

1

Presented at: DSA-92
Fourth Swedish Workshop on Computer System Architecture
Linköping, January 13th-15th, 1992

Designing Parallel Computers for
Self Organizing Maps

Tomas Nordström

Division of Computer Science & Engineering

Department of Systems Engineering and Mathematics

Luleå University of Technology, Sweden

E-mail: tono@sm.luth.se

ABSTRACT

Self organizing maps (SOM) are a class of artificial neural
network (ANN) models developed by Kohonen. There are a
number of variants, where the self organizing feature map
(SOFM) is one of the most used ANN models with unsuper-
vised learning. Learning vector quantifiers (LVQ) is another
group of SOM which can be used as very efficient classifiers.
SOM have been used in a variety of fields, e.g. robotics, tele-
communication and speech recognition.

Currently there is a great interest in using parallel computers
for ANN models. In this report we describe different ways to
implement SOM on parallel computers. We study the design
of massively parallel computers, especially computers with
simple processing elements, used for SOM calculations.

It is found that SOM (like many other ANN models) demands
very little of a parallel computer. If support for broadcast and
multiplication is included very good performance can be
achieved on otherwise modest hardware.

1.0 INTRODUCTION

The algorithms we study in this report are Kohonen’s self or-
ganizing maps (SOM) and variants of them. These maps have
been used in pattern recognition, especially in speech recogni-
tion [27], but also in robotics and automatic control [40, 46]
and telecommunication tasks [3, 32]. This study is part of a se-
ries of reports [43, 44, 49] that shows how well suited bit-serial
SIMD computers are for simulating artificial neural networks.

As an example of bit-serial SIMD computers, REMAP

3

(reconfigurable, embedded, massively parallel processor
project) will be used. As the processing elements are reconfig-
urable it is possible to include different types of support for dif-
ferent kinds of algorithms. For back-propagation [47] and
Hopfield networks [18, 19, 20] a bit-serial multiplier has been
found to be essential for the performance [44, 49]. For the im-
plementation of Kanerva’s SDM model [25] the multiplier was
not needed, instead a counter was suggested [43]. In this report
we try to recognize architectural principles and components
that are essential for the efficient calculation of Kohonen’s
models.

In the next section we describe the background of SOM. After
that, two sections discuss implementation considerations and
ways to map SOM onto a computer architecture. Then follows

a section where some of the existing parallel implementations
are discussed. Finally, we draw some conclusions concerning
the task of designing parallel computers for SOM.

2.0 BACKGROUND

An overview of the different models of self organizing maps
and the application areas where they have been used can be
found in [26, 28, 29, 30, 31]. Below we only restate the basic
models and refer to the references above for more details.

2.1 Competitive Learning

In competitive learning [30, 47] the responses from the adap-
tive nodes (weight vectors) tend to become localized. After ap-
propriate training the nodes specify clusters or codebook
vectors that approximate the probability density functions of
the input vectors. Algorithm 1 is an example of a competitive
learning algorithm. If the spatial relationships of the resulting
feature sensitive nodes are not considered we get a zero-order
topology map.

Algorithm 1

Competitive learning (zero-order topology).

1.

Find the node (or weight vector) closest to input

x

.

2.

Make the winning node closer to input.

3.

Repeat from step 1 while reducing the learning rate .

2.1.1 Adding Conscience

A problem with the algorithm above is that instead of placing
the nodes according to the input point density function
the nodes are placed as . Having low dimen-
sional input vectors (i.e. small

M

) there will be a bias towards
the low probability regions. DeSieno [6] has found that adding
conscience to the competitive learning algorithm will greatly
improve the encoding produced by the map. The idea is that
the nodes should be conscientious about how many times they
have won, compared to other nodes, see Algorithm 1. That is,
every node should win the competition approximately the same

wi
x tk() wc tk()– min x tk() wi tk()–=

i

i c=

wi tk 1+() wi tk()=

wi tk 1+() wi tk() α tk() x tk() wi tk()–[]+=
Where

otherwise

α

p x()
p x() M M 2+()⁄

2

number of times. Another way to improve the clustering is to
use a higher-order topology map, like the Kohonen model, this
is especially true for non-continuous input probability density
functions.

Algorithm 2

Competitive learning with conscience (zero-or-
der topology).

1.

Find the node (or weight vector) closest to input

x

using a conscience as offset (

C

 is a scaling factor).

2.

Make the winning node closer to input.

3.

Repeat from step 1 while reducing the learning rate ,
and increasing the conscience of the winning neuron

2.2 Kohonen Learning

In the brain there are many areas, such as the visual and soma-
tosensory cortex, which are organized in a way that reflects the
organization of the physical signals stimulating the areas i.e.
they are topological maps.

Inspired by that, Kohonen has developed a class of artificial
neural network (ANN) models which develop these, so called,
self organizing maps (SOM), also referred to as topological
feature maps (TFM). They are all models with competitive
learning and use first, second, or higher order topological maps
[26].

SOM may be formed with unsupervised learning, i.e. without
any teacher saying what is right or wrong. This type of SOM is
referred to as self organizing feature maps (SOFM), see Algo-
rithm 3.

Algorithm 3

 The SOFM algorithm (higher-order topology

)

1.

Find the node (or weight vector) closest to input

x

.

2.

Find the neighbourhood .

3.

Make the nodes in the neighbourhood closer to input.

4.

Repeat from step 1 with ever decreasing neighbour-
hood and gain sequence ().

If the resulting maps are to be used as classifiers, and the train-
ing example classes are known (i.e. supervised learning), a fine
tuning of the SOFM model called learning vector quantization
(LVQ) model has been suggested [29, 30]. In the simplest ver-
sion the difference is that, in Step 3 in Algorithm 3, is
negated if belongs to the wrong class. No neighbourhood is
used for LVQ.

