of
actions to be performed.

The Data Alignment part consists of an interconnection struc-
ture that allows each ALU to receive data also from ”neigh-
bouring” modules. Common structures are the square grid, the
linear array, the n-cube and the shuffle-exchange. Many separate
structures may be implemented on the same processor.

The structure of the Input/Output part design is strongly de-
pendent on the demands of the application and may be varied in
several ways. For example, in some cases a direct bit-slice wide
interface to the data source may be motivated.

ABSTRACT

Large processor arrays are candidates for performing compu-
tations of neural network models at speeds required for real time
applications, e.g. in pattern recognition. The paper gives a general
model of an array of bit-serial processors and demonstrates the
mapping of neural net models on such an array.

The approach maps a neuron on each processing element and
makes communication all-to-all available by connection weight
matrices. The required communication structure is very simple.

The bit-serial approach allows trade-offs between speed and
precision, even dynamically. Performance figures are given. A bit-
serial multiplier is an important part of the design. Implementation
aspects are discussed and it is shown that a one-board realization
of a 1024 processor system is feasible with current, commonly
available, technology.

 INTRODUCTION

Recent years have seen an enormous increase of interest in
neural networks. It has been realized that massive parallelism is
required for human-like performance in pattern recognition. Neural
networks provide one technique to do this. Processor arrays are
candidates for performing the computations efficiently. The su-
bject of this paper is to study the mapping of neural network
computations on a regular array of a large number of simple
processors. The computations are uniform and arithmetically
simple. This suggests that simple processing elements are suffi-
cient and that the SIMD type of architecture is appropriate. The
number of interconnections in a neural network is often orders of
magnitude greater than the number of processing units. This
suggests that connectivity be stored partly in matrices.

We study the mapping of both feedforward (with back-propa-
gation) and feedback neural nets. The characteristics of these
models will be briefly outlined. Before that we introduce a generic
architecture for a bit-serial array processor (BAP). We describe the
algorithms in a parallel language (Pascal/L) which includes
constructs directly implementable as elementary operations of a
BAP. The computations are analysed, performance figures are
given, and system implementation is discussed.

 BIT-SERIAL ARRAY PROCESSORS

A Bit-serial Array Processor (BAP) is characterized by the
following properties:

- It is organized as an SIMD processor, i.e. it consists of many
processing elements (PEs) and one common control unit.

- The PEs treat data bit-serially and the data paths to and from
each PE are only one bit wide.

- Activation of the PEs may be data driven (”associative
process”), which means it is not the location or address of a PE that

EXECUTION OF NEURAL NETWORK ALGORITHMS
ON AN ARRAY OF BIT-SERIAL P ROCESSORS

B. Svensson T. Nordström

E-mail: bertil@sm.luth.se or tono@sm.luth.se

Division of Computer Engineering
Department of Systems Engineering and Mathematics

Luleå University of Technology, Sweden

Control Unit

•
•
•

•
•
•

Memory Modules Interconnection
Network

ALU Modules

I
O

•
•
•

Svensson, B. and T. Nordström, “Execution of neural network algorithms on an array of bit-
serial processors,” in 10th International Conference on Pattern Recognition, Computer
Architectures for Vision and Pattern Recognition, Atlantic City, NJ, USA, 1990, vol. II, pp.
501-505, ISBN 0-8186-2063-3.

CH2898-5/90/0000/0501$01.00 1990 IEEE II - 501

The total activity is mastered by the Control Unit, which takes
instructions from an ordinary sequential processor. The most
obvious task for the Control Unit is to translate operations on data
items (e.g. vectors and matrices) to sequences of bit operations.
This should be performed without any overhead.

Based on the types of operands and results six basic types of
instructions to manipulate data in the array can be identified:

Instruction type Example
field —> field Increment field, Permute field
field —> selector Max/min value of a field
field,field —> field Multiply fields, Pairwise max
field,field —> selector Pairwise equality
constant,field —> field Multiply by constant
constant,field —> selector Closest match, Greater than

Multiplication is a frequent operation in many application
areas. Using ALUs with a complexity comparable to a full adder
only, the multiplication time grows quadratically with the data
length. Ohlsson [1] suggested a bit-serial multiplier in each ALU,
giving a multiplication time that is no longer than the time required
to read the operands and store the result.

