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ABSTRACT
Communication over the copper twisted-pair channel is performed
by transmitting and receiving differential-mode (DM) signals. In
this paper, we extend the conventional DM receive scheme by in-
corporating the common-mode (CM) signal, which can be extracted
at the end of every wire pair. We assess the potential of this idea for
digital subscriber line systems (xDSL) in terms of channel capacity
using channel measurement data.

We show that especially those scenarios that suffer strong in-
terference benefit most from joint DM-CM processing, since the
interference at the DM port is strongly correlated with the interfer-
ence at the CM port in these cases. Numerical evaluation of VDSL
example scenarios shows that the capacity of the twisted-pair chan-
nel when using also the CM signal can exceed the capacity of the
conventional DM channel by a factor of up to three.

1. INTRODUCTION

Communication over the copper twisted-pair (TP) cable is one of
the major access technologies. Several types, characterised by dif-
ferent transmission rates and different loop lengths, are standard-
ised and widely deployed as digital subscriber line (xDSL) tech-
nologies [1]. In all these schemes, transmission is carried out by
sending and receiving differential-mode (DM) signals, as depicted
in Fig. 1. At physical layer level, DM signals appear as a voltage
difference

d(t) = c1(t)− c2(t)

measured between the two wires, as shown in Fig. 1. The common-
mode (CM) signal, in contrast, is the arithmetic mean of the voltages
c1(t) and c2(t), which are measured between each wire and earth:

c(t) =
c1(t)+ c2(t)

2
.

The CM signal, freely available at the end of every TP, is easily
extracted by a symmetric impedance network, e.g., from the center
tap of a transformer (cf. Fig. 1). In this paper, we treat the CM
signal as an additional receive signal. This idea, also described
in [2-4], is motivated by an interference mitigation technique that
employs the CM signal as a reference in order to detect and cancel
narrowband disturbance [5, 6].

Due to electromagnetic coupling, the CM signal consists of a
component correlated with the useful signal we would like to re-
ceive and two different noise components: noise that is correlated
with the noise that appears at the DM input and independent noise.
We assume that these correlations are known at the receiver and in-
vestigate the capacity gain that can be achieved by joint DM-CM
reception compared to the conventional DM-scheme (cf. Fig. 1).
Note that we incorporate the CM signal only in the receiver. We
do not transmit CM signals since this would lead to radio frequency
emission and cause severe interoperability problems with existing
wireless services. Compared to other interference mitigation tech-
niques [7, 8] or multiuser schemes [9, 10], this approach has the ad-
vantage that no access to transmitted or received data of transceivers
operating on adjacent lines is required.

conventional DM processing

joint DM−CM processing
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Figure 1: Conventional DM processing and joint DM-CM process-
ing.

In Section 2, a suitable channel model based on supporting ca-
ble measurements, as well as the channel capacity calculation are
introduced. Capacity gain results for VDSL transmission are pre-
sented in Section 3 followed by concluding remarks in Section 4.

2. CHANNEL MODEL AND CAPACITY

2.1 Channel Model

We consider the channel to be time-invariant during the transmis-
sion of our signal segment of interest. This is a reasonable assump-
tion for wireline channels, which change their transmission proper-
ties only due to slowly varying parameters, e.g., temperature.

The TP can be modelled as a Gaussian channel with inter-
symbol interference (ISI). The time-domain output of the k-th TP
in a K-pair cable is given by (1), where the used symbols are sum-
marised in Table 1. The transmit signals xm,m 6= k of neighbour-
ing pairs cause mutually correlated noise components on the CM
port and the DM port due to far-end crosstalk (FEXT). Near-end
crosstalk (NEXT) and echo may be caused by transmitters located
at the same side as our receiver. These disturbers as well as other
impairments leading to correlated noise are taken into account by
the M vectors vm. An example for such a noise source that has its
origin outside the cable is radio frequency interference (RFI) [6].
Apart from these dependent noise components there are two inde-
pendent noise components, one at the DM port and one at the CM
port of the TP modelled by v(d)

k
and v(c)

k
, respectively. Independent

noise models thermal background noise and noise generated by the
analog front-end. The time-domain model (1) does not assume any
particular modulation type or synchronised transmission of all the
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(1)

users. It is reasonable to assume that background noise, the trans-
mitted signals, at least for discrete multitone (DMT) systems, and
thus also crosstalk are Gaussian. Hence, the entries of both x and
v are independent Gaussian random variables. Correlation among
the samples, or equivalently, spectral shaping, is introduced by the
convolution matrices contained in Hx and Hv. The entries of all
convolution matrices and all vectors are real valued.

Since there are no established crosstalk models for the CM path,
as it is the case for the DM path [11], our model is based on mea-
surement results described in the following subsection.

