
decides its action on an instruction from the control unit, but some
property of the data in the memory or registers of that PE.

- An interconnection network defines a topological relationship
between PEs.

A commonly used organization of the BAP is to place the
interconnection network between the memory part and the logic
part of the PE as shown in Figure 1. This does not mean that
memory and logic are physically apart - on the contrary, they are
seen as a whole and should preferably be put on the same chip.

Figure 1. Organization of a Bit-serial Array Processor.

A BAP is defined by the characteristics of five parts: data
storage, processing, data alignment, input/output, and control.

Data storage is organized as Memory Modules (MMs). One bit
from each MM is accessible at a time. A number of such bit-slices,
normally consecutive, form a field.

The Processing part is an ensemble of Arithmetic and Logic
Units (ALUs) which implement functions on a set of one-bit
arguments. The complexity of the ALU may vary from boolean
functions of two variables through bit-serial multipliers to full bit-
serial floating point units.

One of the registers in the ALU is the one-bit Activity Register,
the contents of which determines whether or not the ALU takes
part in the specified operation. To choose only one ALU for
activity, a select first facility is included. In more elaborate models
multi-bit registers may be used to determine one out of a set of
actions to be performed.

The Data Alignment part consists of an interconnection struc-
ture that allows each ALU to receive data also from ”neigh-
bouring” modules. Common structures are the square grid, the
linear array, the n-cube and the shuffle-exchange. Many separate
structures may be implemented on the same processor.

The structure of the Input/Output part design is strongly de-
pendent on the demands of the application and may be varied in
several ways. For example, in some cases a direct bit-slice wide
interface to the data source may be motivated.

ABSTRACT

Large processor arrays are candidates for performing compu-
tations of neural network models  at speeds required for real time
applications, e.g. in pattern recognition. The paper gives a general
model of an array of bit-serial processors and demonstrates the
mapping of neural net models on such an array.

The approach maps a neuron on each processing element and
makes communication all-to-all available by connection weight
matrices. The required communication structure is very simple.

The bit-serial approach allows trade-offs between speed and
precision, even dynamically. Performance figures are given. A bit-
serial multiplier is an important part of the design. Implementation
aspects are discussed and it is shown that a one-board realization
of a 1024 processor system is feasible with current, commonly
available, technology.

 INTRODUCTION

Recent years have seen an enormous increase of interest in
neural networks. It has been realized that massive parallelism is
required for human-like performance in pattern recognition. Neural
networks provide one technique to do this. Processor arrays are
candidates for performing the computations efficiently. The su-
bject of this paper is to study the mapping of neural network
computations on a regular array of a large number of simple
processors. The computations are uniform and arithmetically
simple. This suggests that simple processing elements are suffi-
cient and that the SIMD type of architecture is appropriate. The
number of interconnections in a neural network is often orders of
magnitude greater than the number of processing units. This
suggests that connectivity be stored partly in matrices.

We study the mapping of both feedforward (with back-propa-
gation) and feedback neural nets. The characteristics of these
models will be briefly outlined. Before that we introduce a generic
architecture for a bit-serial array processor (BAP). We describe the
algorithms in a parallel language (Pascal/L) which includes
constructs directly implementable as elementary operations of a
BAP. The computations are analysed, performance figures are
given, and system implementation is discussed.

 BIT-SERIAL ARRAY PROCESSORS

A Bit-serial Array Processor (BAP) is characterized by the
following properties:

- It is organized as an SIMD processor, i.e. it consists of many
processing elements (PEs) and one common control unit.

- The PEs treat data bit-serially and the data paths to and from
each PE are only one bit wide.

- Activation of the PEs may be data driven (”associative
process”), which means it is not the location or address of a PE that
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The total activity is mastered by the Control Unit, which takes
instructions from an ordinary sequential processor. The most
obvious task for the Control Unit is to translate operations on data
items (e.g. vectors and matrices) to sequences of bit operations.
This should be performed without any overhead.