Figure 2 shows the design for multiplication of two 2’s comp-
lement integers using a series of full adders (FA). The multiplicand
is first shifted in, most significant bit first, into the array of M flip-
flops. The multiplier is then applied to the input, least significant
bit first, and the product bits appear at the output, least significant
bit first. The S flip-flops store the accumulated sum. A more detailed
description is given in [1] and [2].

Figure 2. A 5 bit wide bit-serial multiplier using carry-save
technique. M, S and C are flip-flops and FA are full adders.

 NEURAL NETWORK ALGORITHMS

Several neural net models have been proposed. They are charac-
terized by network topology, node characteristics, and training
rules. Frequently used and discussed models are the multilayer
feedforward networks with supervised learning by error back-
propagation [3] and the feedback networks , either with symmetric
connectivity and stochastic nodes (Boltzmann machines [4, 5]),
symmetric connectivity and deterministic nodes (Hopfield net [6,
7, 8]), or nonsymmetric connectivity and deterministic nodes[9,
10].

In order to be as general as possible in the implementation
studies we use a feedback algorithm without any assumption on
symmetry of the weight matrix. Thus, for the Hopfield model and
the Boltzmann machine shorter execution times than those report-
ed below can be expected (both use symmetric matrices).

The back-propagation model is used as a pattern classifier or
feature detector. The feedback models are used as auto-associative
memories for tasks like pattern completion.

 Feedforward networks with error back-propagation

A feedforward net (ff net) with four layers is shown in Figure 3.
Each node (neuron) in a layer receives input from every node in the
previous layer. Each node computes a weighted sum of all its

oj
(l) = f netj

(l) + bj
(l)

S

C

M

FA

S

C

S

C

FA FA FA FA

M M M M

S

C

S

C

Out

•

•

•

•

•

•

•

•

•

•

•

•

Input
Layer

Hidden
Layers

Output
Layer

layer l–1 layer l

wij
(l)

oj
(l–1)j

i

∆wij
(l)

 = ηδi
(l)

oj
(l–1)

netj
(l) = wij

(l)oi
(l -1)∑

i

E = T – O

inputs. Then it applies a nonlinear activation function to the sum,
resulting in an activation value of the neuron. A sigmoid function,
with a smooth threshold like curve, is the most frequently used
activation function in feedforward networks.

Figure 3. A four-layer feedforward network.

The back-propagation algorithm (also known as the generalized
delta rule) [3] is used to train the network in our examples.

In the first phase the input to the network is provided and values
propagate through the network to compute the output vector O. O
is then compared with a target vector T provided by a teacher,
resulting in an error vector E. In the second phase the values of the
error vector are propagated back. The error signals for hidden units
are thereby determined recursively: Error values for layer l are
determined from a weighted sum of the values of layer l+ 1, again
using the connection weights – now ”backwards”. The weighted
sum is multiplied by the derivative of the activation function to
give the error value δ.

Finally, appropriate changes of weights and thresholds are
made. The weight change in the connection to unit i in layer l from
unit j in layer l–1 is proportional to the product of the output value
o and the error value δ : . The bias (threshold)
value may be seen as the weight from a unit that is always on. The
algorithm is summarized below.

1. Apply input

2. Compute output

where for each layer.