2.3 Stochastic Competitive Kohonen
Learning

Van den Bout and Miller III [52, 53] have suggested a modifi-
cation to competitive and Kohonen learning which simplifies
the calculations by replacing the “analog” signals with stochas-
tic binary signals. In their model, called TInMANN, the mean

wi
ci

x tk() wc tk()– min x tk() wi tk()– Cci+()=
i

wi tk 1+() wi tk()=

wi tk 1+() wi tk() α tk() x tk() wi tk()–[]+=
i c=Where

otherwise

α

ci tk 1+() ci tk() 1+=

wi

x tk() wc tk()– min x tk() wi tk()–=
i

Nc tk()

wi tk 1+() wi tk() α tk() x tk() wi tk()–[]+=
i Nc tk()∈

wi tk 1+() wi tk()=

Where

otherwise

Nc α 0 α 1< <

α tk()
wi

value of a stochastic binary signal is viewed as an analog signal
in the range [0,1]. This signal representation leads to very sim-
ple (and space efficient) digital logic for the computations
needed in the algorithms. For example, multiplication of sto-
chastic signals can be computed using only a simple AND gate.

By noting that the weight vectors slowly integrate the effects of
the environmental stimuli, this can be done by incrementing/
decrementing the weights stochastically with a probability pro-
portional to the strength of the input vector. Obviously, more it-
erations are needed, but as each step is computationally very
simple the overall computation time will decrease, see section
5.8.

3.0 IMPLEMENTATION CONSIDERATIONS
SOM models have been implemented on a large number of dif-
ferent parallel computers: Warp [39], Transputers [17, 45, 48],
Connection Machine [45], MasPar [11] and in special hard-
ware [8, 24, 37, 38, 52, 53].

Aspects that have to be considered when implementing SOM
on parallel computers are: communication facilities, computa-
tional capabilities, mapping and partitioning of the algorithm.
Some architectures benefit a great deal if floating point num-
bers can be avoided, and the integer precision needed for the
weights should be analysed.

The algorithms in section 2.0 can be divided into four steps:
1. Finding the distance from the input to the nodes.
2. Finding the node closest to input.
3. Determining the neighbourhood to the closest node.
4. Updating the neighbourhood nodes.

The rest of this section will discuss the different aspects of im-
plementing SOM based on these four steps.

3.1 Communication
The weight vectors can be assumed to be distributed over the
processing elements (PEs). Thus the first step requires the input
vector to be distributed. The most effective way to do this is by
utilizing broadcast. If the architecture does not have broadcast,
for example if Transputers are going to be used, a nearest
neighbour communication like ring or mesh must be used.

For the second step a minimum distance must be found. A min-
imum could be found by doing N–1 comparisons among the N
nodes. Some “global” or “token-ring” communication is need-
ed if the nodes are distributed over many PEs. As seen in sec-
tion 4.4 a very fast bit-serial method exists to find min/max
among PEs if a global-or function exists.

The activation/selection of the neighbours can either be solved
as a spatial distance calculation or as a nearest neighbour com-
munication. The time for communication will depend on the
neighbourhood size. When the neighbourhood size is small the
communication method can be faster than spatial distance cal-
culation. The topology of the computer should support the
communication needed, which depends on the spatial topology
of the SOM model.

If the input vector (or the difference between the node and in-
put) is stored no communication is needed during step 3.

3

3.1.1 Summary on Communication
For the basic SOM models broadcast is the most efficient way
of communication.

By computing which nodes to be considered as neighbours, in-
stead of using nearest neighbour communication, the computer
topology becomes irrelevant for the algorithm. It also makes
the time for step 3 constant with respect to the neighbourhood
size.

3.2 Computations
For all of the algorithms in section 2.0 the distance is calculat-
ed using a Euclidean metric. Another much used metric is the
dot-product metric. Both metrics are discussed in this section.

Some model parameters used in this and following sections
are:

N The number of nodes
Size of the neighbourhood (may depend on time)

M The dimension of the input vector
Bits used for weights

n The number of processing elements available.

3.2.1 Euclidean Metric
Using a Euclidean distance metric in the first step means that
the distance is calculated as

Note that the square-root function does not need to be evaluat-
ed, as the square-root is a monotonic function and the result is
used for comparison only.

We get the following estimate on the number of computations
needed in each step:

1. We must do NM subtractions, NM squarings and NM
additions. Note that the result of the subtraction can be
reused in step 3 if there is enough memory to store the
result.

2. The number of calculations needed for finding mini-
mum is N–1 comparisons (subtractions).

3. If we instead of communicating, calculate the neigh-
bourhood, it should be possible to calculate the spatial
distance in less than 3 operations (subtract, square,
add) per spatial dimension (usually 1-3).

4. For the updating part we must carry out (subtrac-
tions,) multiplications and additions. The
subtraction can be carried out in step 1 if there is
enough memory to store the result.

The total number of operations is (assuming two spatial dimen-
sions and recalculation of the subtraction)

.

Using a reasonable value for like we get approximate-
ly

 operations per training example.

3.2.2 Dot-Product Metric
By normalizing the input vector (i.e. keeping),
and keeping the nodes normalized after updating, the dot-prod-
uct can be used instead of sum of squares. The distance calcu-
lation can then be calculated as a “weight matrix times an input
vector” like in many other neural network models.

Nc

δ

x tk() wi tk()–

x j tk() wij tk()–() 2
j∑

NcM
NcM NcM

O 3MN N 1–() 6 3MNc+ + +=

Nc N 4⁄

O 1 3.75M+() N≈

x tk() 1=

The matching law is modified to

The update law must then be modified to

Still is a monotonically decreasing function, but now
. The neighbourhood is the same decreasing as

before.

We get the following estimate on the number of computations
needed in each step:

1. For the dot-product metric the NM subtraction, used by
Euclidean distance metric, can be avoided. The squar-
ings are replaced by multiplications.

