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During the past 10 years the fields of artificial neural networks 
(ANNs) and massively parallel computing have been evolving 
rapidly. In this paper we study the attempts to make ANN algo­
rithms run on massively parallel computers as well as designs of 
new parallel systems tuned for ANN computing. Following a brief 
smvey of the most commonly used models, the different dimen­
sions of parallelism in ANN computing are identified, and the 
possibilities for mapping onto the structures of different parallel 
architectures are analyzed. Different classes of parallel architec­
tures used or designed for ANN are identified. Reported imple­
mentations are reviewed and discussed. It is concluded that the 
regularity of ANN computations suits SIMD architectures per­
fectly and that broadcast or ring communication can be very effi­
ciently utilized. Bit-serial processing is very interesting for ANN, 
but hardware support for multiplication should be included. Fu­
ture artificial neural systems for real-time applications will require 
flexible processing modules that can be put together to form 
MIMSIMD systems. © 1992 Academic Press, Inc. 

1.0. INTRODUCTION 

This paper is intended to provide a survey of the use 
and design of massively parallel computers for artificial 
neural networks (ANNs) and to draw conclusions based 
on reported implementations and studies. The simple 
control structure that characterizes massively parallel 
computers can be SIMD (Single Instruction stream, Mul­
tiple Data streams) or a highly restricted form of MIMD 
(Multiple Instruction streams, Mu1tiple Data streams) 
that we call SCMD (Same Code for Multiple Data 
streams). 

We try to identify the architectural properties that are 
important for simu1ation of ANNs. We also emphasize 
the importance of the mapping between algorithms and 
architecture. ANN computations are communication in­
tensive, a fact which may put strong demands on the 
communication facilities of the architecture. Moreover, 
the requirements vary with the ANN model used and the 
mapping between the algorithm and the architecture. 
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The paper is organized into three parts: The first part 
(Sections 1 through 7) is ANN-oriented. It .concentrates 
on ANN models and those characteristics of the models 
that are of interest when considering parallel implementa­
tion. In this part we first go through the basic~ of artificial 
neural networks and ANN algorithms. We then discuss 
some general computational topics that are relevant for 
the implementation of any ANN model, such as the pre­
cision of the calculations and the opportunities for paral­
lel execution. We conclude the ANN-oriented part with a 
discussion of different measurements of speed for ANN 
computations. 

The second part (Sections 8 and 9) is architecture­
oriented. Here we define different classes of parallel 
computer architectures and give a review of the types of 
ANN algorithms that have been implemented on com­
puters of these classes. 

In the final part of the paper (Section 10) we analyze 
what experiences can be drawn from the reported imple­
mentations and try to determine what requirements will 
be placed on massively parallel computers for ANN sim­
u1ation in the future-in batch processing, in real-time 
applications, and in action-oriented systems. In real-time 
applications, the speed of the input data flow and the 
requirements for output data are set by the environment. 
In action-oriented systems, sensory, motor, and process­
ing parts, all possibly utilizing neural network principles, 
are seen as integrated systems capable of interacting with 
the environment. These systems are sometimes called 
"sixth-generation computers" [2, 3]. 

2.0. THE BASICS OF ARTIFICIAL NEURAL NETWORKS 

In this section we describe the basic properties and 
terminology of biological neurons and networks. We also 
show some simple models of these biological structures. 

It should be noted that ANN s are often far from being 
good biological models. Instead they may be seen as bio­
logically inspired algorithms. Studying "the real thing" 
will give perspective on how simple our models are and 
how complex the brain is. 
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FIG. 1. The principal components of a basic neuron. The input comes to the neuron through synapses on the dendrites. If there are enough 
stimuli on the inputs there will be an activation (impulse) through the axon which connects to other cells via synapses. 

2.1. The Biological Neuron 

The basic building block of the brain is the nerve cell 
(neuron). In humans there are about 1012 neurons. Neu­
rons come in many varieties. They are actually all differ­
ent but can be grouped into at least 50 types of cells. 

The principal components of a neuron are shown in 
Fig. 1. There is a cell body, a number of dendrites (input), 
and an axon (output). The axon splits and connects to 
other neurons (or muscles, etc.) The connections func­
tion like a sort of chemical resistor and are called syn­
apses. Thus the complexity of the brain is not limited to 
the vast number of neurons. There is an even larger num­
ber of connections between neurons. One estimate is that 
there are a thousand connections per neuron on average, 
giving a total of 1015 connections in the brain. 

Neurons can often be grouped naturally into larger 
structures (hundreds of thousands of neurons). It has 
been established that some groups/areas of the brain are 
organized in a way that reflects the organization of the 
physical signals stimulating the areas, i.e., topological 
order. The result is that nearby areas in the brain corre­
spond to nearby areas in signal space. This order is ac­
complished even when the fibers that are transporting the 
signals do not exhibit any apparent order. The order 
seems also to be achieved without any guidance as to 
what is right or wrong. The resulting maps are therefore 
often called self-organizing maps. Examples are visual 
and somatosensory cortex. Each of these structures of­
ten connects to other structures at a higher level. 

2 .1.1. Adaptation and Learning 

The brain would not be as interesting, nor as useful, 
without its ability to adapt and to learn new things. There 
are basically two ways in which adaptation takes place, 
by changing the structure and by changing the synapses. 
The first has the nature of long-term adaptation and often 

takes place only in the first part of an animal's life. The 
second, changes of synapses, is a more continuous pro­
cess that happens throughout the animal's entire lifetime. 

2 .1.2. Information Processing 

The information processing in a neuron is done as a 
summation or integration of information fed into it. The 
information is represented as brief events called nerve 
impulses. t The interval or frequency conveys the infor­
mation. According to Hubel [50] the impulse rates may 
vary from one event every few seconds or even slower to 
about 1000 events per second at the extreme upper limit. 
The normal upper limit is often cited to be 100 to 200 
impulses per second. The "speed" of the impulses along 
the axon is around 0.1 to 10 m/s. The length of an axon 
varies from less than a millimeter to more than a meter. 

2.2. The Artificial Neuron 

The first and very simple model, however much used, 
is the model in which information is contained as levels/ 
values corresponding to the impulse frequencies. Then 
the integration of pulses is done as a summation. The 
synapses are represented as weights, Wj, multiplied by 
inputs ij. To make the model more powerful, a nonlinear 
function, f, is applied to the sum, and the result, o = 

j(Zwjij), is sent to the neurons connected to it (Fig. 2). 
As with their biological counterparts the artificial neu­

rons are not very interesting by themselves. A large num­
ber of artificial neurons are necessary for interesting 
computations. By changing the structure of the connec­
tions and adaptation rules it is possible to radically 
change the type of computations made by the network. 
Some of the models used are described in Section 3.0. 

t This is not true for all neurons·: There are, for example, neurons in 
the retina which have "graded" response. See e.g. [50] or [100] for 
more on this topic. 
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FIG. 2. The simplest model of a neuron. It can be seen as a model of 
Fig. 1. The output has the form o = .f('2wiij). 

2. 3. Layered Models 

In many models there are layers of neurons; see Fig. 3. 
There has been some confusion about how to count the 
number oflayers. One method is to count the node layers 
including the input layer, and another method is to count 
weight layers (or node layers excluding the input layer). 
In this paper we use the word "node" or "weight" in 
front of the word "layer" when it is needed to avoid 
confusion. When we count layers we use weight layers, 
since this is the most relevant method when considering 
the computational effort. This method of counting im­
plies that one (weight) layer is the smallest network pos­
sible. This single-layer network corresponds to the con­
cept of perceptrons [109]. Node layers which have no 
connection to input or output are called hidden layers; 
e.g., in Fig. 3 there are two hidden layers. 

A compact way of giving the size of a multilayer net­
work is to present the sizes of the node layers with an 
'' x '' in between. For example, 203 x 60 x 26 states that 
the input node layer has 203 nodes, the hidden node layer 
has 60 nodes, and the output node layer has 26 nodes. 
Between each layer a fully connected weight layer is as­
sumed. Thus, we consider this a two-layer network. 

3.0. SOME OF THE MOST COMMONLY USED ANN 
ALGORITHMS 

During the past 10 years the artificial neural networks 
area has developed into a rich field of research. Many 
new models or algorithms have been suggested. Not all 
these models have been implemente-d on parallel com­
puters. This is not to say that some of them are not suit­
able for parallel execution. On the contrary, a common 
characteristic of all neural network algorithms is that 
they are parallel in nature. For the purposes of this paper, 
however, we review the most common ANN algorithms 
only, in order to be able to discuss their implementation 
on PFU"allel computers. 

The models are characterized by their network topol­
ogy, node characteristics, and training rules [76]. We de­
scribe some frequently used and discussed models. 

1. Multilayer feedforward networks with supervised 
learning by error back-propagation (BP), also called gen­
eralized delta rule [110]. The feedforward back-propaga­
tion model is used as a pattern classifier or feature detec­
tor, meaning that it can recognize and separate different 
features or patterns presented to its inputs . 

2. Feedback networks (also referred to as recurrent 
networks). Different variations in node topology and 
node characteristics have been proposed: symmetric 
connectivity and stochastic nodes: Boltzmann machines 
[41, 42, 50]; symmetric connectivity and deterministic 
nodes: Hopfield nets [47, 48, 49, 95] and meanfield the­
ory [95, 96]; and nonsymmetric connectivity and determi­
nistic nodes: recurrent back-propagation (RBP) [1, 99]. 
The feedback models can be used as hetero- or autoasso­
ciative memories, but also for solving optimization prob­
lems. Using an ANN as an autoassociative memory 
means that whenever a portion or a distorted version ofa 
pattern is presented, the remainder of the pattern is filled 
in or the pattern is corrected. 

3. Self-organizing maps (SOM), also called self-orga­
nizing feature maps (SOFM) or topological feature maps 
(TFM), developed by Kohonen [62, 63]. This is one of the 
more frequently used models with unsupervised learning. 
SOM, with its learning vector quantization variations 
(LVQ1-3), is used for vector quantization, clustering, 
feature extraction, or principal component analysis [63]. 

4. Sparse distributed memory (SDM). suggested by 
Kanerva [58], who argues that it is biologically plausible. 
The SDM model has been used, for example, in pattern 
matching and temporal sequence encoding [57]. Rogers 

. [107] has applied SDM to statistical predictions, and also 
identified SDM as an ideal ANN for massively parallel 
computer implementation [106]. 

. " 

3.1. Feedforward Networks: Back-Propagation Learning 

A feedforward net with three weight layers is shown in 
Fig. 3. The network topology is such that each node (neu-

Input Nodes Hidden Nodes 

Layer 1 

Hidden Nodes 

Layer2 
(Hidden) 

Output Nodes 

FIG. 3. A three-layer feedforward network. 
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ron) in a layer receive.s input from every node of the 
previous layer. As in most models each node computes a 
weighted sum of all its inputs. Then it applies a nonlinear 
activation function to the sum, resulting in an activation 
value-or output-of the neuron. A sigmoid function, 
with a smooth threshold-like curve (see Section 4.3), is 
the most frequently used activation function in feed­
forward networks, but hard limiters are also used. 

In the first phase of the algorithm the input to the net­
work is provided and values propagate forward through 
the network to compute the output vector, 0. The output 
vector of the network is then compared with a target 
vector, T, which is provided by a teacher, resulting in an 
error vector, E. 