3. Determine error vector

4. Propagate error backwards.
If node j is an output node then the elements of the
error value vector D are

else

Here we have used the fact that the sigmoid function
 has the derivative:

5. Adjust weights and thresholds.
 ,

6. Repeat from 1.

Algorithm 1. Back-propagation training algorithm

f ' = f (1-f)f(x) = 1
1+e–x

∆wij
(l)

 = ηδi
(l)

oj
(l–1) ∆bi

(l)
 = ηδi

(l)

δj
(l)

 = oj
(l)(1 – oj

(l)) δi
(l+1)

wij
(l+1)∑

i

δj
(l)

 = oj
(l)(1 – oj

(l))(tj
(l) – oj

(l)) = oj
(l)(1 – oj

(l))ej
(l)

II - 502

 Feedforward net with error back-propagation

Figure 5 shows the data storage for each layer. In the forward
pass the net vector is computed by N successive, parallel multiply-
and-add operations, each requiring access to a different output
value from the previous layer. Thus the PEs must, one after the
other, broadcast their output values to all PEs. The O-vector is
computed by a parallel application of the activation function.

W(l) B(l) O(l) net(l) E(l)

Figure 5. Data storage for layer l.

In the backward pass the computation of the error vector for
each layer requires vertical addition. We suggest a bit-serial adder
tree. The addition of each column can be overlapped with the
multiplications for the next. On completion of this phase, weight
changes are calculated. The O-vector of layer l–1 is first multiplied
by a constant, η. Then, for each j, the j:th value of the result is
broadcast to all other PEs, the E-vector is multiplied by this value
and the result is added to the j:th column of the weight matrix. The
threshold vector is changed in a similar way.

The Pascal/L language

Pascal/L is an extension of Pascal for parallel processing,
developed in the LUCAS project [2]. In Pascal/L the parallelism
of the architecture has a correspondence in the syntax of the
language. Thus, constructs in the language are directly implemen-
table as elementary operations of a BAP.

A selector defines a boolean vector over the MMs and is used
to control the parallelism of operations. A parallel array has a fixed
number of components, all of the same type and located in the
MMs. An indexing scheme allows simultaneous access to a
column or a subset of the column components of a two-dimensio-
nal array. For example: W[*,5] selects column 5 of W, W[SEL,5]
selects a subset of column 5. A parallel array may be used without
any index at all (and no brackets), in which case all components of
the array are referenced.

To support data-driven processing a number of standard func-
tions and procedures can be applied to selectors. The first function
finds the first component of a selector with the value true and returns
a new selector with only this element true. The next-procedure
assigns false to the first true element of the selector. This is useful
when elements are to be processed sequentially. The some function
returns true if there is at least one true element of the selector,
otherwise it returns false.

The Pascal/L program

For the feedforward net, the following declarations are needed
(For simplicity of notation we consider only one layer):

var W : parallel array [0..N–1,0..N–1] of integer(b);
net :parallel array [0..N–1] of integer(b + logN);
B,O,O–,E,E+:parallel array [0..N–1] of integer(b);

{ O– is the output of the previous layer, E+ is the error of the
following layer }

sel :selector [0..N–1];
j : integer;

Feedback networks

A feedback network has a single set of completely interconnec-
ted nodes, see Figure 4. All nodes are both input and output nodes.
Each node computes a weighted sum of all its inputs and applies
a nonlinear activation function to the sum. The resulting value is
treated as input to the network in the next step. When the net has
converged, i.e. when the output no longer changes, the pattern on
the output of the nodes is the network response.

Figure 4. A seven node feedback network.

Input
&

Output

Training or learning can be done in supervised mode with the
delta rule [11] or back propagation [10], or unsupervised by a
Hebbian rule [11]. The delta rule is more powerful than the Hebb
rule, and more commonly used than back-propagation (for feed-
back nets). We only analyse the delta rule algorithm.

In the first phase of training the pattern is imposed on the net at
time zero by forcing the output from the net to match the pattern.
Following this initiation, the net iterates in discrete time steps
using the given formula. When the net has converged the activa-
tion a

i
 is compared to the target t

i
 and the error is calculated as

e
i
 = t

i
 – a

i
. The weights are changed in proportion to the product of

the activation a
j
 and the error e

i
, i.e.

1. Set activation values to external input values
2. Calculate new activation values where

 , until the network is stable

3. Determine error vector E = T–A
4. Adjust the weights and bias .
5. Repeat from 1.

Algorithm 2. Delta learning algorithm for feedback networks

 MAPPING NEURAL NETWORKS ON A BAP

It should be clear from the above descriptions of networks, that
the computations of both a feedforward network with error back-
propagation and a feedback network involve mainly matrix-by-
vector multiplications, where the matrices contain the connection
weights and the vectors contain activation values or error values.
Such a multiplication contains N2 scalar multiplications and N
computations of sums of N numbers.