2. Same as Euclidean metric, but we want to find maxi-
mum instead of minimum.

3. Same as Euclidean metric.
4. Using dot-product distance metric we must do

multiplications and additions for the nominator.
For the denominator we must use an additional
squarings and additions. We must also do one di-
vision.

The total number of operations is (assuming two spatial dimen-
sions)

.

Using a reasonable value for like we get approximate-
ly

 operations per training example.

The dot-product calculation can in some technologies be very
fast (e.g. optical transmission filters). But for our purpose the
overhead for the normalization is too time consuming. This
will be accentuated if SIMD computers are to be used.

3.2.3 Precision Used for the Weights
If we intend to use a bit-serial architecture, where each PE only
operates on one bit at a time, the precision becomes very im-
portant. An analysis made by J. Mann [37] shows that at least 8
bits seems necessary for the weights. He also finds that Eucli-
dean distance measures are not as sensitive as dot-product met-
ric to weight precision.

It also seems that the updating rule could be changed to an in-
crement/decrement of the weight, depending on the sign of the
difference between the weight and the input without much in-
fluence on the performance of the SOM algorithm.

Hammerstrom and Nguyen have found the SOM to be sensi-
tive to error bias from bit truncation, more sensitive than to av-
erage quantization error from reduced precision. They also re-
duce the error accumulation using saturation arithmetic (on
overflow the max/min value is used).

3.2.4 Summary and Comments on Computation
Almost half of the operations computed are multiplications,
and therefore support for multiplication is very important. As

x tk() T
wc tk() max x tk() T

wi tk(){ }=
i

wi tk 1+() wi tk()=

wi tk 1+()
wi tk() α' tk() x tk()+

wi tk() α' tk() x tk()+
---=

i Nc tk()∈where

otherwise

α'
0 α' ∞< < Nc

NcM
NcM

NcM
NcM

O 2MN N 1–() 6 4MNc 1+ + + +=

Nc N 4⁄

O 1 4M+() N≈

4

calculations using short fixed-point numbers seem possible,
bit-serial computers become interesting. The Euclidean metric
uses less operations for its computation, and is less sensitive to
weight quantization, and is therefore more attractive to use
than dot-product.

Many have used CUPS (connection updates per second) as a
measure of performance on SOM algorithms. It has been used
as the number of connections MN multiplied by the number of
updates per second u i.e MNu. This despite the fact that very
few connections are actually updated when using small neigh-
bourhoods.

Even if the word updates is misleading, the CUPS measure,
used in relation to the FLOPS (floating point operations per
second) or IPS (instructions per second) measures, can be used
as an indication of the efficiency of the architecture (on SOM
algorithms). We may define an efficiency measure like:

(EQ 1)

Where IPSmax is the maximum number of operations per sec-
ond achievable on the computer. The corresponding measure
for floating point calculations is:

4.0 MAPPING SOM ONTO A COMPUTER
ARCHITECTURE

4.1 Computer Architectures
One of the most used divisions of architectures is due to Flynn
[10]. He divided the computers into groups according to the
number of instruction streams and the number of data streams:

1. SISD - Single Instruction stream, Single Data stream.
2. SIMD - Single Instruction stream, Multiple Data

streams.
3. MISD - Multiple Instruction streams, Single Data

stream. (Anomaly of the division)
4. MIMD - Multiple Instruction streams, Multiple Data

streams.

Single instruction stream multiple data stream (SIMD) com-
puters is a computer model where the same instruction is exe-
cuted in each of the processing elements (PEs). Using this
model it is possible to achieve massive parallelism at small
cost. It is found that almost all ANN algorithms fit very well
into the SIMD model [44]. The SOM algorithms in section 2.0
also seem to map easily onto the SIMD computer model. This
hypothesis will be found to be true later in this section. Below
there follows a discussion on how to implement SOM on a
SIMD computer.

4.2 Degree of Parallelism
Looking at an ANN algorithm such as SOM there are (at least)
six different ways of achieving parallelism [44]. The typical
degree of parallelism varies widely between the six different
kinds, as the table below shows.

E
operations per second

maximum number of operations

Ou

 IPS max
----------------= =

3.75

MNu

IPS

max

----------------------- 3.75
CUPS
IPS

max

----------------=

 ≈

E 375
CUPS

FLOPSmax
--------------------------=

To utilize the computing resources of a massively parallel com-
puter (thousands of processing elements) efficiently the table
indicates that we must use at least one of the following dimen-
sions:

Training session parallelism.
Training example parallelism.
Node parallelism.
Weight parallelism.

Note that the first two dimensions of parallelism are of interest
only in batch processing situations, i.e. when training the net-
work. If the network is to be to used in a real-time situation, in-
teracting with the outside world, training session and training
example parallelism would be unavailable. In those cases, node
and/or weight parallelism must be chosen, possibly in combi-
nation with e.g. bit and layer parallelism.

4.3 Node Parallelism on SIMD Computers

Unfortunately the amount of node parallelism used for updat-
ing the nodes varies with the size of neighbourhood. Still the
node parallelism is the most used and maybe the most natural
mapping for SIMD computers. The mapping may be visualized
for a 1D map topology on a linear processor array as in Figure
1.

Figure 1

Using node parallelism to map SOM onto
a linear processor array.

For the four steps we then get the following estimate of the
number of computation steps needed, using Euclidean distance
metric and having the same number of processing elements as
the number of nodes, i.e.

n

 =

N

.

1.

Calculating the distance requires

M

 subtraction steps,

M

 squaring steps and

M

 addition steps. The result of
the subtraction can be reused in step 4 if there is
enough memory to store the result.

2.

The number of calculations needed for finding the min-
imum distance varies with the communication struc-
ture. Using bit-serial arithmetic and global-or function,
as later described in section 4.4, the comparison can be
computed in less than (Two times the
number of bits in the sum of squares) steps.

Training example 10 - 107

Forward-Backward

100 - 106Node (neuron)

1 - 2

Weight (synapse) 2 - 104

Bit 1 - 64

Typical range SOM:

Training session 10 - 103

Parallelism

PE array
.
.
.