Based on the types of operands and results six basic types of
instructions to manipulate data in the array can be identified:

Instruction type Example
field —> field Increment field, Permute field
field —> selector Max/min value of a field
field,field —> field Multiply fields, Pairwise max
field,field —> selector Pairwise equality
constant,field —> field Multiply by constant
constant,field —> selector Closest match, Greater than

Multiplication is a frequent operation in many application
areas. Using ALUs with a complexity comparable to a full adder
only, the multiplication time grows quadratically with the data
length. Ohlsson [1] suggested a bit-serial multiplier in each ALU,
giving a multiplication time that is no longer than the time required
to read the operands and store the result.

Figure 2 shows the design for multiplication of two 2’s comp-
lement integers using a series of full adders (FA). The multiplicand
is first shifted in, most significant bit first, into the array of M flip-
flops. The multiplier is then  applied to the input, least significant
bit first, and the product bits appear at the output, least significant
bit first. The S flip-flops store the accumulated sum. A more detailed
description is given in [1] and [2].

Figure 2. A 5 bit wide bit-serial multiplier using carry-save
technique. M, S and C are flip-flops and FA are full adders.

 NEURAL NETWORK ALGORITHMS

Several neural net models have been proposed. They are charac-
terized by network topology, node characteristics, and training
rules. Frequently used and discussed models are the multilayer
feedforward networks with supervised learning by error back-
propagation [3] and the feedback networks , either with symmetric
connectivity and stochastic nodes (Boltzmann machines [4, 5]),
symmetric connectivity and deterministic nodes (Hopfield net [6,
7, 8]), or  nonsymmetric connectivity and deterministic nodes[9,
10].

In order to be as general as possible in the implementation
studies we use a feedback algorithm without any assumption on
symmetry of the weight matrix. Thus, for the Hopfield model and
the Boltzmann machine shorter execution times than those report-
ed below can be expected (both use symmetric matrices).

The back-propagation model is used as a pattern classifier or
feature detector. The feedback models are used as auto-associative
memories for tasks like pattern completion.

 Feedforward networks with error back-propagation

A feedforward net (ff net) with four layers is shown in Figure 3.
Each node (neuron) in a layer receives input from every node in the
previous layer. Each node computes a weighted sum of all its
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inputs. Then it applies a nonlinear activation function to the sum,
resulting in an activation value of the neuron. A sigmoid function,
with a smooth threshold like curve, is the most frequently used
activation function in feedforward networks.

Figure 3. A four-layer feedforward network.

The back-propagation algorithm (also known as the generalized
delta rule) [3] is used to train the network in our examples.

In the first phase the input to the network is provided and values
propagate through the network to compute the output vector O.  O
is then compared with a target vector T provided by a teacher,
resulting in an error vector E. In the second phase the values of the
error vector are propagated back. The error signals for hidden units
are thereby determined recursively: Error values for layer l are
determined from a weighted sum of the values of  layer l+ 1, again
using the connection weights – now ”backwards”. The weighted
sum is multiplied by the derivative of the activation function to
give the error value δ.

Finally, appropriate changes of weights and thresholds are
made. The weight change in the connection to unit i in layer l from
unit j in layer l–1 is proportional to the product of the output value
o and the error value δ :                               . The bias (threshold)
value may be seen as the weight from a unit that is always on. The
algorithm is summarized below.

1. Apply input

2. Compute output

where                        for each layer.

3. Determine error vector

4. Propagate error backwards.
If node j is an output node then the elements of the
error value vector D are

else

Here we have used the fact that the sigmoid function
                     has the derivative:

5. Adjust weights and thresholds.
          ,

6. Repeat from 1.

Algorithm 1. Back-propagation training algorithm
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 Feedforward net with error back-propagation

Figure 5 shows the data storage for each layer. In the forward
pass the net vector is computed by N successive, parallel multiply-
and-add operations, each requiring access to a different output
value from the previous layer. Thus the PEs must, one after the
other, broadcast their output values to all PEs. The O-vector is
computed by a parallel application of the activation function.

W(l) B(l) O(l) net(l) E(l)

Figure 5.  Data storage for layer l.