2.2 Channel Measurements

For evaluation of the channel capacity it is essential to apply real
data for the convolution matrices in (1). We measure the frequency-
domain transfer functions (both magnitude and phase) with a reso-
lution of 8192 points in the range from 0 to 30MHz, as described
in [12]. The impulse responses and convolution matrices are ob-
tained from the transfer functions using the inverse discrete Fourier
transform (IDFT). For the capacity results presented in the next sec-
tion we use the measurement data of a 0.6mm cable with 6 pairs
(vendor identification: F02YHJ2Y, PMD6x2x0.6) of length 100m.

time-domain vectors
xk transmit signal on k-th TP
dk DM receive signal on k-th TP
ck CM receive signal on k-th TP
vm near-end transmit signal on m-th TP,

or other disturber
v(d)

k
independent noise on DM of k-th TP

v(c)
k

independent noise on CM of k-th TP

convolution matrices

H(d)
k,k

DM to DM path of k-th TP

H(d)
k, j

,1≤ j≤K FEXT path from j-th TP to k-th TP

H(d)
k,K+ j

NEXT path from j-th TP to k-th TP,

DM echo path of k-th TP,
or coupling path of other disturber to DM port

H(c)
k,k

DM to CM path of k-th TP

H(c)
k, j

,1≤ j≤K DM to CM FEXT path from j-th TP to k-th TP

H(c)
k,K+ j

CM NEXT path from j-th TP to k-th TP,

CM echo path of k-th TP,
or coupling path of other disturber to CM port

Table 1: Definition of the symbols used in the model (1).

2.3 Channel Capacity

The channel capacity is defined as the maximum mutual informa-
tion of the two random vectors y and x [13]:

C = max
pdf(x), σ 2

x=const.
I(y;x). (2)

Maximisation is performed over all probability density functions
pdf(x) of the input vector x with a given finite per-sample vari-
ance σ2

x . As discussed above, we assume that the elements of both
the transmit signal vector x and the noise vector v are independent
zero-mean Gaussian distributed random variables. The channel is
deterministic and known at the receiver. Thus the channel capacity
C corresponds to the mutual information since Gaussian distribu-
tion of the input signal maximises (2). The numerical results pre-
sented in the next section have been obtained using the capacity
result of [14] for our Gaussian channel model (1).

Note that the numerical results presented in this paper are ob-
tained using measurement results for the CM transfer functions,
since there exist no models, neither of deterministic nor statistical
nature, that describe the CM behaviour of cables. Consequently, the
actual capacity results may vary largely from cable to cable. The
main point of this work is to illustrate the potential of joint DM-CM
processing for xDSL.

3. ASSESSMENT OF CHANNEL CAPACITY GAIN

In the following we investigate a VDSL scenario with particularly
severe noise conditions. We assess the benefit of joint DM-CM pro-
cessing in terms of relative capacity gain

∆C =
CDM-CM−CDM

CDM
,

where CDM-CM = I(y;x) and CDM = I(dk;x) are the capacities1

achieved by joint DM-CM reception and conventional DM recep-
tion, respectively.

Very high datarate DSL (VDSL) transmission exploits the fre-
quency range up to 12MHz according to the current status of stan-
dardisation [15, 16]. Since frequency division duplexing is em-
ployed, the performance of this scheme is potentially FEXT-limited.
Fig. 2 depicts the scenario under consideration. A long-reach
transmission over a loop of length Lloop = 1000m is disturbed by
crosstalk from NFEXT VDSL modems that are located Lxt = 100m
away from our receiver. This unequal-length FEXT scenario would
necessitate a power backoff scheme in order to ensure reasonably
low crosstalk levels on our loop [17, 18]. However, in case power

1The capacity corresponds to the mutual information since the channel is
assumed to be known only at the receiver and the input signals are Gaussian.
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Figure 2: Simulation setup: VDSL transmission over a pair of
length Lloop with NFEXT self-FEXT disturbers located at a distance
Lxt = 100m from the receiver. The convolution matrices corre-
spond to the model (1) with k = 1.
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Figure 3: Capacity gain ∆C as a function of the background noise
PSD levels PSDn,d at the DM port and PSDn,c at the CM port in
upstream direction for a 0.6mm loop of length Lloop =1000m with
a single equal-power FEXT disturber (NFEXT =1) located at a dis-
tance Lxt =100m. The non-solid lines show the capacity gains for
constant ratios PSDn,c/PSDn,d .

backoff is employed, the crosstalking transmitter has to reduce its
transmit power, thus limiting its own datarate or reach, respectively.
We use a standardised 4-band plan referred to as “997”-plan [16].