The fastest possible way to compute this is to perform all N2

multiplications in parallel, which requires N2 PEs and unit time,
and then form the sums by using trees of adders. The addition
requires N(N-1) adders and O(logN) time. This is, however, an
unrealistic method depending on both the number of PEs required
and the communication problems caused. Instead we take the
approach of having as many PEs as neurons in a layer, N, and storing
the connection weights in matrices, sized N by N, one for each layer.
The PE with index j has access to row j of the matrix by accessing
its own memory word.

aj = f netj + bj
netj = wij ai∑

i

∆bi = ηei∆wij = ηeiaj

∆wij = ηeiaj

w00
(l) w01

(l) w0,N–1
(l) b0

(l) o0
(l) net0

(l) e0
(l) ⇐⇒ PE0

w10
(l) w11

(l) w1,N–1
(l) b1

(l) o1
(l) net1

(l) e1
(l) ⇐⇒ PE1

wN–1,0
(l) wN–1,1

(l) wN–1,N–1
(l) bN–1

(l) oN–1
(l) netN–1

(l) eN–1
(l) ⇐⇒ PEN–1

II - 503

The following program parts implement the algorithm:
Forward pass:

j := 0; net := 0; sel := TRUE;
while some(sel) do begin

net := net + W[*,j] * O–[first (sel)]; next(sel); j := j+1;
end;
O := f(net+B);

Backward pass:
Computation of error vectors:

j := 0; E := 0; sel := TRUE;
while some(sel) do begin

E:= E + E+[first (sel)] * W[*,j]; next(sel); j:=j+1;
end;
E := O*(1–O)*E;

Computation of new weights:
j := 0; sel := TRUE;
while some(sel) do begin

W[*,j] := W[*,j] + η*O–[first (sel)]*E; next(sel); j:=j+1;
end;
B := B + η*E;

 General feedback algorithm

The data storage required for a general feedback network is
approximately the same as for one layer of the ff network. The
computations of the forward pass are the same as in the ff net (one
layer), but are repeated until no more changes occur, or for a fixed
number of times. To update the weights, the error vector is first
calculated in parallel and then multiplied by η, also in parallel. The
values of the activation vector are then broadcast one by one to all
other PEs. Each PE multiplies the value with its (η*error)-value and
adds the result to the corresponding weight.

The Pascal/L program

var W : parallel array [0..N-1,0..N-1] of integer(b);
net :parallel array [0..N-1] of integer(b + logN);
B,A,Aold,E : parallel array [0..N-1] of integer(b);
ExtInputs :parallel array [0..N-1] of integer(b);
sel : selector [0..N-1];
j,m : integer;

{ Initialize}
rand(W); {Initialize the weights}
A := ExtInputs; {Set activation values}
Aold := A+2*e; {Get past first while test}

{ Train the net one pass with one pattern
Calculate new activation values during m cycles or to convergence}

m := 0;
while some(abs(Aold - A) > e) and (m < mmax) do begin

j:= 0; net := 0; sel := TRUE; Aold := A;
while some(sel) do begin
net := net + W[*,j]*A[first(sel)]; next(sel); j := j+1;

end;
A := f(net+B); m := m+1;

end;
{ Update weights}

E := η*(ExtInputs - A); j := 0; sel := TRUE;
while some(sel) do begin

W[*,j] := W[*,j] + A[first (sel)]*E; next(sel); j:=j+1;
end;
B:= B + η*E;

COMPUTATION TIME

Feedforward networks with error back-propagation

The computations for one layer of the feedforward pass contain
N operations of type multiply(by constant)-and-add followed by a
few (maximum ten) multiply-and-add operations to compute the
activity function (e.g. by a piecewise linear activation function
which approximates the sigmoid function). Since N is large in the
applications we consider we can leave the latter operations out
when we estimate the computation time.