In the second phase the values of the error vector are 
propagated back through the network. The error signals 
for hidden units are thereby determined recursively: Er­
ror values for node layer l are determined from a 
'weighted sum of the errors of the next node layer, l + 1, 
again using the connection weights-now "backward." 
The weighted sum is multiplied by the derivative of the 
activation function to give the error value, o. 

Now, finally, appropriate changes of weights and 
thresholds can be made. The weight change 11w~cn in the 
connection to unit i in layer l from unitj in layer l - 1 is 
proportional to the product of the output value, Oj, in 
node layer l- l, and the error value, o;, in node layer l. 
The bias (or threshold) value may be seen as the weight 
from a unit that is always on and can be learned in the 
same way. The algorithm is summarized in Algorithm 1. 

Algorithm 1. Back-Propagation Training Algorithm 

1. Apply input OC0l = 1. 
2. Compute output ojn = f(netjn + bjn), where netj'l = 

~;w}Po)l-O for each layer. 
3. Determine error vector E = T - 0. 
4. Propagate error backward. 

If node j is an output node then the jth element of 
the error value vector D is 
OJ[) = OJl)(l - OJ[))(tJ[) - OJ[)) = oj0 (1 - OJ[))eJ[) 
else 
oj[) = oj[J(l - oj[)) ~;o)l+l)w~+l). 
Here we have used the fact that the sigmoid func­
tion f(x) = 11(1 + e-x) has the derivative f' = 

f(l -f). 
5. Adjust weights and thresholds: 

11 wW = YJO([) o(Hl 
lJ l J ' 

11 b ~ll = YJO ~n. 
6. Repeat from 1. 

By remembering between iterations and adding a por­
tion of the old change to the weight it is possible to in­
crease the learning rate without introducing oscillations. 
The new term, suggested by Rumelhart and McClelland 

[110], is called the momentum term and is computed as 
wljn(n + 1) = wljn(n) + 11wljn(n) + al1wljn (n - 1), where a 
is chosen empirically between 0 and 1. Many other varia­
tions of back-propagation exist and some of them have 
been studied by Fahlman [23]. 

3.2. Feedback Networks 

A feedback network consists of a single set of N nodes 
that are completely interconnected; see Fig. 4. All nodes 
serve as both input and output nodes. Each node com­
putes a weighted sum of all its inputs: netj = ~ ;Wj;O;. 

Then it applies a nonlinear activation function (see Sec­
tion 4.3) to the sum, resulting in an activation value-or 
output-of the node. This value is treated as input to the 
network in the next time step. When the net has con­
verged, i.e., when the output no longer changes, the pat­
tern on the output of the nodes is the network response. 

This network may reverberate without settling down to 
a stable output. Sometimes oscillation may. be desired, 
otherwise oscillation must be suppressed. 

Training or learning can be done in supervised mode 
with the delta rule [111] or back-propagation [1], or it can 
be done unsupervised by a Hebbian rule [111]. It is also 
used "without" learning, where the weights are fixed at 
start to a value dependent on the application. 

3.3. Self-Organizing Maps 

Relying on topological ordered maps and self-organiza­
tion as important concepts, Kohonen developed the 
SOM [62, 63] which form mappings from a high-dimen­
sional input space into a low-dimensional output space. 
These maps have been used in pattern recognition, espe­
cially in speech recognition, but also in robotics, auto­
matic control, and data compression. The SOM algo­
rithm proceeds in two steps: (i) the network node whose 
value is closest to the input vector is identified, and (ii) 
the nodes belonging to the neighborhood of this node (in 
the output space) change their values to become closer to 

FIG. 4. A seven-node feedback network. 
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the input. These two, steps are repeated with ever­
decreasing neighborhood size. The resulting nodes or 
neurons will develop into specific detectors Of different 
signal patterns. 

Described below is the ''shortcut version'' ofthe basic 
SOM algorithm. This version is motivated by the reduc­
tion of the computational effort compared to the original 
one. 

Algorithm 2. The SOM Algorithm "Shortcut Version" 

1. Find the node (or memory) me closest to input x. 

llx(tk) - mc(tk)ll = min llx(tk) - m;(h)il. 
i 

2. Find the neighborhood Nc(tk). 
3. Make the nodes in the neighborhood closer to input. 

m;(tk+!) = m;(tk) + a(tk)[x(tk) - m;(tk)] 
for i E Nc(tk) 

m;(tk+!) = m;(tk) otherwise. 
4. Repeat from step 1 with ever-decreasing Nc and a 

(neighborhood and gain sequence). 

With a small change in the update equation (step 3 in 
Algorithm 2) we can use the same framework for Learn­
ing Vector Quantization (LVQ), where the map functions 
as a clustering or classification algorithm. 

3.4. Sparse Distributed Memory 

SDM developed by Kanerva [58] may be regarded as a 
special form of a two-layer feedforward network, but is 
more often-and more conveniently-described as an 
associative memory. It is capable of storing and retriev­
ing data at an address referred to as a "reference ad-

Address register 
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0101.. .. 111 

0110 .... 101 

0111....011 

1101....101 ... 
... 
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Dist Sel 

dress." A major difference compared to conventional 
Random Access Memories (RAMs) is that, instead of 

. having, e.g;, 32-bit addresses, SDMs may have 1000-bit 
addresses. Since it is impossible to have a memory with 
21000 locations, SDMs must be sparse. Also, data are 
stored in counters instead of 1-bit cells as in RAMs 

The SDM algorithm has a comparison phase, in which 
the sparsely distributed locations that are closest to the 
reference address are identified, and an update (write) 
or retrieval (read) phase, in which a counter value in each 
of these locations is used (see Fig. 5). 

Algorithm 3. The SDM Algorithm 

Training the network (i.e., writing to the memory): 

1. The address register is compared to the location 
addresses and the distances are calculated. 

2. The distances are compared to a threshold and 
those below the threshold are selected. 

. ' 
3. In the selected rows, 

where the data-in register is 1 the counter is incre-
mented, ' 
where the data-in register is 0 the counter is 
decremented. 

Recall from the network (i.e., reading from the mem­
ory): 

1. The address register is compared to the location 
addresses and the distances are calculated. 

2. The distances are compared to a threshold and 
those below the threshold are selected. 
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FIG. 5. The organization of a Sparse Distributed Memory as an array of addressable locations. Note that the address as well as the data can be 
of hundreds of bits in length, and yet there are only a small number (like thousands) of memory locations. 
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3. The selected rows are added columnwise. 
Where the sum is greater than zero the data-out 
register is set to one, else it is set to zero. 

4.0. COMPUTATIONAL CONSIDERATIONS 

The computations involved in neural network simula­
tions show great similarities from one model to another. 
In this section we discuss some topics that are of general 
interest and not specific to one single model. 

4.1. Basic Computations 

For feedforward and feedback network algorithms the 
basic computation is a matrix-by-vector multiplication, 
where the matrices contain the connection weights and 
the vectors contain activation values or error values. 
Therefore, an architecture for ANN computations should 
have processing elements with good support for multiply, 
or even multiply-and-add, operations and a communica­
tion structure and memory system suitable for the access 
and alignment patterns of matrix-by-vector operations. 

Assuming N units per layer, the matrix-by-vector mul­
tiplication contains N 2 scalar multiplications and N com­
putations of sums of N numbers. The fastest possible way 
to compute this is to perform all N 2 multiplications in 
parallel, which requires N 2 processing elements (PEs) 
and unit time, and then form the sums by using trees of 
adders. The addition phase requires N (N - 1) adders and 
O(log N) time. 

The above procedure means exploitation of both node 
and weight parallelism (defined later). For large ANNs 
this is unrealistic, depending on both the number of PEs 
required and the communication problems caused. In­
stead, most of the implementations that have been re­
ported take the approach of basically having as many PEs 
as the number of neurons in a layer (node parallelism) 
and storing the connection weights in matrices, one for 
each layer. The PE with indexj has access to row j of the 
matrix by accessing its own memory. Referring to Algo­
rithm 1, a problem appears in step 4 relative to step 2. 
While step 2 corresponds to the matrix-vector operation 
WO, step 4 corresponds to wra. This means that we need 
to be able to access wr as efficiently as we can access W. 
This introduces a mapping problem which we will return 
to in Section 6. Regardless of the mapping chosen, multi­
ply-and-add is the basic operation in these calculations. 

The first step of the SOM algorithm, using an inner­
product as distance measure, can also be seen as a ma­
trix-by-vector multiplication, where the matrix is com­
posed of the weight vectors of the nodes and the vector is 
the training vector. Another distance measure used for 
the first step is a Euclidean metric which cannot be de­
scribed as a matrix-vector operation. Still the basic oper­
ation in both metrics is multiply-and-add. Discussion on 

the two different distance measures can be found in [63, 
88]. From the resulting vector a maximum or minimum 
must be found. The efficiency of this operation is strongly 
dependent on the communication topology, but may also 
depend on the characteristics of the PEs. In a later sec­
tion we will demonstrate how bit-serial processors offer 
specific advantages. After a maximum (or minimum) 
node is found its neighbors are selected and updated. The 
selection time will depend on the communication topol­
ogy, and the update time on the length of the training 
vectors. 

Also in SDM the first step is a matrix-by-vector multi­
plication. But as both the matrix and the vector are bi­
nary valued the multiplications are actually replaced by 
exclusive-or and the summation by a count of ones. The 
counters are thereafter compared with a threshold. In all 
active positions the up-down counters are updated. 

Thus, to be efficient for ANN computations computers 
need to have support for matrix-by-vector multiplica­
tions, maximum finding, spreading of activity, count of 
ones, and comparisons. In some of the implementations 
that we review these matters have been solved on exist­
ing parallel computers, in others new architectures have 
been devised, targeted at computations of this kind. 

4.2. Numerical Precision 

In order to optimize the utilization of the computing 
resources, the numerical precision and dynamic range in, 
e.g., the multiply-and-add operations should be studied 
with care. 

With optical, analog, or bit-serial computers it is not 
very attractive to use 32- or 64-bit floating-point numbers 
for weights and activation values. The issue of weight 
sensitivity becomes important; how sensitive are the net­
works to weight errors? Unfortunately, one of the most 
used algorithms, back-propagation, is very sensitive to 
the precision and number range used [39]. This is due to 
the existence of large flat areas in the error surface, in 
which the BP algorithm may have difficulty in determin­
ing the direction in which to move the weights in order to 
reduce the error. To make progress from such areas high 
numerical precision is needed. If the neural network cal­
culations are run on a computer which has advanced 
hardware support for floating-point calculations the re­
quired accuracy does not raise any problem. On the other 
hand, for many tasks of integer type, like low-level vision 
problems, the use of floating-point numbers will lead to a 
more complex architecture than necessary. 

Using ordinary back-propagation with low precision 
without modifications will lead to instability and the net 
will often be unable to learn anything. There are modifi­
cations to back-propagation which seem to improve the 
situation somewhat [13, 21, 78, 116], and there are exper­
iments in which different precision is used at different 
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stages of the algorithm [86]. By using high precision at 
the beginning of the training and lessening the precision 
as the network trains, the number of bits needed for 
weights in the fully trained network can be very low (a 
few bits). Without too large modifications, 8-16 bits per 
weight seems to be sufficient for most problems [11, 21, 
85, 135]. More exact calculations of the sensitivity to 
weight errors and the precision needed can be found in 
[21' 121' 122, 123]. 