Weight
Vector
Store

Input Vector

2 2δ log2M+()

5

3.

The time to determine the neighbourhood varies with
the communication structure, but it should always be
possible to calculate in less than 3 operations per spa-
tial dimension.

4.

Updating the weights requires (

M

 subtractions),

M

multiplications and

M

 additions. Note that the efficien-
cy during this step is only i.e. the efficiency will
go down as the neighbourhood shrinks.

The total number of steps is, using a 2D map as an example,
approximately

4.4 Bit-serial SIMD Implementation

The majority of massively parallel processors use bit-serial
arithmetic, and that is also the basic mode of operation for our
own research machine, REMAP

3

. Therefore, we would like to
analyse the algorithms down to bit-level. For the majority of
operations using bit-serial PEs, the processing times grow line-
arly with the data length used. E.g. the time to do a bit-serial
addition is the same time as to read the operands and store the
result (3 cycles). This may be regarded as a serious disadvan-
tage (e.g when using 32- or 64-bit floating point numbers), or
as an attractive feature (use of low precision data speeds up the
computations accordingly). In any case, bit-serial data paths
simplify communication in massively parallel computers.

As concluded in section 3.2.4 support for multiplication is im-
portant. Unfortunately, very few bit-serial computers have sup-
port for bit-serial multiplication, and without such,
multiplication time grows quadratically with the data length.
However, with an inclusion of a bit-serial multiplier [9, 44, 55]
the multiplication of two bit numbers can be performed in
cycles (i.e. the time to read the operands and store the result).

Using the natural mapping for SIMD computers (node parallel-
ism) and having

n

 =

N

 we get the following number of cycles
for the SOM algorithm using Euclidean metric.

1.

We have to do cycles for subtraction, cycles
for squaring and cycles for addition. If the result
from the multiplier is used directly for addition (i.e.
without storing the result in memory) the total time for
squaring and adding will be .

2.

Finding minimum (or maximum) using bit-serial work-
ing mode can be implemented very efficiently. A glo-
bal-or function is needed to check a bit “slice” if all
bits are equal, also the means to turn off PEs depending
on the result of the previous operation are needed. As-
suming we want to find minimum (i.e. using Euclidean
distance metric), the search starts by examining the
most significant bit of each value. If anyone has a zero,
all PEs with a one are turned off (otherwise we restore
the previous state). The search goes on in the next posi-
tion, and so on, until all bit positions have been treated.
The time for this search is independent of the number
of values compared, it depends only on the data length.
The maximal number of cycles needed will be two
times the length of the data i.e . To re-
solve multiple minimums a select first network [9] can
be used to select the first active processor.

3.

Wanting to have constant time for this step we want to
calculate the neighbourhood (instead of communicate
it). There are a number of variants depending on the
(spatial) distance measure and the map topology. If 7

Nc N⁄

O 3M 2 2δ log2M+() 6 3M+ + +=

δ

δ 4δ

3δM 4δM
6δM

8δM

2 2δ log2M+()

bits are used for the spatial coordinates, the following
estimates for the cycle count can be given:

•

Euclidean (spatial) distance
A second order topology map can be computed in

206 cycles

•

City block (spatial) distance
A first order topology map can be computed in 48

cycles
A second order topology map can be computed in

96 cycles

4.

Updating of the weight vectors can be computed
with cycles for subtraction, cycles for multi-
plication and cycles for addition. If the global
constant is loaded in parallel from the controller, and
the result from the multiplier is used directly for the ad-
dition, the number of cycles in step 4 will be .

There are of course some cycles needed for overflow tests and
initiations but the above indicates that SOM could be calculat-
ed in typically: cycles. Note, that we assume n =

N

. Using the approximate total number of operation
, we can calculate the efficiency
.

Let

C

 stand for the clock frequency. As the time for multiplica-
tion is the IPS

max

 is . The update rate will
be and the efficiency

The asymptotic efficiency will be 83%. Already for

M

=10 and
=8 the efficiency is 73%. These figures show that a bit-serial

SIMD computer can be used very efficiently for SOM calcula-
tions.

4.5 Other Forms of Parallelism

If the input vectors are long (i.e. large

M

) and the neighbour-
hood is small, a “transposed” mapping could be considered.
This is the same as the columnwise mapping suggested for
SDM [43]. For SOM this would correspond to weight parallel-
ism with iteration over the nodes, see Figure 2.

Using this mapping the summation of squares must be done
across the PEs, and special hardware (e.g. an adder-tree)
should be included for efficiency reasons. However, with this
hardware available it is possible to pipeline the addition and
comparison (carried out in the controller) with the subtraction
and squaring (carried out in the processor array).

Figure 2

Using weight parallelism to map SOM
onto a linear processor

3δM 4δM
3δM

α

7δM

18δM 250+

O 1 3.75M+() N≈
E Ou() IPSmax⁄=

4δ Cn() 4δ()⁄
u Cn() 18δMN 250N+()⁄=

E
4 1 3.75M+() δ

18δM 250+
---------------------------------------=

δ

Nc

PE array

.

.

.
Weight
Vector
Store

Input Vector

Adder-tree

6

For the last step, weight parallelism is faster than node parallel-
ism with a factor . This will be a considerable factor
when is small and M is large. The second and third steps are
almost “for free” for weight parallelism as pipelining can be
used. As the number of nodes N often is larger than the number
of elements M in the input vector, and for weight parallelism
we only have n = M PEs, this mapping will be less efficient
than node parallelism during the first step. The factor is

.

It seems that the most efficient mapping during the first step is
node parallelism and during the fourth step weight parallelism
(as for the SDM model [43]). But we have not found any way
to achieve mixed mapping for SOM onto any normal SIMD
computer.

Note that if , no matter how fast the three last steps
are when weight parallelism is used, it will still be less efficient
than the node parallel version. This is because its first step
takes longer than the total time of the node parallel version.