During accumulation the sum will grow to a maximal length of
b+logN bits. On the average the number of cycles for multiply-
and-add will be 4b+logN–1, using the bit-serial multiplier of Figure
2.

In the backward error computation phase the summation is
made over the adder tree in b+logN cycles. A multiplication and a
tree addition can be made simultaneously. The weight changing
phase, finally, takes 4b cycles per column.

In total the computations for one layer consume: [8b + logN–
1 + max(3b, b+logN)]N cycles during training and (4b + logN–1)N
cycles during recall.

Assuming a clock frequency of 10 MHz (which is fairly conser-
vative) execution times shown in Table 1 are derived.

A common measure of the performance of neural net hardware
is the number of ”CPS” (Connections per second). In a net with N
neurons per layer, N2 connections are used and/or updated in each
layer. The MegaCPS figures for BAPs of different sizes are given
in Table 2.

a) b)
Table 1. a) Training time per layer (ms). b) Recall time per
layer (ms). 10 MHz clock frequency is assumed.

Training Recall
Table 2. Number of MegaCPS (Million Connections Per
Second) for different network sizes and data precisions.

Feedback networks with delta rule.

The computations of one iteration contain N multiply-and-add
operations. We do these computations in (4b+logN–1)N cycles.
Thus, the figures of Table 1b apply. The weight changing phase
takes 4bN cycles. Executing m iterations and one weight update
then takes m(4b + logN–1)N + 4bN cycles.

Table 3 shows the training times for different network sizes and
precisions. The times for recall equal those of Table 1b.

MEMORY REQUIREMENTS AND IMPLEMENTA-
TION ASPECTS

The amount of storage per word required for the feedback
network, or for each layer in the ff net, is approximately bN. See
Table 4. An m layer network requires m–1 times as much memory

 N
 256 1024 4096
 8 27 106 413
b 12 18 73 286
 16 14 55 219

 N
 256 1024 4096
 8 66 250 953
b 12 47 180 694
 16 36 140 546

 N
 256 1024 4096
 8 2.4 9.9 40.6
b 12 3.6 14.4 58.6
 16 4.7 18.9 76.6

 N
 256 1024 4096
 8 1.0 4.2 17.6
b 12 1.4 5.8 24.2
 16 1.8 7.5 30.7

II - 504

a) b)
Table 3. Training times (ms) for feedback network. a) with 1
iteration, b) with 100 iterations. 10 MHz clock frequency is
assumed.

(with a m–1 connection weight matrices stored). It should also be
mentioned that there are methods proposed that include a momentum
term α in the weight changing rule for the ff networks (refer to
Algorithm 1):

Thus the past weight change affects the current direction to an
amount determined by the constant α. This is considered to allow
high learning rate without leading to oscillations. However, it
requires that the weight changes be stored as well, which doubles
the required memory space.

Table 4. Memory requirements (kilobits) per processor for one
layer (approximate figures).

Using commercially available RAM chips for the large amount
of memory needed offers obvious advantages. On the other hand,
memory on the same chip as the PEs can increase processing speed
significantly.

If external RAM is used 64 PEs of the complexity we discuss
can easily be integrated on one VLSI chip. A 1024 PE array will
have 16 such chips, each with approximately 100 pins. Memory
can be implemented using chips with 64k x 4 bits, giving a chip
count of 256. With appropriate mounting technology such a
network may be implemented on one board. It would run a four-
 layered feedforward network with 1024 neurons per layer at the
speed of 34 training examples or 80 recall examples per second.

An implementation of a prototype BAP is currently being made
as a joint project between Luleå University of Technology and
Centre for Computer Science at Halmstad University College [12].
The implementation is software configurable to allow for ”compi-
lation” of a certain architecture to suit a specific application.
Neural network computations constitute one such application
area.