By some authors [39, 135] weights have been found to 
need a large dynamic range, implying floating-point rep­
resentation. However, the use of weight saturation, i.e., 
limiting the weights to a certain limit, may remove the 
need for floating-point numbers [85]. 

Low precision is also attractive for ANN s as it makes 
the algorithms more biologically plausible [131]. An up-

. per limit of the accuracy that the brain needs for its calcu­
lation could be estimated to 7-8 bits; i.e., neurons have a 
'"dynamic range" of about 100 levels. The calculations 
are also fault tolerant. That is, if one neuron fails to fire, 
the computation is still carried out in the right fashion. 

Finally, it should be noted that there is probably a 
trade-off between using few weights (nodes) with high 
precision and using many weights (nodes) with low preci­
sion. 

4.3. Sigmoid 

In many of the algorithms, e.g., BP and Hopfield net­
works, a sigmoid function likef(x) = 11(1 +e-x) needs to 
be calculated; see Fig. 6. To do this efficiently many 
implementations use a table lookup instead of direct cal­
culation (typically with 8 bits precision). Others try to 
approximate the sigmoid with a piecewise linear function 
[11] like(e) in Fig. 6. Also, an approximation based on 
power of 2 calculations has been proposed, with digital 
computers in mind [94], (c) in Fig. 6. 

A combination of table lookup and power of 2 calcula­
tion was tried in [136] for the GF11 computer, but in the 
end only table lookup and interpolation were used. 

Table lookup on SIMD computers without local ad­
dress modification seems difficult but is possible by a 
cyclic rotation and comparison. It takes n steps to do n 
table lookups using n PEs connected in a ring [132]. 
Other ways to distribute the lookup table have been dis­
cussed by Marchesi et al. [80]. 

In [115] ex was calculated by means of range reduction 
techniques. The total number of operations required to 
calculate the sigmoid was five add/subtracts, one logical, 
two divisions, two shifts, and three multiplications. 

In the backward phase the derivativef(x) is to be cal­
culated. The much used sigmoidf(x) = 1/(1 + e-x) has 
the "nice" derivative given by f'(x) = f(x)(l - f(x)). 

Some networks and training situations have turned out 
to benefit from a sigmoid function between -1 and 1 
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FIG. 6. Some of the used activation functions of sigmoid type. 

instead of the usual 0 and 1. Some are given in Fig. 6. The 
function (A) has the useful property that is does not in­
volve any transcendental functions. 

4.4. Data Representation 

When real and/or analog inputs to the ANN are used, 
the data representation must be studied carefully. For the 
binary code the problem is that Hamming distance (HD) 
is not a valid measure of similarity; see Table I. The so­
called thermometer code, or the simple sum of ones, 
solves the problem with the HD but is wasteful of code 
bits, and thus stands in contrast to the requirement of 
using as few bits as possible. 

Penz [93], referring to Willshaw et al. [134], has sug­
gested a modification to the thermometer code, called the 
closeness code. This code has as few active positions as 
possible; i.e., it is optimally sparse, but still retains the 
HD as a similarity measure. The number of ones in anN­
bit vector is logz N. 

There is a denser (with respect to code word length) 
version of a closeness code suggested by Jaeckel [56, 59] 
which could be called a band~pass code. The name re­
flects the fact that the thermometer code may be seen as a 
set of low-pass filters but Jaeckel's suggestion may be 
seen as a set of band-pass filters. Both a closeness and a 
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TABLE I 
Different Ways to Encode Data: Binary, Thermometer, Closeness, and Band-Pass Codes 

Binary Thermometer Closeness Band Pfiss 
Decimal 

value Code HD £ode HD Code HD Code HD 

0 000 0 0000000 0 11100000 00 0 11000 0 
I OOI I IOOOOOO I OI110000 00 2 11100 I 
2 010 I IIOOOOO 2 0011IOOO 00 4 01100 2 
3 011 2 1110000 3 00011100 00 6 01110 3 
4 100 I ! 1111000 4 000011IO 00 6 00110 4 
5 10I 2 1111IOO 5 00000111 00 6 0011I 5 

-----------------------------
6 110 2 1111110 .6 xOOOOOll IO 5/4 00011 4 

---------------------
7 11I 3 111111I 7 xxOOOOOI 11 4/2 10011 3 

10001 2 
1100I 
11000 0 

Note. All but the binary codes have Hamming distance (HD) as the measure of similarity. Closeness 
and thermometer codes are wasteful of code· bits, but the closeness code has fewer active bits. Band 
pass has good code density while keeping the HD as the measure of distance .. 

band-pass code can be extended to a circular code as 
shown below the dashed lines in Table I. A circular code 
is useful when coding things like angles. 

When coding sets of mutually unrelated items, like let­
ters in an alphabet, it is important not to introduce order 
or similarities that do not exist. Coding a, b, c, ... as 1, 2, 
3, ... introduces a similarity between adjacent letters 
which has no relation to their use in language. Instead, 26 
nodes of which only one is active, may be used. 

4.5. Bit-Serial Calculations 

Many of the massively parallel processors use bit­
serial PEs. For the majority of operations, processing 
tiines on these co~puters grow linearly with the data 
length used. This may be regarded as a serious disadvan-

In 

tage (e.g., when using 32- or 64-bit floating-point num­
bers), or as an attractive feature (use of low-precision 
data speeds up the computations accordingly). In any 
case, bit-serial data paths simplify communication in 
massively parallel computers. 

4.5.1. Multiplication Done Bit-Serially 

In simple bit-serial processors the multiplication time 
grows quadratically with the data length. However, bit­
serial multiplication can actually be performed in the time 
required to read the operands (bit by bit, of course) and 
store the result. The method, based on the carry-save 
adder technique, .requires as many full adders as the 
length of one of the operands. Figure 7 shows the design 
of such a multiplier circuit. 

FIG. 7. Design of a two's-complement bit-seriai multiplier. It is operated by first shifting in the multiplicand, most significant bit first, into the 
array of M flip-flops. The bits of the multiplier are then successively applied to the input, least significant bit first. The product bits appear at the 
output with least significant bit first. 

. .. ' 
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This design was proposed but not implemented in the 
LUCAS project [27], and will be used in the continued 
project, REMAP3 (Reconfigurable, Embedded, Mas­
sively Parallel Processor Project). A similar multiplier 
design has also been proposed for ''Centipede,'' a further 
development of the AIS-5000 concept [135]. 

4.5.2. Floating-Point Calculations Done Bit-Serially 

Floating-point calculations raise special problems on 
SIMD computers with bit-serial PEs. Additions and sub­
tractions require the exponents to be equal before the 
operations are performed on the mantissas. This align­
ment process requires different PEs to take different 
actions, and this does not conform with the SIMD princi­
ple. The same problem appears in the normalization pro­
cedure. 

However, these problems may also be solved by a 
fairly reasonable amount of extra hardware. Ahlander 
and Svensson [140] propose the addition of stacks in the 
PEs to hold the mantissas during alignments and normal­
izations. This arrangement allows floating-point opera­
tions to be performed as fast as data can be provided bit­
serially from the memory. 

4.5.3. Search for Maximum or Minimum Done 
Bit-Serially 

Some operations benefit from the bit-serial working 
mode and can be implemented very efficiently. Search 
for maximum or minimum is such an operation. Assum­
ing that one number is stored in the memory of each PE, 
the search for maximum starts by examining the most 
significant bit of each value. If anyone has a one, all PEs 
with a zero are discarded. The search goes on in the next 
position, and so on, until all bit positions have been 
treated. The time for this search is independent of the 
number of values compared; it depends only on the data 
length (provided that the number of PEs is large enough). 

5.0. PARALLELISM IN ANN COMPUTATIONS 

For implementation on a parallel computer, parts of 
the algorithm that can be run in parallel must be identi­
fied. Unfolding the computations into the smallest com­
putational primitives reveals the different dimensions of 
parallelism. 

5.1. Unfolding the Computations 

A typical ANN algorithm has the following structure: 

For each training session 
For each training example in the session 

For each layer (going Forward and Backward) 
For all neurons (nodes) in the layer 

For all synapses (weights) of the node 
For all bits of the weight value 

This shows that there are (at least) six different ways of 
achieving parallelism: 

Training session parallelism 
Training example parallelism 

Layer and Forward-Backward parallelism 
Node (neuron) parallelism 

Weight (synapse) parallelism 
Bit parallelism 

5.2. The Dimensions of Parallelism 

Here follows a discussion on each of the different ways 
of achieving parallelism. Which of the dimensions of par­
allelism are chosen in any particular implementation will 
depend on the constraints imposed by the hardware plat­
form and by the constraints of the particular algorithm 
that is to be implemented. 

5.2.1. Training Session Parallelism 

Training session parallelism means starting different 
training sessions on different PEs. Different sessions may 
have different starting values for the weights, and also 
different learning rates. Using parallel machines with 
complex control makes it even possible to train networks 
of different sizes at the same time. 

5.2.2. Training Example Parallelism 

The number of training examples used is usually very 
large, typically much larger than the number of nodes in 
the network. The parallelism of the training set can be 
utilized by mapping different training examples to differ­
ent PEs and letting each PE calculate the outputs for its 
training example. The weight changes are then summed. 

Doing the weight update this way (batch or epoch up­
dating) means that it is not done exactly as in the serial 
case. Back-propagation is known to perform gradient de­
scent if update of weights takes place after processing of 
all the training data [110, 119]. Empirically it is found that 
updating after each pattern will save CPU cycles, at least 
on a sequential computer. 

Training example parallelism is easy to utilize without 
communication overhead. Thus it gives an almost linear 
speedup with the number of PEs. However, a corre­
sponding reduction in training time (time to reduce the 
total error to a specific level) should not be taken for 
granted. Even if this method gives a more accurate gradi­
ent it does not necessarily allow more weight updates to 
occur. Therefore there is a limit on the amount of actual 
training time speedup that is achievable using this 
method of parallelism. Parker [92] has shown that on a 
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30 x 30 x 10 network and 4156 training examples the 
optimal batch size was only 18. Beyond that level the 
refinement of gradient was wasted. This means that the 
use of extensive number crunching circuitry in order to 
utilize training example parallelism, although giving high 
CUPS (Connection Updates Per Second) performance, 
does not guarantee a corresponding reduction of training 
time. 

Training example parallelism also demands that the 
PEs have enough memory to store the activation value of 
all the nodes in a network. With a 256-kbit memory per 
PE and 32-bit floating-point number representation, only 
about 8000 nodes can be simulated [119]. On the other 
hand, any sparsity of the network connections can be 
fully exploited with this type of parallelism. 

5.2.3. Layer and Forward-Backward Parallelism 

In a multilayer network the computations may be pipe­
lined; i.e., more than one training pattern is going 
through the net at the same time. If the model has a 
backward pass, like BP, it is also possible to "fold" the 
pipeline back again. 

5.2.4. Node (Neuron) Parallelism 

The parallel processing performed by many nodes in 
each layer is perhaps the most obvious form of parallel­
ism in an ANN. Each node computes a weighted sum of 
all its inputs. This form of parallelism corresponds to 
viewing the calculations as matrix operations and letting 
each row of the matrix map onto a processor. 

