ETSI STC TM6 Torino, Italy 4-8 February, 2002

Project:	VDSL
Title:	Second Proposal for VDSL Simulation Parameters
Source:	FTW
Authors:	Tomas Nordström
Contact:	Tomas Nordström Forschungszentrum Telekommunikation Wien (FTW), Donau-City-Strasse 1/3 AT-1220 Wien, Austria Telephone: +43 1 5052830-22 Fax: +43 1 5052830-99 Email: Tomas.Nordstrom@ftw.at
Abstract:	This paper suggests that a common set of simulation parameters should be used when simulating VDSL performance requirements. It also suggests a first set of such simulation parameters.
Distribution:	ETSI STC TM6 working group members
Status:	For information

This contribution has been prepared to assist ETSI Standards Committee STC TM6. This document is offered as a basis for discussions and is not a binding proposal of FTW. FTW specifically reserves the right to add to, amend or withdraw the statements contained herein.

1. Introduction

To be able to compare performance simulations, and in the end agree on the result, a common set of simulation parameters should be established and used when simulating. We therefore suggest that such a set of simulation parameters is established for ETSI VDSL performance simulations.

This contribution tries to state all the important simulation parameters that are needed to be able to accurate simulate VDSL performance simulations. The parameters below are based on parameters found in [1-3] and during work on the FTW xDSL simulator [4].

Note that this is a second proposal and is not meant to be final!

This paper, furthermore, tries to identify places where decisions are needed to be able to progress the simulation work.

Generic simulation parameters

Frequency plans

According to Part 1:	
Loops, Cables, and Services (bit-rates)	
FEXT coupling	-45dB@1MHz growing as f^2
NEXT coupling	-50dB@1MHz growing as f^1.5
	Crosstalk combination use the FSAN rule
Noise model	FSAN A, B, C, D, E, F
Self FEXT and NEXT from	20 VDSL (of the same kind, i.e. same line
	code, same PSD)
AWGN	-140dBm/Hz
Shannon gap	9.8dB
SNR cross-talk margin	6.0dB
Coding gain	3.8dB
Maximum useful SNR	57dB (15bits)
Power back-off	Reference PSD method (parameters as agreed)
Maximum transmit power	11.5 dBm
We shall <i>not</i> assume that the HAM-bands are	used (at –80dBm/Hz).
Nominal PSD masks specified	Pcab.D.M1, Pcab.P.M1, Pcab.M2, Pex.D1.M1,
-	Pex.D2.M1, Pex.D3.M1, Pex.M2, Pex.P1.M1,
	Pex.P2.M1
TODO: Define the nominal level for each mas	sk (M1 is currently at -59dBm/Hz?)
Use M1 with notching	Subject to change request
Use M2 without notching	Subject to change request

997, 998

Specific simulation parameters

Excess bandwidth (Alpha) SNR implementation loss	20% 2dB
Guard bands	175kHz
Loss for implementing notching	2*BW of the notch
Data overhead (EOC, VOC channel etc.)	(405-362)/405

Power distribution:

In the case of loose masks, distribute first above 1MHz (fill up to the nominal mask). In parts with a loose mask distribute in an optimal way. Should DMT use standard water-filling

DMT

Carrier spacing	4.3125e3 Hz
Cyclic extension length	640
No carriers	4096
Cyclic extension loss	7.25%
Additional SNR loss	2dB
Maximum constellation size to use	15
Power distribution:	In the case of loose masks, distribute power using a water-filling algorithm.
Define guard bands as tones (how many?)	40 (175kHz)
Frequency plan as used tones:	
$[715.1162 - 1654.2782] \cdot \%$ Unstream	m active tones
[32:675 1202:1614]; % Downst	ream active tones
% 998	
[889:1185 1991:2782]; % Upstrea	m active tones
[32:849 1225:1951]; % Downst	ream active tones
2. References	

- [1] Mielants, Nordström, "Proposal of new insertion loss requirements for VDSL", ETSI TM6, TD49 Edinburgh (993t49a0), 1999
- [2] Nordström, Mielants, "Problems in the reach/insertion loss specifications in the VDSL Part 1 document", WD02 Edinburg (993wd02a0), 1999
- [3] Rapporteur, "Output from ad-hoc group to discuss VDSL simulation work program", WD02 Edinburg (993wd02a0), 1999
- [4] Nordström T., D. Bengtsson, *FTW xDSL simulation tool*, Version 2.3beta3, 2001. Version 2.2 is available at http://www.xdsl.ftw.at/xdslsimu/>.