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Abstract — We extend Cover’s two-look Gaussian
channel to dispersive, linear, time-invariant channels.
An arbitrary number of colored, additive, station-
ary, Gaussian noise/interference sources is consid-
ered. Each noise/interference source may cause corre-
lated or uncorrelated components observed by the two
looks. The novelty of this work is a capacity formula
derived using the asymptotic eigenvalue distribution
of block-Toeplitz matrices as well as the application
of this result to wireline communications.

I. Extension of the two-look Gaussian channel

We extend the scalar two-look Gaussian channel ([1], p. 264)
[
Y1

Y2

]

=X+

[
N1

N2

]

, X ∼N
(
0, σ2

x

)
,

[
N1

N2

]

∼N

(

0, σ2
n

[
1 ρ

ρ 1

])

,

whose capacity is C = 1
2

ld
(

1+
2σ2

x

σ2
n(1+ρ)

)

bits per use, to the

dispersive case of channel length N with K independent noise
sources. Each of the two looks consists of L random variables,
representing T -spaced samples, that are stacked in y1 and y2,
respectively:
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The matrices Hx and Hn consist of Toeplitz blocks. We con-
sider continuous transmission, hence L → ∞. In order to cal-
culate the power-constrained channel capacity, we make the
following assumptions: a) The receiver has perfect channel
knowledge. b) The transmitter has no channel knowledge,
hence the covariance matrix of the zero-mean Gaussian input
vector x is Cxx = σ2

xI . c) All elements of the Gaussian noise
vector n are uncorrelated, have zero mean, and their covari-
ance matrix is Cnn = diag

{[
σ2

n,1· · ·σ
2
n,K

]}
⊗ IL+N−1. d) All

random vectors and convolution matrices are assumed to be
real-valued.

II. Capacity Formula

The capacity in bits per second of the extended two-look Gaus-
sian channel, defined in the previous section, is given by
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1This work was done in part while Thomas Magesacher was with
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TL({tu,v

(1) }) and Hn Cnn Hn
T = TL({tu,v

(2) }). This result is
obtained using the asymptotic eigenvalue distribution of
block-Toeplitz matrices following Theorem 3 of [2]. Results
for the corresponding case with continuous random processes
can be derived based on [3].

III. Application to wireline communications

Our capacity result (2) can be applied to data transmission
over the copper twisted pair in the following manner. At phys-
ical layer level, the signal is transmitted as a voltage differ-
ence between the two wires, i.e., as a differential-mode signal.
Without changing the transmitted signal, we obtain an addi-
tional observation by measuring the common-mode signal at
the receiver, which is defined as the arithmetic mean of two
voltages between each wire and earth2. This scenario is mod-
eled as a two-look channel, where y1 is the differential-mode
signal and y2 is the common-mode signal.

Under realistic assumptions for the expected strong
crosstalk in VDSL (very high speed digital subscriber line)
systems [4], we found that the capacity of the two-look chan-
nel can exceed the capacity of the single-look channel roughly
by a factor of two. The case with the greatest gain is when
there is a dominant interferer and low noise power levels on
both looks.
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2Although one could in principle envisage to also transmit a
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