The relative capacity gain results for upstream and downstream
transmission with a single FEXT disturber (NFEXT =1) are shown
in Fig. 3 and Fig. 4, respectively. Let us first consider the solid lines,
which denote constant CM noise power spectral density (PSD) lev-
els. With decreasing DM background noise PSD level PSDn,d the
capacity gain rises for low CM noise PSD values PSDn,c since the
two clear views on the interference allow cancellation. The flatten-

−140−130−120−110−100
0

10

20

30

40

50

60

70

80

PSfrag replacements

PSDn,d[dBm/Hz]

∆
C

[%
]

PSDn,c = −140 dBm/Hz
PSDn,c = −130 dBm/Hz
PSDn,c = −120 dBm/Hz
PSDn,c = −110 dBm/Hz
PSDn,c = −100 dBm/Hz
PSDn,c/PSDn,d = 1

PSDn,c/PSDn,d = 10

PSDn,c/PSDn,d = 100

Figure 4: Capacity gain ∆C as a function of the background noise
PSD levels PSDn,d at the DM port and PSDn,c at the CM port in
downstream direction for a 0.6mm loop of length Lloop =1000m
with a single equal-power FEXT disturber (NFEXT =1) located at a
distance Lxt =100m. The non-solid lines show the capacity gains
for constant ratios PSDn,c/PSDn,d .
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Figure 5: Capacity gain ∆C versus CM background noise PSD
level PSDn,c for different numbers NFEXT of FEXT disturbers in
upstream (solid lines) and downstream (dashed lines) direction
(PSDn,d =−130dBm/Hz, Lloop =1000m, Lxt =100m).

ing of the curves for high CM background noise PSD levels, e.g.,
PSDn,c =−100dBm, and for low DM background noise PSD lev-
els PSDn,d indicates that the influence of the CM background noise
becomes more severe. The non-solid lines show the capacity gain
for constant ratios PSDn,c/PSDn,d of the background noise PSD
levels. The lower this ratio, the clearer the view on the interference
at the CM port, the higher the capacity gain. The results for the two
directions differ due to the different band allocation. For upstream
transmission the benefit is larger compared to the downstream case
since the bands used for upstream are located at higher frequencies
and therefore suffer more attenuation.
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Figure 6: Capacity gain ∆C versus CM background noise PSD level
PSDn,c for different loop lengths Lloop and a single FEXT disturber
in upstream (solid lines) and downstream (dashed lines) direction
(NFEXT =1, PSDn,d =−130dBm/Hz, Lxt =100m).

Fig. 5 shows ∆C as a function of the CM background
noise PSD level PSDn,c for different numbers of FEXT dis-
turbers NFEXT and for a constant DM background noise PSD level
PSDn,d =−130dBm/Hz. In case only background noise is present
(NFEXT = 0), there is virtually no benefit of joint DM-CM process-
ing, since the additional signal power gained from the CM port is
very low. The case with a single FEXT disturber (NFEXT = 1) yields
the largest benefit since the FEXT can, at least in theory, be com-
pletely cancelled—the capacity gain is limited by the background
noise on both the CM port and the DM port. The values of ∆C drop
drastically as the number of disturbers increases (NFEXT > 1).

Fig. 6 shows ∆C as a function of PSDn,c for different loop
length Lloop and a single FEXT disturber (NFEXT = 1). The ca-
pacity gain increases with the loop length since the receive signal
becomes weaker while the crosstalk level stays constant. Viewing
the situation from an interference cancellation perspective reveals
that a reduction of the crosstalk level by a certain amount results in
a larger relative signal-to-noise ratio (and thus also capacity) gain
for a weaker signal.

4. SUMMARY AND CONCLUSION

Conventional communication over copper twisted-pair channels is
performed by transmitting and receiving differential-mode (DM)
signals. In this paper, we extend this approach by incorporating
the common-mode (CM) signal, a freely available signal at the out-
put of every channel, at the receiver. We evaluate this approach in
terms of relative channel capacity gain using channel measurement
data.

For the VDSL example scenario, the relative capacity gain
amounts to a factor of up to three when a single strong FEXT dis-
turber is present. The capacity gain drops significantly with the
number of FEXT disturbers. As expected, there is virtually no ben-
efit of joint DM-CM processing in case only background noise is
present.
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[1] W. Henkel, S. Ölçer, K. S. Jacobsen, and B. R. Saltzberg,
“Guest Editorial Twisted Pair Transmission—Ever Increasing
Performances on Ancient Telephone Wires,” IEEE J. Select.
Areas Commun., vol. 20, no. 5, pp. 877–880, June 2002.

[2] T. H. Yeap, “A Digital Common-Mode Noise Canceller
For Twisted-Pair Cable,” ANSI Contribution T1E1.4/99-260,
1999.
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[6] P. Ödling, P. O. Börjesson, T. Magesacher, and T. Nordström,
“An Approach to Analog Mitigation of RFI,” IEEE J. Select.
Areas Commun., vol. 20, no. 5, pp. 974–986, June 2002.

[7] C. Zeng and J. M. Cioffi, “Near-End Crosstalk Mitigation in
ADSL Systems,” IEEE J. Select. Areas Commun., vol. 20, no.
5, pp. 949–958, June 2002.

[8] G.-H. Im, K.-M. Kang, and C.-J. Park, “FEXT Cancellation
for Twisted-Pair Transmission,” IEEE J. Select. Areas Com-
mun., vol. 20, no. 5, pp. 959–973, June 2002.

[9] G. Ginis and J. M. Cioffi, “Vectored Transmission for Digital
Subscriber Line Systems,” IEEE J. Select. Areas Commun.,
vol. 20, no. 5, pp. 1085–1104, June 2002.
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