In the backward pass the computation of the error vector for
each layer requires vertical addition. We suggest a bit-serial adder
tree. The addition of each column can be overlapped with the
multiplications for the next. On completion of this phase, weight
changes are calculated. The O-vector of layer l–1 is first multiplied
by a constant, η. Then, for each j, the j:th value of the result is
broadcast to all other PEs, the E-vector is multiplied by this value
and the result is added to the j:th column of the weight matrix. The
threshold vector is changed in a similar way.

The Pascal/L language

Pascal/L is an extension of Pascal for parallel processing,
developed in the LUCAS project [2]. In Pascal/L the parallelism
of the architecture has a correspondence in the syntax of the
language. Thus, constructs in the language are directly implemen-
table as elementary operations of a BAP.

A selector defines a boolean vector over the MMs and is used
to control the parallelism of operations. A parallel array  has a fixed
number of components, all of the same type and located in the
MMs. An indexing scheme allows simultaneous access to a
column or a subset of the column components of a two-dimensio-
nal array. For example: W[*,5] selects column 5 of W, W[SEL,5]
selects a subset of column 5. A parallel array may be used without
any index at all (and no brackets), in which case all components of
the array are referenced.

To support data-driven processing a number of standard func-
tions and procedures can be applied to selectors. The first  function
finds the first component of a selector with the value true and returns
a new selector with only this element true. The next-procedure
assigns false to the first true element of the selector. This is useful
when elements are to be processed sequentially. The some function
returns true if there is at least one true element of the selector,
otherwise it returns false.

The Pascal/L program

For the feedforward net, the following declarations are needed
(For simplicity of notation we consider only one layer):

var W : parallel array [0..N–1,0..N–1] of integer(b);
net :parallel array [0..N–1] of integer(b + logN);
B,O,O–,E,E+:parallel array [0..N–1] of integer(b);

{ O– is the output of the previous layer, E+ is the error of the
following layer }

sel :selector [0..N–1];
j : integer;

Feedback networks

A feedback network has a single set of completely interconnec-
ted nodes, see Figure 4. All nodes are both input and output nodes.
Each node computes a weighted sum of all its inputs and applies
a nonlinear activation function to the sum. The resulting value is
treated as input to the network in the next step. When the net has
converged, i.e. when the output no longer changes, the pattern on
the output of the nodes is the network response.

Figure 4.  A seven node feedback network.

Input
&

Output

Training or learning can be done in supervised mode with the
delta rule [11] or back propagation [10], or unsupervised by a
Hebbian rule [11]. The delta rule is more powerful than the Hebb
rule, and more commonly used than back-propagation (for feed-
back nets). We only analyse the delta rule algorithm.

In the first phase of training the pattern is imposed on the net at
time zero by forcing the output from the net to match the pattern.
Following this initiation, the net iterates in discrete time steps
using the given formula. When the net has converged the activa-
tion a

i
  is compared to the target t

i
  and the error is calculated as

e
i
 = t

i
 – a

i
. The weights are changed in proportion to the product of

the activation a
j
 and the error e

i
, i.e.

1. Set activation values to external input values
2. Calculate new activation values  where

   , until the network is stable

3. Determine error vector  E = T–A
4. Adjust the weights     and bias      .
5. Repeat from 1.

Algorithm 2. Delta learning algorithm for feedback networks

 MAPPING NEURAL NETWORKS ON A BAP

It should be clear from the above descriptions of networks, that
the computations of both a feedforward network with error back-
propagation and a feedback network involve mainly matrix-by-
vector multiplications, where the matrices contain the connection
weights and the vectors contain activation values or error values.
Such a multiplication contains N2 scalar multiplications and N
computations of sums of N numbers.