Most of the layered models only send their activation 
values forward after all nodes have been calculated in a 
layer. This means that the maximum parallelism is avail­
able for the widest node layer (excluding the input layer). 
If this degree of parallelism is fully utilized, all layers 
with less nodes cannot fully utilize the computer. 

5.2.5. Weight (Synapse) Parallelism 

At each input to a neuron the arriving activation value 
is multiplied by the weight of the specific input. This can 
be done simultaneously at all inputs to the neuron. The 
subsequent summation of all the products may also be 
parallelized using a suitable communication structure. 

5.2.6. Bit Parallelism 

Utilizing the full degree of bit parallelism (i.e., treating 
all bits in a data item simultaneously) is often taken for 
granted. However, giving up this form of parallelism, and 
treating data bit-serially, increases the possibilities of us­
ing some of the other forms. 

5.3. The Degrees of Parallelism 

The typical degree of parallelism varies widely be-
. tween the six different kinds, as the table below shows. 
As an illustration, the degrees of parallelism of the well­
known NETtalk application (see section 7 .2.1) have been 
given as well. 

Parallelism Typical range NETtalk 

Training session 10-103 100 
Training example 10-W 5000 
Layer and Forward-Backward 1-6 1 
Node (neuron) 100-106 120 
Weight (synapse) 10-105 203 
Bit 1-64 32 

The table gives an indication of what dimensions should 
be utilized in a massively parallel computer. Such a com­
puter is capable of performing at least thousands of ele­
mentary operations simultaneously. Hence an ANN im­
plementation that is to utilize the computing resources 
efficiently must utilize at least one of the following di­
mensions: 

Training session parallelism 
Training example parallelism 
Node parallelism 
Weight parallelism 

The use of the two first-mentioned types is of interest 
only in batch processing situations in order to train a 
network. In real-time applications where the ANN is in­
teracting with the outside world, training session and 
training example parallelism are not available. In those 
cases, node and/or weight parallelism must be chosen, 
maybe in combination with, e.g., bit and layer parallel­
ism. 

6.0. COMMUNICATION 

A high degree of connectivity and large data flows are 
characteristic features of neural computing models. 
Hence the structure and bandwidth of internal and exter­
nal (i.e., 110) communication in the computer to be used 
are of great importance. Depending on what dimension of 
parallelism is chosen the demands on the communication 
will be different. We review the major communication 
principles and comment on their use in ANN implemen­
tations. 

6.1. Communication by Broadcast 

In most parallel computers the most efficient way to 
communicate is to broadcast, since so many destinations 
receive information simultaneously. In fact, in SIMD 
computers broadcast is also used to distribute control 
information. As shown above, training example parallel-
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FIG. 8. Mapping of node parallelism into a processor array. 

ism has a very large amount of possible parallelism. Since 
the basic communication needed with this form of paral­
lelism is broadcasting it is a good choice if the maximum 
speed (CUPS) is to be obtained. If the batch or epoch 
type of weight updating cannot be used, node or weight 
parallelism must be used. With the required communica­
tion patterns in those forms of parallelism it is less obvi­
ous how broadcast can be used, and therefore it is harder 
to obtain maximum performance. 

Using node parallelism, perhaps the most natural way 
to map the forward pass of a BP calculation on a proces­
sor array is to see it as a matrix-vector multiplication and 
map each row of W into one PE; see Fig. 8. In each step 
of the multiplication process, one PE broadcasts its node 
activation o; to all other nodes. Each PE then multiplies 
the value with a weight value from the corresponding 
column of W and adds the result to a running sum net;. 
After all activation values have been sent and multiplied, 
each PE holds one element of the resulting vector. In the 
backward phase, summation is required across the PEs 
instead of within each PE. This is slow unless another 
communication structure is added, e.g., an adder tree as 
proposed in [124]. Mapping in this way may also intro­
duce inefficiency problems if the layers are of very differ­
ent sizes. It is also difficult to utilize any sparsity in the 
connections with this method. 

6.2. Grid-Based Communication 

A natural way to arrange the communication required 
for weight parallelism is grid-based communication suit­
able for two-dimensional arrays of PEs. The PEs of the 
top edge, say, correspond to the source node layer, and 
the PEs of the right edge, say, correspond to the destina­
tion node layer. The weight matrix is distributed overthe 
rest of the PEs. The input layer nodes at the top send 
their values down over the matrix by vertical broadcast. 
Then there is a horizontal summation phase. This is then 
repeated for the next layer, first horizontally and then 
vertically. 

This scheme has been used or suggested by, e.g., 
Singer [120] and Fujimoto and Fukuda [33]. 

6.3. Communication by Circulation 

One way to solve the communication when node paral­
lelism is used is by a "systolic" ring structure [52, 70-72, 
100]; see Fig. 9. In the forward phase (upper part of the 
figure) the activation values are shifted circularly along 
the row of PEs and multiplied with the corresponding 
weight values. Each PE accumulates the sum of the prod­
ucts it has produced. In the backward phase (lower part 
of the figure) the accumulated sum is shifted instead. 

This scheme shares the possible inefficiency problems 
with the broadcast-based scheme (see end of Section 
6.1). 

6.4. Communication by General Routing 

Some massively parallel computers, e.g., the Connec­
tion Machine, provide support for general routing by 
packet switching. Utilizing this facility is a straightfor­
ward method on these computers, but, since general 
routing normally is much slower than regular communi­
cation, the ANN computations will be communication 
bound, maybe with the exception of sparsely connected 
networks. 

An implementation of directed graphs on computers 
lacking general routing capability has been suggested by 
Tomboulian.[128]. It relies on SIMD computers with very 
modest communications facilities. Sending a value or a 
message between two nodes amounts to routing the mes­
sage from PE to PE. A send is divided into time slots 
where each node knows if or where it should pass the 
current incoming message. There are means to extend 
the communication pattern dynamically which makes it 
very attractive for networks that use structural adapta­
tion, like Fahlman and Lebiere's "Cascade Correlation" · 
[24] or Kassebaum et al. 's [60] and Tenorio and Lee's 
self-organizing neural network (SONN) algorithm [125, 
126]. 
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FIG. 9. Forward (top) and backward (bottom) phase of a BP calculation on a systolic ring processor. 

Tomboulian's method has for dense networks been 
found to consume a great deal of PE memory for its ta­
bles [128]. For sparse networks the time and memory 
requirements are proportional to the product of the aver­
age number of connections per neuron and the diameter 
of the array. 

6.5. Comments on Communication 

For all communication strategies except the general 
routing methods, sparse connection matrices will lead to 
underutilization of the computer's PE resources. Lawson 
et al. have addressed this problem with their "SMART" 
(sparse matrix adaptive recursive transform) machine 
[73]. By using tables and special hardware they can make 
use of zero-valued connections to reduce simulation size 
and time. The communication is based on a ring structure 
together with a bus. However, Lawson's solution is not 
directly applicable on a massively parallel SIMD com­
puter. 

The massive flow of data into and out of the array, 
which will be the case in practical real-time applicrtions 
and also in out of core calculation (very large s1mula-

tions), places specific demands on the communication 
structure. In the design of a massively parallel computer 
for ANN, the PEs should be optimized for the typical 
operations, in order not to make the processing computa­
tion bound. Furthermore, the interconnection network 
should be optimized for the computational communica­
tion pattern, in order not to make the processing com­
munication bound. Finally, the I/0 system should be op­
timized to suit the needs of the application, in order not 
to make the system I/0 bound. So far not very much 
attention has been paid to the latter problem complex, 
but it is certainly very much connected with the commun­
ication matters. 

Training example parallelism is the form of parallelism 
that puts the weakest demands on communication. How­
ever, it is not interesting in real-time applications or in 
pure recall situations. 

7.0. MEASURING THE SPEED OF ANN SIMULATIONS 

In order to compare different implementations, some 
kind of standard measuring procedure is needed. The 

_-· 
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number of multiply-and-add operations per second of 
which the computer is capable might be considered for 
such a measure, since this operation was identified as the 
most important one in most of the algorithms. However, 
it can serve only as an upper limit for performance; i.e., it 
marks the lowest speed that the computer manufacturer 
guarantees will never be exceeded. The utilization of this 
potential may be very different for the various ANN 
models and for different problem sizes. 
- Some of the commonly used indications of speed will 
be given below. They are of two kinds: first, there are 
general speed measurements, similar to the multiply-and­
add performance measure. In order for these to be of any 
real value, the ANN model and problem size for which 
they were measured should always be given as additional 
information. Second, there are benchmarks, i.e., com­
monly implemented applications of specific size. The 
area is still too young (i.e., in the present "wave") for 
benchmarks to be very well developed. 

7 .1. Measurements 

Some measurements commonly used in the ANN com­
munity are the following. 

7.1.1. CPS or IPS-Connections (or Interconnections) 
per Second 

Each time a new input is provided to an ANN, all 
connections in the network must be computed. The num­
ber of connections per second that the network can per­
form is often used as a measure of performance. When 
measuring CPS, computing the nonlinear thresholding 
function should be included. Comparing the CPS mea­
sure to the multiply-and-add measure roughly indicates 
how well the specific algorithm suits the architecture. 
When comparing CPS values for different implementa­
tions, the precision of calculation is important to con­
sider. Other things which may influence the CPS measure 
are the problem size and the choice of nonlinear 
thresh9lding function. 

7.1.2. CUPS or WUPS-Connection (or Weight) 
Updates per Second 

The CPS number only measures how fast a system is 
able to perform mappings from input to output. To indi­
cate the performance during training a measurement of 
how fast the connections can be updated is given as a 
CUPS figure. In a back-propagation network both the 
forward and the backward passes must be computed. 
Typically the CUPS number is 20-50% of the CPS num­
ber. 

For self-organizing maps CUPS have been used as the 
number of connections in the network multiplied by the 
number of network updates per second, despite the fact 
that very few connections are actually updated when us­
ing small neighborhoods at the end of a training session. 

7.1.3. Epochs 

An epoch is defined as a single presentation of each of 
the examples in the training set, in either fixed or random 
order. The concept is well-defined only for problems with 
a fixed, finite set of training examples. Modification of 
weights may occur after every epoch, after every pattern 
presentation, or on some other schedule. 

The epochs concept is sometimes used when me~s~r­
ing the number of times one must run through the tramm~ 
set (one run is one epoch) before some predefined condi­
tion is met. This is used to compare different versions of 
an algorithm or different algorithms. When doing this one 
should be aware of the fact that the computational effort 
to go through an epoch may vary considerably from one 
algorithm to another. Even if an algorithm learns in half 
the number of epochs it can still take longer time because 
the calculations are more complicated. 

An epochs per second measure may also be use~ as an 
alternative to CUPS to indicate the speed of learmng. It 
gives a number that is easier to grasp than the CUPS 
number. Of course the measure is strongly related to the 
problem and training set used. 

For problems where an epoch is not well defined, 
learning time may instead be measured in terms of the 
number of individual pattern presentations. 