 CONCLUSIONS

We have given a general model of a bit-serial array processor
(BAP) and have shown how the computations of different neural
network models can be performed on such a processor. A major
advantage of the bit-serial working mode is that precision can be
traded for speed. We have calculated execution times and memory
requirements for feedforward and feedback networks of different
sizes and with different numerical precision. Results show a large
speed advantage over commercial neural net simulators and form
the basis for the outline of a one-board implementation comprising
1024 processing elements.

An interesting result is that the computations do not require the
processor array to have a very rich communication structure. The
facilities needed are the ability to broadcast a single bit from any

processor to all others, a means for selecting processors in order,
one by one (a select first chain), and a bit-serial adder tree to add
the values of a field.

The approach taken is to map one neuron on each processor —
in the case of multilayer networks the same processors are used for
all layers. If more processors are available, or if the processors are
fewer than the neurons, the programs presented must be slightly
changed. The speed will increase or degrade accordingly. Thus,
the speed of a certain network can be adjusted by choosing the
number of processors.

A critical operation in the computations is multiplication. We
have shown how a very simple bit-serial multiplier structure using
carry-save technique can equalize multiplication time relative to
addition time.

It is seen that the different net models that we have studied put
the same demands on the processing array. These models are
representative for the neural networksarea, implying that efficient
execution of most kinds of neural networks on a BAP can be
expected.

Acknowledgment: Part of this research is financed by Halmstad University
College and STU under contract no. 88-03901P

 N
 256 1024 4096
 8 1.8 7.4 30.7
b 12 2.6 10.8 43.8
 16 3.5 14.0 56.9

 N
 256 1024 4096
 8 101 423 1770
b 12 142 586 2440
 16 183 754 3100

∆wij
(l)

(t) = ηδi
(l)

oj
(l–1) + α ∆wij

(l)
(t-1)

 N
 256 1024 4096
 8 2 8 32
b 12 3 12 48
 16 4 16 64

REFERENCES

[1] Ohlsson, L. ”An improved LUCAS architecture for signal processing.”
(Technical report), Dept. of Comp.Eng., Univ. of Lund, 1984.

[2] Fernström, C., I. Kruzela and B. Svensson. LUCAS Assosiative Array
Processor - Design, Programming and Application Studies. Vol 216 of
Lecture Notes in Computer Science. Springer Verlag. Berlin. 1986.

[3] Rumelhart, D. E. and J. L. McClelland. Parallel Distributed Processing;
Explorations in the Microstructure of Cognition. Vol I and II, MIT Press.
Cambridge. 1986.

[4] Hinton, G. E. and T. J. Sejnowski. ”Optimal perceptual inference.” In
Proceedings of the IEEE Computer Soci ety Conference on Computer
Vision & Pattern Recognition, pp. 448-453, Washington, D.C., 1983.

[5] Hinton, G. E. and T. J. Sejnowski. ”Learning and relearning in Boltzmann
machines.” In vol. II of [3].

[6] Hopfield, J. J. ”Neural networks and physical systems with emergent
collective computational abilities”. Proceedings of the National Academy
of Science USA. 79: pp. 2554-2558, 1982.

[7] Hopfield, J. J. ”Neurons with graded response have collective computa-
tional properties like those of two-state neurons”. Proceedings of the
National Academy of Science USA. 81: pp. 3088-3092, 1984.

[8] Hopfield, J. J. and D. Tank. ”Computing with neural circuits: A model.”
Science. Vol. 233: pp. 624-633, 1986.

[9] Pineda, F. J. ”Generalization of Back-Propagation to Recurrent Neural
Networks.” Phys. Review Letters. Vol. 59(19): pp. 2229-2232, 1987.

[10] Almeida, L. D. ”Backpropagation in perceptrons with feedback.” In
NATO ASI series: Neural Computers, Neuss, F.R. Germany, 1987.

[11] Rumelhart, D. E. and J. L. McClelland. Explorations in Parallel Distri-
buted Processing. MIT Press. Cambridge, Massachusetts. 1988

[12] Svensson, B. ”Implementation and application of a software configurable
massively parallel computer.” Second Swedish Workshop on Computer
Systems Architecture, Bålsta, Sweden, 1989.

II - 505