The fastest possible way to compute this is to perform all N2

multiplications in parallel, which requires N2 PEs and unit time,
and then form the sums by using trees of adders. The addition
requires N(N-1) adders and O(logN) time. This is, however, an
unrealistic method depending on both the number of PEs required
and the communication problems caused. Instead we take the
approach of having as many PEs as  neurons in a layer, N, and storing
the connection weights in matrices, sized N by N, one for each layer.
The PE with index j has access to row j of the matrix by accessing
its own memory word.
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The following program parts implement the algorithm:
Forward pass:

j := 0; net := 0; sel := TRUE;
while some(sel) do begin

net := net + W[*,j] * O–[first (sel)]; next(sel); j := j+1;
end;
O := f(net+B);

Backward pass:
Computation of error vectors:

j := 0; E := 0; sel := TRUE;
while some(sel) do begin

E:= E + E+[first (sel)] * W[*,j]; next(sel); j:=j+1;
end;
E := O*(1–O)*E;

Computation of new weights:
j := 0; sel := TRUE;
while some(sel) do begin

W[*,j] := W[*,j] +  η*O–[first (sel)]*E; next(sel); j:=j+1;
end;
B := B + η*E;

 General feedback algorithm

The data storage required for a general feedback network is
approximately the same as for one layer of the ff network. The
computations of the forward pass  are the same as in the ff net (one
layer), but are repeated until no more changes occur, or for a fixed
number of times. To update the weights, the error vector is first
calculated in parallel and then multiplied by η, also in parallel. The
values of the activation vector are then broadcast one by one to all
other PEs. Each PE multiplies the value with its (η*error)-value and
adds the result to the corresponding weight.

The Pascal/L program

var W : parallel array [0..N-1,0..N-1] of integer(b);
net :parallel array [0..N-1] of integer(b + logN);
B,A,Aold,E : parallel array [0..N-1] of integer(b);
ExtInputs :parallel array [0..N-1] of integer(b);
sel : selector [0..N-1];
j,m : integer;

{ Initialize}
rand(W); {Initialize the weights}
A := ExtInputs; {Set activation values}
Aold := A+2*e; {Get past first while test}

{ Train the net one pass with one pattern
Calculate new activation values during m cycles or to convergence}

m := 0;
while some(abs(Aold - A) > e) and (m < mmax) do begin

j:= 0; net := 0; sel := TRUE; Aold := A;
while some(sel) do begin
net := net + W[*,j]*A[first(sel)]; next(sel); j := j+1;

end;
A := f(net+B); m := m+1;

end;
{ Update weights}

E := η*(ExtInputs - A); j := 0; sel := TRUE;
while some(sel) do begin

W[*,j] := W[*,j] + A[ first (sel)]*E; next(sel); j:=j+1;
end;
B:= B + η*E;

COMPUTATION TIME

Feedforward networks with error back-propagation

The computations for one layer of the feedforward pass contain
N operations of type multiply(by constant)-and-add followed by a
few (maximum ten) multiply-and-add operations to compute the
activity function (e.g. by a piecewise linear activation function
which approximates the sigmoid function). Since N is large in the
applications we consider we can leave the latter operations out
when we estimate the computation time.

During accumulation the sum will grow to a maximal length of
b+logN bits. On the average the number of cycles for multiply-
and-add will be 4b+logN–1, using the bit-serial multiplier of Figure
2.

In the backward error computation phase the summation is
made over the adder tree in b+logN cycles. A multiplication and a
tree addition can be made simultaneously. The weight changing
phase, finally, takes 4b cycles per column.

In total the computations for one layer consume: [8b  + logN–
1 + max(3b, b+logN)]N cycles during training and (4b + logN–1)N
cycles during recall.

Assuming a clock frequency of 10 MHz (which is fairly conser-
vative) execution times shown in Table 1 are derived.

A common measure of the performance of neural net hardware
is the number of ”CPS” (Connections per second). In a net with N
neurons per layer, N2 connections are used and/or updated in each
layer. The MegaCPS figures for BAPs of different sizes are given
in Table 2.

a)  b)
Table 1. a) Training time per layer (ms). b) Recall time per
layer (ms). 10 MHz clock frequency is assumed.

Training Recall
Table 2. Number of MegaCPS (Million Connections Per
Second) for different network sizes and data precisions.

Feedback networks with delta rule.

The computations of one iteration contain N multiply-and-add
operations. We do these computations in  (4b+logN–1)N cycles.
Thus, the figures of Table 1b apply. The weight changing phase
takes 4bN cycles. Executing m iterations and one weight update
then takes m(4b + logN–1)N + 4bN cycles.

Table 3 shows the training times for different network sizes and
precisions. The times for recall equal those of Table 1b.