7.1.4. CPSPW-Connections per Second per Weight 
(or SPR-Synaptic Processing Rate) 

A measure that indicates the balance between process­
ing power and network size (i.e., number of weights) ~as 
been introduced by Holler [ 46]. His argument for the Im­
portance of this measure is the following: Biologica~ n~u­
rons fire approximately 100 times per second. This Im­
plies that each of the synapses processes signals at a rate 
of about 100 per second; hence the SPR (or, to use Hol­
ler's terminology, the CPSPW) is approximately 100. If 
we are satisfied with the performance of biological sys­
tems (in fact, we are even impressed by them) this num­
ber could be taken as a guide for ANN implementations. 
Many parallel implementations have SPR numbers which 
are orders of magnitude greater than 100, and hence have 
too much processing power per weight. A conventional 
sequential computer, on the other hand, has an SPR ~u_m­
ber of approximately 1 (if the network has about a mdhon 
synapses); i.e. ii is computationally underbalanced. It 
should be noted that Holler's argument is of course not 
applicable to batch processing training situations. 

7.2. Benchmarks 

There are some commonly used problems that may be 
considered benchmark problems. They are used in a 
number of different ways, e.g., to measure learning 
speed, quality of ultimate learning, ability to generalize, 
or combinations of these factors. Thus their use is not 
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restricted to speed compctrisons. On the contrary, most 
of the benchmarks have been introduced to compare al­
gorithms and not architectures. This means that most of 
the benchmarks should not be used to compare suitability 
of architectures for the simulation of ANN s. Among such 
benchmark problems are the XOR problem, the Parity 
problem, and the Two Spirals problem [22]. They are all 
small problems intended for qualitative comparison of 
algorithms. 

7.2.1. NETtalk 

A larger and more realistic application is known as 
NETtalk, a text to phoneme translation solved by a back­
propagation network, described by Sejnowski and Ro­
senberg [114]. The task is to train a network to produce 
the proper phonemes, given a string of letters as input. 
This is an example of an input/output mapping task that 
exhibits strong global regularities, but also a large num­
ber of more specialized rules and exceptional cases. It is 
often used as a benchmark. 

The experimental setup used by Sejnowski and Rosen­
berg [114] described by Fahlman in [22] was the follow­
ing: The input to the network is a series of seven consec­
utive letters from the training text. The central letters in 
this sequence is the "current" one for which the phone­
mic output is to be produced. Three letters on either side 
of this central letter provide a context that helps to deter­
mine the pronunciation. Of course, there are a few words 
in English for which this local seven-letter window is not 
sufficient to determine the proper output. For the study 
using this "dictionary" corpus, individual words are 
moved through the window so that each letter in the word 
is seen in the central position. Blanks are added before 
and after the word as needed. Some words appear more 
than once in the dictionary, with different pronunciations 
in each case; only the first pronunciation given for each 
word was used in this experiment. 

A unary encoding is used. For each of the seven letter 
positions of the input, the network has a set of 29 input 
units: one for each of the 26 letters in English, and three 
for punctuation characters. Thus, there are 29 x 7 = 203 
input units in all. The output side of the network uses a 
distributed representation for the phonemes. There are 
21 output units representing various articulatory features 
such as voicing and vowel height. Each phoneme is rep­
resented by a distinct binary vector over this set of 21 
units. In addition, there are 5 output units that encode 
stress and syllable boundaries. Typically 60 to 120 hidden 
units have been used. 

In the absence of very large benchmarks, we will some­
times use figures on NETtalk to compare architectures (if 
they have been reported). Otherwise we will report the 
implemented network structure and training method to­
gether with the performance measure given. 

8.0. CHARACTERIZATION OF COMPUTER 
ARCHITECTURES 

As the structure of ANN algorithms is naturally paral­
lel it is relatively easy to make use of a very large number 
of PEs. Computers with a very large number of PEs are 
often called massively parallel. Being massive should 
mean that the structure gives an impression of being 
solid. That is, the number of units should be so high that 
is impossible to treat them individually; they must be 
treated en masse. By definition then, each PE must be 
told what to do without specifying it individually. This is 
actually the concept of the SIMD or SCMD computer 
(defined later). 

The lower bound for massive parallelism will then be 
set by the largest computer in which each PE is treated as 
an individual with its own instruction flow (MIMD). We 
think that for the moment 212 = 4096 is a suitable limit. 

An interesting extension to massively parallel is the 
concept of continuously parallel. This should mean the 
limit of massively parallel as the number of processing 
elements becomes infinite [77]. 

It is useful to have characterizations also of the lower 
degrees of parallelism. To get a reasonable "definition" 
with a nice symmetry we suggest a rough division be­
tween highly parallel, moderately parallel, and barely 
parallel. By defining the limits to 212 , 28 , 24, 2° we have an 
easy-to-remember scheme for the characterization. 
When appropriate, in the future the limits may be moved 
upward. Summarizing this we get the following "defini­
tions" which will be used in this paper (N stands for the 
number of PEs): 

Continuously parallel 
,Massively parallel 
Highly parallel 
Moderately parallel 
Barely parallel 

N-'>oo 
N 2=- 212 
2s:,; N < 212 

24 :,; N < 28 

2° < N < 24 

This characterization is completed with an ''orthogonal'' 
one describing the computational power of the PEs. The 
power or complexity can of course be measured in many 
ways but as a coarse measure we use the bit-length of the 
natural data type for the processing elements. These two 
characterizations result in the diagram shown in Fig. 10. 

We will concentrate on the massively and highly paral­
lel architectures in the next section. But we will also, for 
comparison, include some moderately and even barely 
parallel computers like Warp systems with more complex 
control. This is because the use of these computers has 
given interesting results with respect to algorithms and 
ways of mapping ANN s to a parallel computer. It should 
be noted that many of those algorithms do not use the 
powerful control, but instead use a SIMD or SCMD 
structure. 
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FIG. 10. Classifying architectures for ANN by dividing according to 
the number of and complexity of the processing elements that are used. 

Equally important as the degree of parallelism is the 
organization of the computer. The much used character­
ization due to Flynn [28] divides the computers into 
groups according to the number of instruction streams 
and the number of data streams. Of interest for ANN 
computations are the groups with multiple data streams: 
SIMD (Single Instruction stream, Multiple Data streams) 
and MIMD (Multiple Instruction streams, Multiple Data 
streams). 

To characterize a MIMD computer used as a SIMD 
architecture, SCMD (Same Code for Multiple Data 
streams) is suggested and used in this paper. 

8.1. Division of SIMD 

The SIMD category in itself shows great architectural 
variations. We briefly review some of the major groups. 

8.1.1. Systolic Arrays 

Systolic arrays represent a general methodology for 
mapping high-level computations into hardware struc­
tures. Developed at Carnegie Mellon by Kung and others 
[68], the concept relies on data from different directions 
arriving at cells/PEs at regular intervals and being com­
bined. The number of cells in the array and the organiza­
tion of the array are chosen to balance the 110 require­
ments. 

Systolic architectures for ANN have been proposed 
by, among others, Hwang et al. [52] and Kung and 
Hwang [70, 71]. They have found that a ring structure or 
cascaded rings are sufficient (cf. Section 6.3 on communi­
cation by circulation). 

8.1.2. Linear Processor Arrays 

In this group are theprocessor arrays with the simplest 
structure, the linear (one-dimensional) arrays. The linear 
structure is often combined with the ring structure and · 
the bus structure (i.e., broadcast). Actually, the arrays in 

this group are typically not massively parallel due to the 
limitations of the communication structure. Some of the 
arrays can be scaled to at least a few thousand proces­
sors. They can however be strung together with similar 
arrays and form a multiple SIMD array which can be 
much larger than any single SIMD module. 

8.1.3. Mesh-Connected Processor Arrays 

In silicon the planar structure of the connecting me­
dium will tend to favor planar communication networks. 
Therefore, it is natural to build the communication on a 
mesh or a grid; i.e., each PE-has four (or eight) neigh­
bors. Even the computers with multidimensional com­
munication have included mesh connections for faster 
local communication. Examples of mesh-connected ar­
rays are DAP (Distributed Array Processor) [51], MPP 
[101], and BUTZEN [9]. 

8.1.4. Multidimensional Processor Arrays 

Multidimensional architectures like hypercubes allow 
aj more general communication pattern than any of the 
previous arrays. That is, no PE is further away than logz 
N steps, where Nis the number of PEs. 

It has been found that general communication is used 
mainly for transfers between "parameter spaces" (e.g., 
image__..,. edges__..,. corners). None of the efficient imple­
mentations of ANN algorithms on any ofthe studied ar­
chitectures used/needed multidimensional communica­
tion. 

9.0. PARALLEL COMPUTERS DESIGNED OR USED FOR 
ARTIFICIAL NEURAL NETWORKS 

Placing some of the parallel computers used for ANN 
into the diagram of Fig. 10 results in the map shown in 
Fig. 11. 

We will now give brief descriptions of these machines 
and review the reported ANN implementations. We cer­
tainly do not cover all the massively and highly parallel 
machines but our selection should be representative. The 
order of presentation is alphabetical within each group. 

9 .1. Massively Parallel Machines with Simple PEs 

9.1.1. AAP-2 

AAP-2 [132] is a two-dimensional (2D) mesh-con­
nected computer enhanced with bypasses and ripple 
through operations. It contains 64K (256 by 256) bit-serial 
PEs featuring a simple 1-bit AL U and a 144-bit register 
file. There is also a 15-bit control register which can con­
trol each PE individually in a primitive way. 

BP has been implemented in a node and weight paral-



USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 275 

No of PEs 

24 

CM-2 
AAP-2 
ASP 
GAPP 

MP-1 

2 4 
SimplePE 

Massively 
Parallel 

Highly 
Parallel 

Moderately 
Parallel 

Barely 
Parallel 

16 Comple~2PE 64 PE data length 

FIG. 11. A way of classifying architectures for ANN. A corre­
sponds to massively parallel machines with simple PEs in Section 9.1, B 

'to highly parallel machines with simple PEs in Section 9.2, C to highly 
parallel machines with complex PEs in Section 9.3, and D to moderately 
parallel machines with complex PEs in Section 9.4. 

lei fashion using an interesting circular way to perform 
table lookup of the sigmoid function. Using 26 bits for 
weights and activations and a 256 x 256 x 256 network 
18 MCUPS was achieved. When different sizes of the 
layers were used the efficiency decreased. 

9.1.2. Associative String Processor (ASP) 

The ASP is a computer designed and built by Univer­
sity of Brunei and Aspex Ltd. in England, with Lea as the 
principal investigator [74]. The computer consists of sim­
ple PEs (1-bit full adder, n +a-bit comparator) which are 
strung together into "strings" of more "complex" types 
such as 32-bit integers. Each processor has a 96-bit data 
register and a 5-bitactivity register. Each string is linked 
by a communication network and there are data ex­
changes and buffers to support high-speed data I/0. The 
architecture is expandable up to 262, 144 processors ar­
ranged as 512 strings of 512 processors each. A 16K ma­
chine has been built and a 64K machine is to be com­
pleted by the summer of 1992. 

Krikelis and Grozinger [67] have implemented Hop­
field net and BP on a -Simulator of the architecture. In the 
Hopfield net one neuron is mapped onto each PE as long 
as the internal memory is sufficient (1800 nodes). At this 
maximum, the real machine should be able to run at 1600 
MCPS. 

