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Abstract—Analysis, assessment, and design of advanced wire-
line transmission schemes over multipair copper cables require
accurate knowledge of the channel properties. This paper in-
vestigates modeling of multiconductor cables based on interpair
impedance measurements. A unified approach to the application
of the “Cioffi” model is introduced. The direct measurement
approach of the underlying interpair impedances yields a good
match with the alternative approach suggested in the recent study
of Cioffi et al. Crosstalk coupling functions derived from the model
exhibit a good match with the corresponding direct measurements
in the case in which the modeled length is close to the length of
the interpair impedance measurements. However, the prediction
power of this model with respect to termination impedance is
limited.

Index Terms—Cable measurements, channel modeling, digital
subscriber line (DSL), multiconductor model, multiple-input
multiple-output (MIMO).

I. INTRODUCTION

IGH-SPEED Internet access over telephone lines—

unshielded twisted pairs of copper—keeps gaining im-
portance. Various digital subscriber line technologies [3], [4]
enable services with different data rates, depending on the loop
length and on the noise environment. The continuously growing
demand for data rate, as well as the operators’ goal of exploiting
their cables in the best possible way, drives the development
of wireline communications. Next-generation techniques, like
vectored methods [5] and multiuser schemes [6] proposed in
the context of dynamic spectrum management [7], view the
cable as a multiple-input multiple-output (MIMO) channel. The
investigation of these techniques requires accurate knowledge
of the channel properties.

The two favored MIMO cable models [1], [8] result in equiv-
alent ABCD-matrix descriptions. However, the underlying pa-
rameters and measurements required for their determination
differ. Measurements and modeling results based on the “Joffe”
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model [8] are presented in [9]. The focus of this work is on the
“Cioffi” model [1], which requires interpair impedance mea-
surements, i.e., measurements of the impedances between wires
of different pairs in a cable. Given this model and an arbitrary
termination of the cable at each side, it is possible to determine
crosstalk coupling functions, insertion-loss functions, transfer
functions, and input impedances. It should be pointed out
that the advantage of this multiconductor modeling approach,
compared to direct measurements of individual coupling or
transfer functions, does not lie in reduced measurement effort
but, at least theoretically, rather in gaining independence of
termination impedances and loop length.

II. MIMO CABLE MODELING

A cable of length L with m pairs is described by its character-
istic impedance matrix Z. € C™*™ and its propagation matrix
~ € C™", where n = 2m — 1 [1], [10]. On each side of the
cable, n voltages Vi (f), 1 < k <n and n currents I(f), 1 <
k < n can be defined as shown for the two-pair case (m = 2,
n = 3) in Fig. 1. All currents, voltages, and impedances depend
on the frequency f, which we will omit in the following
wherever possible, for the sake of simple notation. The voltages
V = [V, ---V1]T and the currents I = [I,,--- I;]T fulfil V =
Z oI, where

Ziy = Z. (cosh(y"L) +sinh(v"L)Z; ' Z,)

x (cosh(yTL)Z;'Z. + sinh('yTL)y1 (1)

is the input impedance matrix! and Z is the far-end termination
impedance matrix, for which V' = Z.I' holds with V' =
(Vi .V/]Y and I' = [T}, - - - I]*. The voltages V and V' =
TV are related via the transfer-function matrix

T = (cosh(y"L) + sinh(')/TL)Zt’IZCY1 . )

For a given cable, described by Z. and =, and for a given
setup, which consists of the excitation of a certain pair and the
termination of all remaining ends, important characteristics can
be determined from the voltages V' and V'. For example, in
the setup shown in Fig. 1, insertion loss Hi,s = V{/V1, transfer
function Hyyans = V| / Vs, near-end crosstalk (NEXT) coupling

'Note that all operations like cosh(-), sinh(-), and (-)~1/2 with matrix
arguments denote matrix functions.
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function Hyext = (V3 — Va)/ V3, and far-end crosstalk (FEXT)
coupling function Heeyt = (V4 — V3)/Vy are typical channel
properties of interest from a communication point of view. A
unified approach to finding V involves solving a system of 2n
linear equations. The unknowns are V' and I. The equations
are obtained from the conditions imposed by the near-end
termination of the wire ends (side A) and by the excitation. For
example, the equation system for the setup shown in Fig. 1 is
given by

Zin3z3 Zinz2 Zinzi —1 0 0 0
Zin2s Zing2 Zin21 0 -1 0 0
Zinig  Zing2z Zimun 0 0 —1 1 _|o
Rw 0 0 1 -1 0 [V] = o
0 Rs, 0 1 -1 0 0
0 0 Ry 0 0 1 Vi

3)

where Z;,, ;; denotes the element in row 1 — ¢ + 1 and column
n — 7+ 1 of the input impedance matrix Z;j, given by (1).
Solving the equation system yields V and, thus, V' = T'V as
well, with T" given by (2). The far-end termination (side B),
specified by Z4, is required for computing both Z;,, and T'. For
our example, Z; is given by

1/Ryy —1/Ryy 0
Z;'=|-1/Ryy 1/Roy 0
0 0 1/Rys

Note that all variables are frequency-dependent.