MEMORY REQUIREMENTS AND IMPLEMENTA-
TION ASPECTS

The amount of storage per word required for the feedback
network, or for each layer in the ff net, is approximately bN. See
Table 4.  An  m  layer network requires  m–1 times as much memory

   N  
  256 1024 4096
 8 27 106 413
b 12 18 73 286
 16 14 55 219

   N  
  256 1024 4096
 8 66 250 953
b 12 47 180 694
 16 36 140 546

   N  
  256 1024 4096
 8 2.4 9.9 40.6
b 12 3.6 14.4 58.6
 16 4.7 18.9 76.6

   N  
  256 1024 4096
 8 1.0 4.2 17.6
b 12 1.4 5.8 24.2
 16 1.8 7.5 30.7
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a)     b)
Table 3. Training times (ms) for feedback network. a) with 1
iteration, b) with 100 iterations. 10 MHz clock frequency is
assumed.

(with a m–1 connection weight matrices stored). It should also be
mentioned that there are methods proposed that include a momentum
term α in the weight changing rule for the ff networks (refer to
Algorithm 1):

Thus the past weight change affects the current direction to an
amount determined by the constant α. This is considered to allow
high learning rate without leading to oscillations. However, it
requires that the weight changes be stored as well, which doubles
the required memory space.

Table 4. Memory requirements (kilobits) per processor for one
layer (approximate figures).

Using commercially available RAM chips for the large amount
of memory needed offers obvious advantages. On the other hand,
memory on the same chip as the PEs can increase processing speed
significantly.

If external RAM is used 64 PEs of the complexity we discuss
can easily be integrated on one VLSI chip. A 1024 PE array will
have 16 such chips, each with approximately 100 pins. Memory
can be implemented using chips with 64k x 4 bits, giving a chip
count of 256. With appropriate mounting technology such a
network may be implemented on one board. It would run a four-
 layered feedforward network with 1024 neurons per layer at the
speed of 34 training examples or 80 recall examples per second.

An implementation of a prototype BAP is currently being made
as a joint project between Luleå University of Technology and
Centre for Computer Science at Halmstad University College [12].
The implementation is software configurable to allow for ”compi-
lation” of a certain architecture to suit a specific application.
Neural network computations constitute one such application
area.

 CONCLUSIONS

We have given a general model of a bit-serial array processor
(BAP) and have shown how the computations of different neural
network models can be performed on such a processor. A major
advantage of the bit-serial working mode is that precision can be
traded for speed. We have calculated execution times and memory
requirements for feedforward and feedback networks of different
sizes and with different numerical precision. Results show a large
speed advantage over commercial neural net simulators and form
the basis for the outline of a one-board implementation  comprising
1024 processing elements.

An interesting result is that the computations do not require the
processor array to have a very rich communication structure. The
facilities needed are the ability to broadcast a single bit from any

processor to all others, a means for selecting processors in order,
one by one (a select first chain), and a bit-serial adder tree to add
the values of a field.

The approach taken is to map one neuron on each processor —
in the case of multilayer networks the same processors are used for
all layers. If more processors are available, or if the processors are
fewer than the neurons, the programs presented must be slightly
changed. The speed will increase or degrade accordingly. Thus,
the speed of a certain network can be adjusted by choosing the
number of processors.

A critical operation in the computations is multiplication. We
have shown how a very simple bit-serial multiplier structure using
carry-save technique can equalize multiplication time relative to
addition time.

It is seen that the different net models that we have studied put
the same demands on the processing array. These models are
representative for the neural networksarea, implying that efficient
execution of most kinds of neural networks on a BAP can be
expected.

Acknowledgment: Part of this research is financed by Halmstad University
College and STU under contract no. 88-03901P

   N  
  256 1024 4096
 8 1.8 7.4 30.7
b 12 2.6 10.8 43.8
 16 3.5 14.0 56.9

   N  
  256 1024 4096
 8 101 423 1770
b 12 142 586 2440
 16 183 754 3100
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   N  
  256 1024 4096
 8 2 8 32
b 12 3 12 48
 16 4 16 64
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