The BP network implementation also uses node and 
weight parallelism simultaneously. On a 63 x 45 x 27 
network 4323 PEs are utilized, but in some time instances 
there are only 46 PEs actively taking part in the calcula­
tion. The weights are represented by 16-bit fixed-point 

numbers. A thresholded picture (1 bit deep) is used as 
input and the activation in the other nodes is represented 
by 12 bits. The sigmoid is approximated with a group of 
conditionals. The simulation indicates a performance of 
12 MCUPS on the real machine. 

9.1.3. Connection Machine (CM, CM-2) 

The Connection Machine [40, 127] manufactured by 
Thinking Machines Corporation (TMC) is for the moment 
the most massively parallel machine built (from 8K up to 
64K processing elements). In addition to its large number 
of processors, two of its strong points are its powerful 
hypercube connection for general communication and 
the multidimensional mesh connection for problems with 
regular array communication demands. In the CM-2 
model TMC also added floating-point support, imple­
mented as one floating-point unit per 32 PEs. This means 
2048 floating-points units on a 64K machine, giving a 
peak performance of 10 GFlops. 

CM-2 is one of the most popular parallel computers for 
implementing ANN algorithms. Most of the implementa­
tions so far concern BP, but within this model different 
forms of parallelism have been utilized in different appli" 
cations. 

Rosenbergand Blelloch [108] constructed an algorithm 
in which each neuron is mapped onto one PE and each 
weight (synapse) is mapped onto two PEs. This unusual 
mapping is chosen in order to use some special communi­
cation features of the Connection Machine. Their map­
ping could be seen as a general· method for mapping di­
rected graphs onto a computer with "copy scan," 
"send," and "plus-scan" operations. The resulting per­
formance, limited solely by communication, was 2.8 
MCUPS for NETtalk and around 13 MCUPS maximally. 
Forward-backward parallelism was mentioned but not 
implemented. 

Brown [12] compared two different ways of paralleliz­
ing BP. One method used node parallelism with one PE 
per neuron and the other was the method (node plus 
weight parallelism) suggested by Rosenberg and Blelloch. 
Brown found that the latter had better performance. 

Zhang et al. [139] combined training example and node 
parallelism plus good knowledgeof the CM-2 communi­
cation and computational structure to achieve high per­
formance on quite different sizes of ANNs. On NETtalk 
using 64K PEs they could get around 40 MCUPS (and 175 
MCPS). 

Using Zhang et al.'s approach on a much larger prob­
lem (280.5 megabyte of training examples) Diegert [19] 
reached 9.3 MCUPS on a 16K PE machine. With 64K 
PEs the estimated performance is 31 MCUPS. This is 
good in comparison with the NETtalk performance 
above, when considering that the training data are moved 
in and out of the secondary storage all the time. 
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Singer's implementation of BP [118, 119], which is the 
fastest implementation on the CM-2, uses training exam­
ple parallelism. He reports a maximum of 1300 MCPS 
and 325 MCUPS on a 64K PE machine when using 64K · 
training vectors. 

Deprit [18] has compared two implementations of re­
current back-propagation (RBP) on the CM-2. First he 
used the same mapping as Rosenberg and Blelloch (R&B) 
with a minor modification to include the feedback con­
nections. The second mapping was node parallelism with 
the communication method suggested by Tomboulian 
[128]; see Section 6.4. The basic finding was that the 
R&B method was clearly superior for densely connected 
networks, such as that used in NETtalk. Note that the 
R&B implementation is still communication bound, indi­
cated by the fact that the simulation time changed almost 
imperceptibly when software floating point was used in­
stead of the hardware units. 

Obermayer et al. have implemented large SOM models 
on the CM-2 [91]. Node parallelism with up to 16K PEs 
(neurons) was used. The input vector length (input space 
dimension) was varied and lengths of up to 900 were 
tested. The same algorithm was also implemented on a 
self-built computer with 60 T800 (Transputer) nodes con­
nected in a systolic ring. In addition to algorithmic analy­
sis the two architectures were benchmarked. The conclu­
sion was that the CM-2 (16K PEs) with floating-point 
support is equal to 510 Transputer nodes for the shortcut 
version of SOM. As a 16K CM-2 has 512 Weitek FPUs, 
each with approximately the same floating-point perfor­
mance as one T800, it can be concluded that the shortcut 
method is basically computation bound. In a ''high-com­
munication" variant of SOM, a 30-node Transputer ma­
chine would run at one-third of the CM-2 speed. 

Rogers [105] has used CM-2 as a workbench for explor­
ing Kanerva's SDM model. Rowwise mapping (node par­
allelism) is used for the selection phase (steps 1 and 2 in 
Algorithm 3), but for the store/retrieve phase weight par­
allelism is used (as many PEs as there are counters). As 
the number of physical PEs in Rogers' implementation is 
of the same order as the number of counters in one 
column he actually uses node parallelism and rowwise 
mapping, letting the CM-2 sequencer take care of the 
looping over each column. Implementing this in *Lisp on 
an 8K CM-2 results in a performance of only approxi­
mately 3 iterations per second (256-bit address, 256-bit 
data, 8192 locations). Using a pure rowwise mapping in 
C* one of the present authors has been able to achieve 
between 30 and 70 iterations per second on a CM -2 of this 
size. The difference is probably due to some unnecessary 
but expensive communication needed in going from 1D to 
2D representation. 

The still relatively poor performance of SDM on CM-2 
is found to depend on at least three factors: PEs are 
underutilized during the select/retrieve phase using node 

parallelism where as few as 0.1-1% of the total number of 
PEs are active; the natural rowwise mapping demands 
time-consuming sum-reduction across PEs; the "opti­
mal" mixed mapping [89] (see Section 9.2.5) is hard to 
implement efficiently with the current sequencer. 

9.1.4. DAP 

The Distributed Array Processor-produced by ICL 
(International Computers Limited) and AMT (Active 
Memory Technology Ltd.) [51]-is a series of 2D SIMD 
computers with different sizes and different hosts. The 
sizes range from 1024 to 4096 PEs. The processing ele­
ments are simple and bit-serial. To overcome the short­
comings of the ordinary 2D array (its long distance com­
munication performance) row and column "highways" 
have been included. A 4K DAP gives 32-48 Mflops and 
computes 8-bit multiplications at 250 Mops and 8-bit mul­
tiplications by scalar constant at 600 to 1200 Mops. In a 
forthcoming machine there will be some support for mul­
tipliCation in each PE. It will then give 560 MFlops maxi­
mally for a 4K PE machine. 

Forrest et al. [29, 30] report the use of the ICL DAP to 
implement Hopfield net, BP, Elastic net (applied to trav­
eling salesman problems), etc. They also use Transputers 
for similar tasks. However, no performance figures are 
given; it is more of a feasibility study. The authors de­
scribe and use four of the various types of parallelism: 
node, weight, training example, and training session. 

Nuiiez and Fortes [90] have used the AMT DAP to 
implement BP, recurrent BP, and mean field theory. The 
calculations are treated as matrix operations, which with 
our terminology results in a combination of weight and 
node parallelism. For activation distribution the DAP 
broadcast highways are utilized in a way similar to the 
grid-based communication method. On a 4K machine 
with 8 bits used for weight and activation the perfor­
mance is 100-160 MCUPS for BP. With 16 bits used 
instead, the figures are 25-40 MCUPS. A NETtalk (203 
x 64 x 32) implementation on the 1K DAP using 8 bits 
resulted in 50 MCUPS. 

9.1.5. MasPar (MP-1) 

MasPar MP-1 [8, 15, 87] is a SIMD machine with both 
mesh and global interconnection style of communication. 
It has floating-point support, both VAX and IEEE stan­
dards. The number of processing elements can vary be­
tween 1024 and 16,384. Each PE has forty 32-bit regis­
ters, a 4-bit integer ALU, floating-point "units" to hold 
Mantissa and Exponent, an addressing unit for local ad­
dress modifications, and a 4-bit broadcast bus. 

MP-1 has a peak performance, for a 16K PE machine, 
of 1500 MFlops single-precision [87]. It is programmed in 
parallel versions of Fortran (MasPar Fortran) or C (Mas­
Par C) or a C-derived language (MasPar Application Lan­
guage) for more direct contact with the hardware [15]. 



USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 277 

Chinn et al. [14] and Grajski et al. [35, 36] have imple­
mented BP and SOM using floating-point arithmetic. Es­
timating the performance of a 16K PE machine from the 
figures of a 2K, 4K, and 8K machine gives approximately 
10 MCUPS with BP on a 256 x 128 x 256 network, 
utilizing node and weight parallelism. The mapping of 
SOM into MP-1 is one PE to each SOM node. It was 
measured to give 18 MCUPS on a 4K machine when 32-
dimensional input vectors (or larger) were used. 

9.2. Highly Parallel Machines with Simple PEs 

9.2.1. AIS-5000, Centipede 

AIS-5000 [113] manqfactured by Applied Intelligent 
Systems Corp. has up to 1024 bit-serial PEs arranged as a 
linear array. The PEs are similar to those of CM, DAP, 
and BUTZEN. The basic problem when using AIS-5000 
for ANN is the lack of support for multiplication and the 
difficulties in performing the backward phase of back­
propagation (BP). Both of these difficulties have been 
addressed in [124] for other linear processor arrays. In a 
new generation using the new Centipede chip [135] better 
support for multiply-and-add is incorporated and table 
lookup is also possible. 

AIS-5000 is intended mainly for image processing ap­
plications like inspection, but Wilson [135] has shown a 
neural network implementation of feedback type (Hop­
field). Despite the difficulties mentioned, between 19 and 
131 MCPS (depending on the precision used) is achieved 
using node parallelism. 

9.2.2. Connected Network of Adaptive ProcessorS 
(CNAPS) 

CNAPS, manufactured by Adaptive Solutions, Inc., is 
one of the first architectures developed especially for 
ANN. Called X1 in the first description by Hammerstrom 
[37], it is a 256-PE SIMD machine with a broadcast inter­
connection scheme. Each PE has a multiply (9 x 16 bit)­
and-add arithmetic unit and a logic-shifter unit. It has 32 
general (16-bit) registers and a 4-kbyte weight memory. 
There are 64 PEs in one chip. The user may choose 1, 8, 
or 16 bits for weight values and 8 or 16 bits for activation 
values. 

With 16 bits for weights and 8 bits for activation the 
peak performance is 5 GCPS for a feedforward execu­

. tion, and 1 GCUPS using BP learning. For NETtalk 180 
MCUPS is achieved using only one chip (64 PEs). 

The performance of CNAPS on SOM was reported by 
Hammerstrom and Nguyen [38]. The figures are based on 
a 20-MHz version of CNAPS. With 512 nodes/neurons 
and a 256-dimensional input vector, best match using a 
Euclidean distance measure can be carried out in 215 !J-S, 
using 16-bit weights. Making their CUPS figure compara­
ble to others, the performance is about 183 MCUPS. 

9.2.3. Geometric Arithmetic Parallel Processor (GAPP) 

GAPP is a mesh-connected SIMD systolic array. On 
one chip there are 72 PEs (6 x 12), each with 128 bits of 
RAM. Designed for image processing and working bit­
serially, it runs at a clock speed of 10 MHz. The process­
ing element is very simple, basically a full adder. The 
chip was developed by Holsztynski of Martin Marietta 
Aerospace Corp. and manufactured by NCR Corp [16]. It 
was the first commercially available systolic chip. 