5.0 IMPLEMENTATIONS ON PARALLEL
COMPUTERS
In the following subsections many of the parallel computers
used for SOM are described. Performance figures for the SOM
algorithm on these computers are also given if they are availa-
ble.

A summary of the discussed implementations is shown in Fig-
ure 3.

5.1 CNAPS
CNAPS (Connected Network of Adaptive ProcessorS) manu-
factured by Adaptive Solutions is one of the first architectures
developed especially for ANN. It was called X1 in the first de-
scription by Hammerstrom [14]. It is a 256 PE SIMD machine
with a broadcast interconnection scheme. Each PE has a multi-
ply (9x16bit) and add arithmetic unit and a logic-shifter unit. It
has 32 general (16bit) registers and a 4kByte weight memory.
There are 64PEs in one chip. 1, 8 or 16 bits can be used for
weights and 8 or 16 bits for activation.

The performance of CNAPS on SOFM was reported by Ham-
merstrom and Nguyen in [15]. The figures are based on a
20MHz version of CNAPS. Best match using Euclidean dis-
tance measure, having N=512 nodes and M=256 elements per
vector (=16), can be carried out in 215 µs. Making their
CUPS figure comparable to others the performance will be
about 183 MCUPS. A CNAPS computer can maximally
achieve 10240 MIPS on dot-product operations. The efficiency
is thus:

More figures are needed to be able to analyse where the bottle-
neck is. The low efficiency may depend on the high maximal
performance, achieved in an operation mode which can not be
utilized for SOM.

5.2 Connection Machine

The Connection Machine [16, 50] manufactured by Thinking
Machines Corporation (TMC) is for the moment the most mas-
sively parallel machine built (from 8k up to 64k processing el-
ements). In addition to its large number of processors, two of

M Nc⁄
Nc

3M() 2N()⁄

2N 5M>

δ

E
3.75 183()

10240
-------------------------- 7%= =

its strong points are its powerful hypercube connection for gen-
eral communication and the multidimensional mesh connec-
tion for problems with regular array communication demands.
In the CM-2 model TMC also added floating point support, im-
plemented as one floating point unit per 32 PEs. This means
2048 floating point units on a 64k machine, giving a peak per-
formance of 10 GFlops. CM-2 is one of the most popular paral-
lel computers for implementing ANN algorithms.

Obermayer et al. have implemented large SOM on the CM-2
[45]. They used node parallelism and up to 16k PEs (nodes).
The input vector length M was varied and lengths of up to
M=900 were tested. 48 MCUPS were achieved on a problem
with n=N=16384 and M=100. As they used a bell-shaped
Gaussian function for neighbourhood calculations, an efficien-
cy measure according to equation (EQ 1) would be meaning-
less.

The same authors have also implemented the same algorithm
on a self built computer with 60 T800 (Transputer) nodes con-
nected in a systolic ring. Besides algorithmic analysis they
have benchmarked the two architectures. Having M=100, n=30
and N=14400 they achieved 2.4 MCUPS.

The conclusion is that the CM-2 (16k PEs) with floating point
support is equal to 510 Transputer nodes for the SOM. As a
16k CM-2 has 512 Weitek floating point units, each with ap-
proximately the same performance as one T800 on floating
point calculations, it can be concluded that SOM basically is
computation bound. In a “high-communication” variant of
SOM where broadcast could not be used efficiently a 30 node
Transputer machine would run at one third of the CM-2 speed.

5.3 L-Neuro
The Laboratoires d’Electronique Philips (LEP), Paris, have de-
signed a VLSI chip called L-Neuro. It contains 16 processors
working in SIMD fashion. In association with these chips
Transputers are imagined as control and communication proc-
essors. The chip has support for multiplications with a multiply
step. Weights are represented by 2-complement numbers over
8 or 16 bits, and the states of the neurons are coded over 1 to 8
bits.

Duranton and Sirat [7, 8] have described implementations of
both SOM, Hopfield and BP networks on this architecture.
However, no figures of performance were given.

5.4 MasPar
MasPar MP-1 [1, 5, 42] is a SIMD machine with both mesh
and global interconnection style of communication. It has
floating point support, both VAX and IEEE standards. The
number of processing elements can vary between 1024 and
16384. Each PE has 40 32-bit registers, a 4-bit integer ALU,
floating point “units” for Mantissa and Exponent, addressing
unit for local address modifications, and a 4-bit broadcast bus.
MP-1 has a peak performance, for a 16k PE machine, of 1500
MFlops single-precision [42].

In [4, 12, 13] Grajski, Chin et al. have implemented BP and
SOM. The mapping of SOM into MP-1 uses node parallelism.
It was measured to give 17.2 MCUPS on a 4k machine when
16-dimensional input vectors were used. They report that high
efficiency is achieved using the MP-1 and that the performance
figures increase with the dimensionality (up to 18 MCUPS).

7

5.5 REMAP3

The goal of REMAP3 is to construct modules for ANN compu-
tation. A typical module for SOM would consist of a few thou-
sand bit-serial processors. If the processing elements needed
for ANN were integrated on a VLSI chip more than 128 PEs
per chip would be possible. On a single board, 1k processors
with memory would be possible. If implemented on VLSI a
clock frequency above 20 MHz would be of no problem. This
makes it possible to achieve an update rate of approximately
539 per second on an n = N = 2048 problem (M=128 and =
16) and more than 11800 updates per second on the smaller
problem (n = N = 1024, M = 10 and = 8). The corresponding
CUPS (and efficiency) figures would be 141 MCUPS (=>
E=83%) and 121 MCUPS (=> E=71%), respectively.