III. INTERPAIR MEASUREMENTS

The characteristic impedance matrix Z. and the propagation
matrix v of an Ly cas-meter-long cable are given by

Z.=(2.2;")"* z,

and

vy = tanh ™! ((ZSZgl)fl/Q)

meas

respectively, where Z, is the open-circuit impedance matrix,
and Zj is the short-circuit impedance matrix [1]. The element
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Simple example of a multipair cable channel with two pairs, excitation of pair No. 1 by Vs, and termination of the remaining ports by Ry 7, Ron,

in row n—4¢+ 1 and column n—j+1 of Z, and Zj is
defined as

Z{o,s},n—i+1,n—j+1

Vi

: 1=j
) lilp=o, ke{l,.. .N}\i
max{i,j} Vmin{i,j} 275]
Imax{i,i} Lo=0,  ke{l,...N\{ij}

For the short-circuit measurement (Zy), all wires on side B are
connected (V]é =0, 1 <k < n), and for the open-circuit mea-
surement (Z,), all wires on side B are left open ([}, =0, 1 <
k < n). Note that the elements off the main diagonal (i # j)
cannot be measured directly using an impedance analyzer. For
example, the definition of Z12 = (Vo — V1) /I2|1,—0 suggests
to leave A3 open but does not imply that I = —I;, which
would allow measuring the impedance between A2 and Al.
Therefore, we propose to measure

Liln=0, ke{1,...NN{i}’ v=J
Mij = =V ; ;
i
L n=0, ke{l .N\igh 3. I=0’ 7
1<k<N
(%)

for 1 < 7 < i < N and calculate the impedance matrix entries
according to

Mii7

g i=j
ZijZﬂ{%(ZiH‘ij_

Mij), i#j ©)
for 1 < j <4 < N. Note that M;; can be conveniently mea-
sured using an impedance analyzer.

As an example, Fig. 2 shows the measured Z 1o of a
0.6-mm cable with six pairs (vendor identification: FO2YHJ2Y,
PMD6 x 2 x 0.6 [11]) of length Ly,cas = 100 m. We compare
the result of our direct impedance measurement (solid line)
with the result obtained following an alternative approach
(dashed line) suggested in [2, p. 2], which involves measur-
ing the voltage ratio> VG5 = Va/(Vi — V3)|1,=1,=0. The two
approaches yield almost perfectly matching results (they are

2The terminology VGS is adopted from [2].
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Fig. 2. Measured Zg 12 of a 0.6-mm cable with six pairs (vendor identifica-
tion: FO2YHJ2Y, PMD6 X 2 x 0.6) of length Lmeas = 100 m. The deviation
of the direct impedance measurement according to (5) and (6) (solid line) from
the result obtained by an alternative approach (see [2, p. 2]), (dashed line) is
negligible.
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Fig.3. Comparison of NEXT coupling function Hyext = (V3 — V2)/V1 for

the setup shown in Fig. 1, with L = 100 mand Ry = Rg2, = Ray = 1354,
which is derived from the multiconductor model (dashed line) with direct
measurement (solid line). The shaded area marks the spread of all 30 directly
measured NEXT coupling functions.

indistinguishable in the figure); however, the determination of
VGS5 is more intricate since it involves voltage measurements
using a high-impedance probe.

IV. COMPARISON OF MODELED PROPERTIES
WITH DIRECT MEASUREMENTS

The interpair impedance measurements described in the
previous section yield the cable parameters Z. and ~y, which
allow the derivation of various cable properties, as described in
Section II. Fig. 3 shows the NEXT coupling function Heyxt =
(V3 - ‘/2)/V1 for L = 100mandR1f = Rgn = RQf =135Q.
The modeled coupling function (dashed line) based on the
impedance measurements for Lc,s = 100 m matches the
direct measurement (solid line) reasonably well, considering
the fact that the cable parameterization involves 12 impe-
dance measurements. The shaded area marks the spread of all
30 directly measured NEXT coupling functions.
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Fig. 4. Comparison of NEXT coupling functions derived from the model
based on impedance measurements (Lmeas = 100 m) for L = 100 m, Ry =
1 MQ, and Rz, = Roy = 135 Q (dashed line) with direct measurement
(solid line). In order to assess the degree of deviation, the direct measure-
ment for Ryy =135 Q, Ray, = Rpy = 135 Q, and L = 100 m is shown
(dashed—dotted).

Fig. 4 shows the prediction power of the model based on
the impedance measurements for Lpeas = 100 m with re-
spect to termination impedance. The plot shows the NEXT
coupling functions for L = 100 m and Ri; =1 M), Ry, =
Ro¢ = 135 2 derived from the multiconductor model (dashed
line) and measured directly (solid line). The variation with
respect to the directly measured coupling function for Ry =
135 € (dashed—dotted line), which is plotted as a reference, is
considerable.

V. DISCUSSION OF RESULTS AND CONCLUSION

The match of modeled and measured coupling functions
is good in the case in which the modeled cable length L is
equal to the interpair impedance measurement length Ly eas.
However, apart from roughly following the same trend, the
predicted coupling function for an arbitrary termination exhibits
a poor match with its directly measured counterpart for the
following reasons. First, the model is based on results of 12 (for
the two-pair case) individual measurements, which makes the
model sensitive to deviations. Second, and more importantly,
the model assumes that the characteristic matrix impedance Z .
and the propagation matrix -« are independent of the length,
i.e., the cable properties are uniform over the length. Such an
assumption is not justified for many conductors in a bundle
cable. Consequently, the prediction power of the model with
respect to length is limited. An improved modeling approach
would probably involve modeling of very short cable segments
and integration over these segments in order to obtain the
properties for a certain length.
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