Brown et al. have used GAPP to implement BP [11]. 
As there is no floating-point support on GAPP they use 
fixed-point numbers. Ten bits precision is used for the 
activation values and 15 bits (4 + 11) for the weights. The 
sigmoid function is approximated by a stepwise linear 
function. Both weight and node parallelism are used. No 
performance figures are reported. 

Barash and Eshera [5] have also used GAPP to imple­
ment feedforward networks with BP learning. Using a 
variation of communication by circulation described in 
Section 6.3 they combine weight and node parallelism. 
With a 40K GAPP and 8 bits for weight and activation 
values they estimate a performance of 300 MCUPS. The 
major bottleneck is reported to be the calculation of the 
sigmoid function. 

9.2.4. L-Neuro 

The Laboratoires d'Electronique Philips (LEP), Paris, 
have designed a VLSI chip called L-Neuro. It contains 16 
processors working in SIMD fashion. In association with 
these chips Transputers are imagined as control and com­
munication processors. Weights are represented by 
two's-complement numbers over 8 or 16 bits, and the 
states of the neurons are coded over 1 to 8 bits. The 
multiplication is done in parallel over 16 or 32 weights but 
bit-serially over the weight values, and as only one out­
put node atthe time is calculated (in one chip) it can be 
considered a weight parallel implementation. The node 
activation value must go outside the chip for distribution 
to other nodes, and no support for the calculation of the 
sigmoid function is needed/implemented inside the chip. 
Duranton and Sirat [20, 21] have described implementa­
tions of SOM, Hopfield, and BP networks using this chip 
as a building block. 

9.2 .5. REMAP3 

REMAP3 is a cooperative research project between 
Lulea University of Technology and Halmstad Univer­
sity, both in Sweden. The project is aimed at obtaining a 
massively parallel computer architecture put together by 
modules in a way that allows the architecture to be ad­
justed to a specific application. This suggests that a cer­
tain architecture may be ''compiled''; thus a modification 
of each module and adjustments of the connections be-
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tween the modules are enforced. The intended applica­
tio;n area in a broad sense is embedded industrial sys­
tems. A multimodule system is well suited for 
implementing a multiple-network artificial neural system. 

A small prototype of a software configurable processor 
array module with bit-serial processors has been imple­
mented [75] and a larger system consisting of several 
modules is in the process of being designed. Different 
variations can be realized by reprogramming. An archi­
tecture tuned for neural network computations, including 
a fast bit-serialmultiplier, has been designed. Ahlander 
and Svensson [140] describe how support for floating­
point calculations may be embedded in the bit-serial 
working mode if needed, resulting in impressive floating­
point performance when implemented with VLSI. 

The mapping and performance of some common ANN 
models (BP, Hopfield, SOM, SDM) have been reported 
[124, 88, 89]. As an example, a 4K PE machine reaches 
953 MCPS or 413 MCUPS on BP when running at 10 
MHz and using 8-bit data. A node parallel version of BP 
is used. For 16-bit data, 546 MCPS ·or 219 MCUPS is 
achieved. An SDM model running 30 iterations per sec­
ond on a 8K CM-2 can run at speeds above 400 iterations 
per second on a 256-PE REMAP3 (10 MHz) with 
counters. The implementation uses a "mixed mapping" 
of the SDM model: rowwise mapping for the selection 
phase and columnwise for the store/retrieve phase. 

9.3. Highly Parallel Machines with Complex PEs 

9.3.1. GFll 

GFll is an experimental SIMD computer built at IBM 
Research Laboratory [7]. It has 566 PEs running at 20 
MHz and a peak performance of 11 GFlops (as the name 
implies). It is intended primarily for quantum chromo­
dynamics (QCD) predictions. Each PE has two floating­
point adders, two floating-point multipliers, and one 
fixed-point unit. Table lookup and selection are the only 
data-dependent operations available. 

The memory is organized as a three-staged hierarchy 
of progressively larger and slower memories. The com­
munication is done via a three-staged Benes network. 
The machine is programmed in conventional C with calls 
to special-purpose procedures. This generates, after an 
optimization step, large blocks of microcode. Using a 
very simple controller the code is sent to all processors 
(there is also an address generator/relocator). 

Witbrock and Zagha have been able to use this com­
puter, before it was completed, to run ANN algorithms 
[136]. They implemented BP and benchmarked it with the 
NETtalk text-to-speech benchmark, achieving a speed of 
900 MCUPS on a 356-processor computer. Because of 
the memory hierarchy they needed a few tricks to obtain 
this high speed. 

Witbrock and Zagha discuss various ways to parallel­
ize BP and finally choose training example parallelism. 
When all the weight changes are added, log2 N steps are 
required. They also discuss in detail how to compute the 
sigmoid function and how to implement Recurrent BP 
because this model is their main interest. They conclude 
that a sophisticated communication network is not neces­
sary if processor-dependent addressing is available. 

9.3.2. Hughes Systolic/Cellular Architecture 
' . 

The Hughes machine is a mesh-connected SIMD archi-
tecture made for image formation of synthetic aperture 
radar (SAR) pictures. The prototype used has 256 PEs, 
each with seven function units working on 32-bit fixed­
point data (two multipliers, two adders, a divider, a nor­
malizer, and a sorter), 24 memory registers, and a small 
local memory. 

On this computer Shams and Przytula have imple­
mented BP [115]. Training example parallelism was used 
in one "dimension" of the mesh and node parallelism 
with communication by circulation in the other dimen­
sion. Benchmarking with NETtalk resulted in a perfor­
mance of 100 MCUPS, including loading and unloading 
operations. For recall only the result was 240 MCPS. 

9.3.3. UCL Neurocomputer 

Treleaven et al. have set out to construct a general­
purpose "neurocomputer" [129]. Each PE is a 16-bit 
RISC (16 instructions) containing an on-chip communica­
tion unit and on~chip local memory. For communication 
a ring structure and a broadcast bus are used. Each PE 
has a unique address to support a more general type of 
logical communication. The ALU can add and subt,ract in 
one clock cyclebut it only supports multiplication with a 
multiply step. This means that the performance of each 
PE will be low on ANN problems that have many multi­
plications. , 

The 5-MHz, 1.5-f.Lm CMOS chip which was ready in 
1990 could contain only two PEs and have a maximum 
CPS rate of 156 kCPS/PE or 312 kCPS/chip. It looks like 
the complex control part of the chip made it difficult to 
include a more powerful ALU with a one-cycle multiply­
and-add. The UCL approach should be compared with 
theCNAPS approach in which emphasis is.placed on the 
basic computation of ANN s and the controller is shared 
between all the PEs (SIMD). 

9.3.4. Transputers 

The Transputer [54, 133] is a single-chip 32-bit micro­
processor. It has support for concurrent processing in 
hardware which closely corresponds to the Occam [10, 
53, 55] programming modeL It contains on-chip RAM 
and four bidirectional 20 Mbits/ s communication links. 
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By wiring these links together a number of topologies can 
be realized. Each Transputer of the T8oo: type is capable 
of 1.5 MFlops (20 MHz) and architectures with up to 4000 
Transputers are being built [133]. · 

The next generation of Transputers, called T9000, will 
provide around 10 sustained MFlops and have 16 kbyte 
of cache memory on chip. The communication has also 
been improved to support through-routing without pro­
cessor involvement. This will be an even better building 
block for highly parallel computers for the nineties. 

Back-propagation has been implemented by Hwang et 
al. [52, 71] and Petkov [98] using node parallelism and 
communication by circulation. Forrest et al. have imple­
mented the Hopfield, BP, and Elastic net models on both 
DAP and Transputers [29, 30]. No figures of performance 
have been given, but Transputers with their relatively 
low communication bandwidth (relative to their compu­
tational capabilities) are more efficiently used if small­
grain partitioning can be avoided. That is, node and 
weight parallelism should be avoided, especially if they 
are described as general graphs. 

The SOM of Kohonen has been implemented by 
Hodges et al. [45] and Siemon and Ultsch [117]. Both 
implementations just distribute the nodes over the PEs 
and use ring comm1.1nication to distribute the input vector 
and to find the global minimum. As long as the neighbor­
hood is larger than the number of PEs this mapping is 
quite efficient. Good performance will be achieved also 
for high input dimension. Siemon and Ultsch state a per­
formance of 2.7 MCUPS on a 16 Transputer machine 
applied to a network sized 128 x 128 using 17 input di­
mensions. Hodges et al. presented an equation for the 
performance but no concrete implementation. 

A more general implementation framework, called 
CARELlA; has been developed by Koikkalainen and Oja 
[66]. The neural network models are specified in a CSP­
like formalism [64-66]. The simulator is currently run­
ning on i network of Transputers and some of the models 
implemented areSOM, BP, and perceptrons. The perfor­
mance of the simulator j:las not been reported. 

The Europea,n PYGMALION project [130] is, like 
CARELlA, a general ANN programming environment 
which has Transputers as.one of its.target architectures. 
Its ANN programming languages are based on C++ and 

· C; this together with a graphical software environment 
and algorithm libraries makes it a complete ANN work­
bench. Performance figures. or an indica.tion of how to use 
massively parallel computers as targets are unfortunately 
not given. 

9.4. Moderately Parallel Machines with Complex PEs 

9.4.1. DSP (Digital Signal Processor) Based 

Because the cumint .generation of DSPs and some of 
the RISC chips have outstanding multiply-and-add per-

formance it is easy to conceive of them as building blocks 
for an ANN computer. There are at least five suggested 
architectures usin~ i860, TMS320C40, or TMS320C30. 

9.4.1.1. Sandy/8. Building Sandy/8, Kato et al. at 
Fujitsu [61] intend to use conventional processors or stg­
nal processors for the calculations and simple ring struc­
tures for communication. The system is projected to uti­
lize 256 TMS320C30. The expected maximal 
performance using BP is above 500 MCUPS. Only 118 
MCUPS is expected on NETtalk (203 x 60 x 26) as the 
mapping can utilize only 60 PEs. 

. 9.4.1.2. Ring Array Processor (RAP). The RAP is a 
multi-DSP systein for layered network calculations de­
veloped at the International Computer Science Institute, 
Berkeley, California [6, 83]. Each PE consists of a 
TMS320C30 connected to other PEs via a bus interlace 
into a ring network. The 4-PE computer (one board) 
which has been implemented runs at maximally 13.2 
MCUPS [82, 83]. A 16-PE system is estimated to run at 
46 MCUPS. 

9.4.1.3. GigaCoNnection (GCN). Hiraiwa et al. [43J 
at Sony Corp. are building an ANN computer called 
GCN in which each PE consists of a processor similar to 
the core of i860, 2 FIFOs, and '4 Mbyte RAM. Each PE 
will fit into a single chip (by 1992). The PEs are connected 
into a 2D mesh with wraparound. The ANN algorithm is 
mapped on the architecture using node parallelism in one 
direction (systolic ring) and tra.iriing example parallelism 
in the other. The expected BP performance when running 
128 PEs at 50 MHz will be above 1 GCUPS for a 256 x 
80 x 32 network. The tra.ining data are then distributed 
into 32 groups. 

9.4.1.4. TOPS!. • TOPS! is a computer architecture 
built at Texas Instruments [31]. Each PE or module can 
be sa.id to consist of a TMS320C40 and a 32-bit general 
processor like MC68040 together with support for com­
munication. There are two complementary communica­
tion structures, one general reconfigurable inter-PE net­
work and one hierarchical bus for broadcasting 
information. Only the latter is needed for the implemen­
tation of Hopfield and BP networks. A 100-module com­
puter will run BP at a maximum speed of approximately 
150 MCUPS, and a 1000 module computer at approxi­
mately 1.4 GCUPS. 