5.6 Transputer
The Transputer [22, 54] is a single chip 32-bit microprocessor.
It has support for concurrent processing in hardware which
closely corresponds to the Occam [2, 21, 23] programming
model. It contains onchip RAM and four bi-directional 20
Mbits/sec communication links. By wiring these links together
a number of topologies can be realized. Each Transputer of the
T800 type is capable of 1.5 MFlops (20MHz) and architectures
with up to 4000 Transputers are being built [54].

The SOM model has been implemented on Transputers by
Hodges et al. [17], Siemon and Ultsch [48] and Obermayer et
al. [45]. All three implementations distribute the nodes over the
PEs and use ring communication to distribute the input vector
and to find the global minimum. As long as the neighbourhood
is larger than the number of PEs this mapping is quite efficient.
Good performance will also be achieved for high input dimen-
sion.

Hodges et al. presented an equation for the performance but no
concrete implementation.

Siemon and Ultsch state a performance of 2.7 MCUPS on a 16
Transputer machine. Having N=128x128, M=17, u=25000/
2546 the total number of operations would be .
Each Transputer can give 1.5 MFlops so the maximum number
of Flops would be 24MFlops. Then the efficiency would be E =
42%

Obermayer et.al have implemented SOM on, and compared the
performance of, Connection Machine and Transputers, see sec-
tion 5.2.

A more general implementation framework, called CARELIA,
has been developed by Koikkalainen and Oja [35]. The neural
network models are specified in a CSP-like formalism [33, 34,
35]. The simulator is currently running on a network of Trans-
puters and one of the models implemented is SOM. The per-
formance of the simulator has not been reported.

5.7 Warp
Warp is a one-dimensional array of 10 or more powerful
processing elements (PEs) developed at Carnegie-Mellon Uni-
versity in 1984-87 [36]. Each cell/PE has a microprogramma-
ble controller, a 5 MFlops floating-point multiplier, a 5 MFlops
floating-point adder and a local memory. Communication be-
tween adjacent cells may be conducted in parallel over two in-
dependent channels: a left-to-right X channel and bidirectional
Y channel.

δ

δ

O 991000=

An implementation of SOM on Warp has been described by R.
Mann and Haykin [39]. When they used training example par-
allelism between 6 and 12.5 MCUPS were achieved. Because
of a fixed communication overhead (0.01s) at the start of each
batch, better performance could not be achieved. Some minor
problem with the topology ordering process when using train-
ing example parallelism were reported. They suggested that ei-
ther the map starts at some order instead of at random state, or
that the map is trained sequentially for the first 100-1000 steps,
after which the training example parallelism is “turned on”.

The Warp has 10 PEs, each having 10 MFlops, giving it a total
of 100MFlops. Having N=1024 and M=128 the implementa-
tion could run at u=5.3x18 updates per second (each batch (ep-
och) was 18 training examples), giving it 12.5 MCUPS and an
efficiency of E=47%.

5.8 TInMANN
Van den Bout et al. [41, 52, 53] have suggested a stochastic all
digital implementation of Competitive Kohonen learning (see
section 2.3) called TInMANN.

Their modifications to the SOFM model make it possible to use
very simple PEs. A typical node would consist of two registers
(10-12 bits), two adders or subtractors, two flags, memory for
weights, gated broadcast, global-or function and some control
logic. A VLSI version of TInMANN has been implemented
where each node used 4000 transistors [41]. Using 10-bit
weights the memory could be used for three to four weights per
node, i.e. the input vector length M is very limited. The update
rate, using 20MHz clock, is 267000 updates per second per
node using M = 3. If one million transistors were used a 250
node chip could be constructed and thus giving 200 MCUPS
per chip. As broadcast is used there is no problem to extend the
system outside the chip boundaries.

A “rapid prototyping” version of the architecture in reconfig-
urable logic (XILINX) is also reported [53]. To eliminate some
complexity and space, the architecture uses bit-serial nodes.
Each chip (X3020) contains 3 PEs and external RAM is used
for weights (i.e. much larger M can be used). One circuit board,
called Anyboard, contains up to 8 X3020 and thus contains up
to 21 PEs. This project was not completed. However, simple
calculations showed that the interface between the host and the
bit-serial nodes over the IBM PC bus was the major bottleneck.
Ignoring the bus interface, the nodes were quite fast [51].

8

6.0 CONCLUSION
Unless especially tuned for SOM as REMAP3, none of the
computers studied have very high efficiency. As many of the
performance figures given in the literature are measured under
vastly different experimental setups, the figures given for
MCUPS and efficiency, should be used cautiously. Still, the
figures together with our analysis, indicate that the communi-
cation structure and the control mechanism are of little impor-
tance for the calculation of SOM. When designing a high
performance SOM computer the design effort must be on im-
plementing efficient (with respect to time and area) multipliers
which can be supported with operands from the controller, e.g.
using broadcast, together with high bandwidth access to local
memory.

The fact that the neighbourhood becomes very small to-
wards the end of the training session seems easier to take ad-
vantage of on a coarse grain MIMD computer. Even if only one
PE is working there will be relatively fewer idle processors
during the updating step, thus giving the MIMD computer a
possibly better efficiency.

The analysis also indicates that SOM can be mapped efficiently
onto bit-serial SIMD computers. The only requirement is that a
bit-serial multiplier is included to support the many multiplica-
tions.

By modifying the algorithm to include a “stochastic signal” it
is possible to run competitive learning without using multipli-
cation. This makes it possible to achieve enormous update

Nc

rates, but as the updates are of a different kind, it is difficult to
compare it to the original method with respect to speed. Still,
this modification is very interesting as an alternative to ordi-
nary competitive learning algorithms, as it reduces the archi-
tectural components needed for the computation. Moreover,
bit-serial SIMD computers could be considered as one of the
prime candidates for an efficient implementation of this modi-
fied SOM algorithm.

The natural and totally dominating dimension of parallelism is
the node parallelism. Training example parallelism has been
used, but it seems that only relatively small batch sizes may be
used as there will otherwise be failures in the topological or-
dering. The weight parallelism and the mixed mapping, which
were successfully used in the computation of Kanerva’s SDM
model [43], can not be used efficiently for the calculation of the
SOM model. This is due to the fact that the adaptation is taking
place in the weight matrix which is also used for the selection
phase, whereas for SDM the adaptation is made in a separate
matrix.

Figure 3 The performance figures on SOFM simulations, for all the discussed computers. The efficiency E is cal-
culated as 3.75 CUPS/IPSmax. No efficiency figure has been given if the CUPS figure is incompatible with the
other figures.The number of processors is denoted by n, the number of nodes by N, the dimension of the input
vector by M, the number of bits used for weights by and the update rate by u.
Note that if the computer manufacturer has been given “to high” maximum performance figures, the efficiency
figure will be proportionally lower.

COMPUTER n Max MIPS N M δ u MCUPS E
(MFLOPS)

CM 16384 2500 16384 100 FP 48 -%

MasPar 4096 376 4096 16 FP 250 16 16%
4096 376 4096 256 FP 17 18 18%

Warp 10 100 1024 16 FP 522 8.6 32%
10 100 1024 128 FP 95.4 12.5 47%

Transputer
Obermayer 30 45 14400 100 FP 2.4 -%
Siemon 16 24 16384 17 FP 9.8 2.7 40%

CNAPS 256 10240 512 128 8 210 8%
256 10240 512 128 16 180 7%

REMAP3 128 80 2048 128 8 67 17.5 82%
1024 640 1024 10 8 11800 121 71%
2048 1280 2048 128 8 1070 280 82%
2048 640 2048 128 16 539 141 83%

TInMANN 250 - 250 3 10 267000 200 -%

δ

9

7.0 REFERENCES
[1] Blank, T. "The MasPar MP-1 Architecture." In Proceedings of

COMPCON Spring 90, pp. 20-24, San Francisco, CA, 1990.

[2] Bowler, K. C., et al. An Introduction to OCCAM 2 Programming.
Chartwell-Bratt. 1987.

[3] Bradburn, D. S. "Reducing transmission error effects using a self-
organizing network." In International Joint Conference on Neural
Networks, Vol. 2, pp. 531-537, Washington, DC, 1989.

[4] Chinn, G., et al. "Systolic array implementations of neural nets on
the maspar MP-1 massively parallel processor." In International
Joint Conference on Neural Networks, Vol. 2, pp. 169-173, San
Diego, 1990.

[5] Christy, P. "Software to support massively parallel computing on
the MasPar MP-1." In Proceedings of COMPCON Spring 90, pp.
29-33, San Fransisco, CA, 1990.

[6] DeSieno, D. "Adding a conscience to competitive learning." In
International Conference on Neural Networks, Vol. 1, pp. 117-
124, San Diego, 1988.

[7] Duranton, M. and J. A. Sirat. "Learning on VLSI: A general pur-
pose digital neurochip." In International Conference on Neural
Networks, Washingtin, DC, 1989.

[8] Duranton, M. and J. A. Sirat. "Learning on VLSI: A gerneral-pur-
pose digital neurochip." Philips Journal of Research. Vol. 45(1):
pp. 1-17, 1990.

[9] Fernström, C., I. Kruzela and B. Svensson. LUCAS Associative
Array Processor - Design, Programming and Application Studies.
Vol 216 of Lecture Notes in Computer Science. Springer Verlag.
Berlin. 1986.

[10]Flynn, M. J. "Some computer organizations and their effective-
ness." IEEE Transaction on Computers. Vol. C-21: pp. 948-60,
1972.

[11] Grajski, K. A. "Neurocomputing using the MasPar MP-1." (Tech-
nical Report No. 90-010), Ford Aerospace, 1990.

[12]Grajski, K. A. "Neurocomputing using the MasPar MP-1." Digital
Parallel Implementations of Neural Networks. Przytula and Pras-
anna ed. Prentice-Hall. (Forthcoming). 1992.

[13]Grajski, K. A., et al. "Neural Network Simulation on the MasPar
MP-1 Massively Parallel Processor." In The International Neural
Network Conference, Paris, France, 1990.

[14]Hammerstrom, D. "A VLSI architecture for high-performance,
low-cost, on-chip learning." In International joint conference on
neural networks, Vol. 2, pp. 537-543, San Diego, 1990.

[15]Hammerstrom, D. and N. Nguyen. "An implementation of Kohon-
en's self-organizing map on the Adaptive Solutions neurocomput-
er." In International Conference on Artificial Neural Networks,
Vol. 1, pp. 715-720, Helsinki, Finland, 1991.

[16]Hillis, W. D. and G. L. J. Steel. "Data parallel algorithms." Com-
munications of the ACM. Vol. 29(12): pp. 1170-1183, 1986.

[17]Hodges, R. E., C.-H. Wu and C.-J. Wang. "Parallelizing the self-
organizing feature map on multi-processor systems." In Interna-
tional Joint Conference on Neural Networks, Vol. 2, pp. 141-144,
Washington, DC, 1990.

[18]Hopfield, J. J. "Neural networks and physical systems with emer-
gent collective computational abilities". Proceedings of the Na-
tional Academy of Science USA. 79: pp. 2554-2558, 1982.

[19]Hopfield, J. J. "Neurons with graded response have collective
computational properties like those of two-state neurons". Pro-

ceedings of the National Academy of Science USA. 81: pp. 3088-
3092, 1984.

[20]Hopfield, J. J. and D. Tank. "Computing with neural circuits: A
model." Science. Vol. 233: pp. 624-633, 1986.

[21]INMOS Limited. Occam programming model. Prentice-Hall.
1984.

[22]INMOS Limited. "The Trasputer family 1987". 1987.

[23]INMOS Limited. Occam 2 Reference Manual. Prentice-Hall. Lon-
don. 1988.

[24]Johnson, M. J., N. M. Allinson and K. J. Moon. "Digital realisa-
tion of self-organising maps." In Neural Information Processing
Systems 1, pp. 728-738, Denver, CO, 1988.