9.4.1.5 .. PLANNS (Planar Lattice Architecture. for 
Neural Network Simulations) and TLA (Toroidal Lattice 
Architecture. PLANNS is an improved version of the 

· TLA, both suggested by Fujimoto and Fukuda [32-34]. 
They use node and weight parallelism with grid-based 
communication. Load balancing is a.chieved by first 
mapping the computations onto a virtual TLA and then 
splitting the work to suit a physical TLA. The physical 
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processor array must be able to support m~sh communi­
cations. 

A 16-PE Transputer array has been used as a prototype 
TLA resulting in 2 MCUPS oil a feedforward network 
using BP. The authors claim an almost linear~ speedup 
with the number of PEs when their load balancing 
scheme is used. By using a more powerful PE like i860 
and a larger number of nodes (some 30,000) they are 
planning to reach 10 GCUPS in a future implementation. 

9.4.2. Warp 

Warp is a one-dimensional array of 10 or more power­
ful processing elements developed at Carnegie Mellon in 
1984-1987 [69]. Each cell/PE has a microprogrammable 
controller, a 5-MFlops floating-point multiplier, a 5-
MFlops floating-point adder, and a local memory. Com­
munication between adjacent cells can be conducted in 

,parallel over two independent channels: a left-to-right X 
channel and a bidirectional Y channel. In 1991 Intel re­
leased a single-chip version of the Warp concept called 
iWarp [97]. Systems with up to 1024 iWarp chips can be 
built and can give a theoretical performance of 20 
GFlops. Implementing a computer with these chips will 
at least double the performance figures given for Warp 
below. 

Back-propagation was implemented by Pomerleau et 
al. [100] trying both node and training example parallel­
ism. They found that with training example parallelism 
they could simulate much larger networks and/ or at 
higher speeds. On NETtalk the 10-PE Warp reached 17 
MCUPS. 

An implementation of Kohonen SOM has been de­
scribed by Mann and Haykin [79]. Using training exam­
ple parallelism between 6 and 12 MCUPS was achieved. 
Some minor problems with the topology ordering process 
when using training example parallelism were reported. 
The authors suggest that either the network start at some 
order instead of at random state or the network be trained 
sequentially for the first 100-1000 steps, after which the 
training example parallelism is "turned on." 

9.5. Other High-Performance Architectures 

9.5.1. Vector (Super) Computers 

For the sake of comparison with well-known powerful 
computers of a ·more conventional kind, some figures 
from implementations on a couple of, so-called, super­
computers are given. 

9.5.1.1. CRAY X-MP. The performance on a Cray X­
MP was given in the DARPA neural networks study [17] 
to be 50 MCPS. It can be compared to the theoretical 
maximal performance of 210 MFlops [44]. Even though 
the 50 MCPS performance is often cited, it is difficult to 
draw any conclusions from this, as the network size, the 

training algorithm, and even whether or not training is 
included are unknown. 

9.5.1.2. NEC SX-2 and SX-X. NEC's SX-2 is a con­
ventional supercomputer with four general vector pipe­
lines givinga peak performance of 1.3 GFlops [44]. On 
ANN its performance is 72 MCUPS on NETtalk and its 
maximal performance on BP is 180 MCUPS [4] via [61]. 

9.5.2. VLSI Implementations 

Even though the intention of this paper primarily is to 
review more complete computers, there are a few border­
line cases liktf L-Neuro, UCL neurocomputer, and 
CNAPS. There are many other interesting suggestions 
and realizations of chips for ANN. More material and 
surveys can, for instance, be found in [17, 46, 84, 103, 
112}. To review only the digital ones would lead to an­
other paper of this length. Here we mention a few of the 
digital realizations: 

9.5.2.1. Faure. Faure and Mazare [25, 26]have sug­
gested an asynchronous cellular architecture which con­
sists of a 2D mesh of size 65 x 65 for ANN.· Each PE has 
a routing and a processing part running at 20 MHz. The 
routing is intended to control up to four message trans­
fers in parallel. Using 16 bits for weights and an array 
configured for NETtalk the designers claim 51.4 
MCUPS. Basically, node parallelism is used but each 
node is distributed over two PEs. 

9.5.2.2. Hitachi. Masaki et al. and Yasunaga et al. at 
Hitachi have dev(;!loped a wafer scale integration (WSI) 
neural network [81, 137, 138]. On one 5-inch silicon wafer 
they can have 540 neurons, each having up to 64 weights 
(the 64 largest values are chosen). Node parallelism is 
used, and the neurons communicate through a time­
shared digital bus. Each PE has an 8 by 9-bit multiplier 
and a 16-bit accumulator. The measured time step is 464 
ns. The performance of a wafer is then 138 MCPS. They 
intend to build a system out of 8 wafers and could then 
theoretically achieve 1100 MCPS. No on-chip learning is 
available. 

9.5.2.3. SIEMENS. Ramacher and his colleagues at 
Siemens [102-104] have suggested and built parts of a 2D 
array composed of systolic neural signal processor mod­
ules. The basic components of their MA16 chip are pipe­
lined 16-bit multipliers together with adders. Ill, this re­
spect the design is similar to CNAPS. However, the 
Siemens architecture does not use broadcast-based com­
munication, but instead uses a systolic data flow (parti­
tioned in groups of four). Each chip has a throughput on 
the order of 500 MCPS. To get a complete system, 256 
MA16 chips are concatenated, which should give a maxi­
mum performance of 128 GCPS. No estimated learning 
rates have been given. 

.. ... 
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10.0. DISCUSSI.ON AND CONCLUSIONS 

10.1. 'ANN and Parallel Computers 

Practically every powerful, parallel computer will do 
well on ANN computations that use training ~example 
parallelism. It is the kind of computation that even brings 
the performance close to the peak performance. This is of 
course interesting for people who do research on: training 
algorithms or do application development where the 
training of the system can be done in batch. However, for 
training in real time, this form of parallelism cannot be 
applied; the user is obliged to use node or weight parallel­
ism instead. This places other demands on the architec" 
ture, resulting in lower performance figures. 

This is clearly illustrated by the various BP implemen­
tations made on the Connection Machine: Singer, relying 
entirely on training example parallelism, achieves 325 
MCUPS. Zhang et al., on:ly partly utilizing training exam­
ple parallelism, reach 40 MCUPS. Rosenberg and Blel­
loch, finally, who on:ly use other forms of parallelism, end 
up with a maximum performance of 13 MCUPS. The 
latter implementation is so heavily communication bound 
that it does not even matter if bit parallelism is utilized or 
not! 

However, if the architecture meets the communication 
demands, near peak performance can be reached also in 
real-time training. The vertical and horizontal highways 
of the DAP architecture seem to be the key to the good 
performance reported for this machine [90]. On a com­
puter where the maximum number of 8-bit multiply-and­
add operations per second is 450-700M, 160 MCUPS (8 
bit) implies a very little amount of communication over­
head. 

A major conclusion from this survey is that the regular­
ity of ANN computations suits SIMD architectures per­
fectly; in none of the implementations studied has a real 
MIMD division of the computational task been required. 

·The majority of ANN computations following the most 
popular models of today can be mapped rather efficiently 
onto existing architectures. However, some of the 
models, for example, SDM, require a highly or massively 
parallel computer capable of performing tailored, but 
simple, operations in parallel and maintaining a very 
large amount of storage. 

10.2. Communication 

Broadcast and ring communication can be very effi­
ciently utilized in ANN computations. In highly parallel 
machines, broadcast or ring communication alone has 
proved to be sufficient. For massively parallel machines 
it is difficult to use only broadcast without using training 
example parallelism. This is due to the fact that the num­
ber of nodes in each layer, or the number of inputs to 
each node, seldom is as large as the number of PEs in the 

machine. On a two-dimensional mesh machine, broad­
cast in one direction at a time may be used and node and 
weight parallelism may be combined. Thus, broadcast is 
an extremely useful communication facility also in these 
machines. The "highways" of the DAP architecture 
serve this purpose. 

10.3. Bit-Serial Processing 
., 

Bit-serial processor arrays are very promising host ma­
chines for ANN computations. Linear arrays, or arrays 
with broadcast, are suitable for utilizing node parallelism. 
In mesh-connected arrays node and weight parallelism 
may be used simultaneously, if desired. Multiplication is 
the single most important operation in ANN computa­
tions. Therefore, there is much to gain in the bit-serial 
architectures if support for fast multiplication is added, 
as shown in Centipede and the REMAP3 project. 

As an illustration of this we can compare the perfor­
mance figures for the implementations of BP on AAP-2 
and REMAP3, respectively. On the 64K PE AAP-2 ma­
chine, which lacks support for multiplication, 18 MCUPS 
using 26 bits data are reported on a network that suits the 
machine perfectly. The same performance can be 
achieved on a 512-PE linear array REMAP3 implementa­
tion, in which bit-serial multipliers are used. AAP-2 also 
lacks a fast broadcasting facility, but this is of minor im­
portance compared to the slow multiply operations. 

10.4. Designing a General ANN Computer 

A fruitful approach when designing. a massively or 
highly parallel computer for general ANN computations 
is to start with a careful analysis of the requirements that 
are set by the low-level arithmetic operations and design 
processing elements which meet these demands. Then an 
architecture is chosen that makes it possible to map the 
computations on the computational structure in a way 
that makes processing and communication balanced. 

It seems that broadcast communication often is a key 
to success in this respect, since it is a way to time-share 
communication paths efficiently. The approach has been 
used in both the CNAPS and the REMAP3 design pro­
cesses, both resulting in "on:ly" highly (not massively) 
parallel modules with broadcast, the former with bit­
parallel processors, the latter with bit-serial ones. Nei­
ther design utilizes all the available parallelism; instead 
they leave weight parallelism to be serialized on the same 
processor. Both reach near peak performance on a vari­
ety of algorithms. 

10.5. Implementing Artificial Neural Systems 

The real challenge for computer architects in connec­
tion with the neural network area in the future lies in the 
implementation of Artificial Neural Systems, i.e., sys-
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terns composed of a large number of cooperating modules 
of neural networks. Each of the modules should be al­
lowed to implement a different network structure, and 
the modules must be able to interact in different ways and 
at high speed. This implies that heterogeneous systems 
composed of homogeneous processing arrays must be 
developed, and that special attention must be paid to the 
problem of interaction between modules and between pe­
ripheral modules and the environment. The role of 
MIMD architectures in neural processing probably lies in 
this area, actually meaning that MIMSIMD (Multiple In­
struction streams for Multiple SIMD arrays) architec­
tures will be seen. 

These new computer architectures are sometimes re­
ferred to as "sixth-generation computers," or "action­
oriented systems" [2, 3], since they are capable of inter­
acting with the environment using visual, auditory, or 
tactile sensors, and advanced motor units. 

So far these matters have not been addressed by very 
many computer architects (nor by artificial neural net­
work researchers). We believe that flexible, massively (or 
maybe only highly) parallel modules are important tools 
in experimental work aimed at building such systems for 
qualified real-time pattern recognition tasks. 
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