[25]Kanerva, P. Sparse Distributed Memory. MIT press. Cambridge,
MA. 1988.

[26]Kangas, J. A., T. K. Kohonen and J. T. Laaksonen. "Variants of
self-organizing maps." IEEE Transaction on Neural Networks.
Vol. 1(1): pp. 93-99, 1990.

[27]Kohonen, T. "The 'neural' phonetic typewriter." Computer. Vol.
21(3): pp. 11-22, 1988.

[28]Kohonen, T. Self-Organization and Associative Memory. (2nd ed.
) Springer-Verlag. Berlin. 1988.

[29]Kohonen, T. "Improved versions of learning vector quantization."
In International Joint Conference on Neural Networks, Vol. 1, pp.
545-550, San Diego, 1990.

[30]Kohonen, T. "The self-organizing map." Proceedings of the IEEE.
Vol. 78(9): pp. 1464-1480, 1990.

[31]Kohonen, T. "Some practical aspects of the self-organizing maps."
In International Joint Conference on Neural Networks, Vol. 2, pp.
253-256, Washington, DC, 1990.

[32]Kohonen, T., et al. "An adaptive discrete-signal detector based on
self-organizing maps." In International Joint Conference on Neu-
ral Networks, Vol. 2, pp. 249-252, Washington, DC, 1990.

[33]Koikkalainen, P. "MIND: a specification formalism for neural net-
works." In International Conference on Artificial Neural Net-
works, Vol. 1, pp. 579-584, Helsinki, Finland, 1991.

[34]Koikkalainen, P. and E. Oja. "Specification and implementation
environment for neural networks using communication sequential
processes." In International Conference on Neural Networks, San
Diego, CA, 1988.

[35]Koikkalainen, P. and E. Oja. "The CARELIA simulator: a devel-
opment and specification environment for neural networks." (Re-
search Report No. 15/1989), Lappeenranta Univ. of Tech, Finland,
1989.

[36]Kung, H. T. "The Warp computer: architecture,implementation
and performace." IEEE Transaction on Computers. Vol. Dec:
1987.

[37]Mann, J. "The effects of circuit integration on a feature map vector
quantizer." In Neural Information Processing Systems 2, pp. 226-
231, Denver, CO, 1989.

[38]Mann, J. and S. Gilbert. "An analog self-organizing neural net-
work chip." In Neural Information Processing Systems 1, pp. 739-
747, Denver, CO, 1988.

[39]Mann, R. and S. Haykin. "A parallel implementation of Kohonen
feature maps on the Warp systolic Computer." In International
Joint Conference on Neural Networks, Vol. 2, pp. 84-87, Washing-
ton, DC, 1990.

10

[40]Martinetz, T. M., H. J. Ritter and K. J. Schulten. "Three-dimen-
sional neural net for learning visuomotor coordination of robot
arm." Transaction on neural networks. Vol. 1(1): pp. 131-136,
1990.

[41]Melton, M., et al. "VLSI Implementation of TInMANN." In Ad-
vances in Neural Information Processing Systems 3, Denver, CO,
1990.

[42]Nickolls, J. R. "The design of the MasPar MP-1: a cost effective
massively parallel computer." In Proceedings of COMPCON
Spring 90, pp. 25-28, San Fransisco, CA, 1990.

[43]Nordström, T. "Sparse distributed memory simulation on REM-
AP3." (Research Report No. TULEA 1991:16), Luleå University
of Technology, Sweden, 1991.

[44]Nordström, T. and B. Svensson. "Using and designing massively
parallel computers for artificial neural networks." (Research Re-
port No. TULEA 1991:13), Luleå University of Technology, Swe-
den, 1991.

[45]Obermayer, K., H. Ritter and K. Schulten. "Large-scale simula-
tions of self-organizing neural networks on parallel computers: ap-
plication to biological modelling." Parallel Computing. Vol.
14(3): pp. 381-404, 1990.

[46]Ritter, H. J., T. M. Martinetz and K. J. Schulten. "Topology con-
serving maps for learning visuo-motor-coordination." Neural Net-
works. Vol. 2(3): pp. 159-168, 1989.

[47]Rumelhart, D. E. and J. L. McClelland. Parallel Distributed
Processing; Explorations in the Microstructure of Cognition. Vol I
and II MIT Press. Cambridge. 1986.

[48]Siemon, H. P. and A. Ultsch. "Kohonen networks on transputers:
Implementation and animation." In International Neural Network
Conference, Vol. 2, pp. 643-646, Paris, 1990.

[49]Svensson, B. and T. Nordström. "Execution of neural network al-
gorithms on an array of bit-serial processors." In 10th Internation-
al Conference on Pattern Recognition, Computer Architectures for
Vision and Pattern Recognition, Vol. II, pp. 501-505, Atlantic City,
New Jersey, USA, 1990.

[50]Thinking Machines Corporation. "Connection Machine, Model
CM-2 Technical Summary." (Version 5.1), T M C Cambridge,
Massachusetts, 1989.

[51]Van den Bout, D. E. 1991. Personal communication.

[52]Van den Bout, D. E. and T. K. M. III. "TInMANN: The integer
Markovian artificial neural network." In International joint con-
ference on neural networks, Vol. 2, pp. 205-211, Washington,
1989.

[53]Van den Bout, D. E., W. Snyder and T. K. Miller III. "Rapid proto-
typing for neural networks." Advanced Neural Computers. Eck-
miller ed. North-Holland. Amsterdam. 1990.

[54]Whitby-Stevens, C. "Transputers — past, present, and future."
IEEE Micro. (December): pp. 16-82, 1990.

[55]Wilson, S. S. "Neural computing on a one dimesional SIMD ar-
ray." In 11:th International Joint Conference on Artificial Intelli-
gence, pp. 206-211, Detroit, Michigan, USA, 1989.

