
I . '

JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 14, 260-285 (1992)

Using and Designing Massively Parallel Computers for Artificial
Neural Networks

TOMAS NORDSTROM AND BERTIL SVENSSON*

Division of Computer Science and Engineering, Department of Systems Engineering, Lulea University of Technology, S-95187 Lulea, Sweden

During the past 10 years the fields of artificial neural networks
(ANNs) and massively parallel computing have been evolving
rapidly. In this paper we study the attempts to make ANN algo­
rithms run on massively parallel computers as well as designs of
new parallel systems tuned for ANN computing. Following a brief
smvey of the most commonly used models, the different dimen­
sions of parallelism in ANN computing are identified, and the
possibilities for mapping onto the structures of different parallel
architectures are analyzed. Different classes of parallel architec­
tures used or designed for ANN are identified. Reported imple­
mentations are reviewed and discussed. It is concluded that the
regularity of ANN computations suits SIMD architectures per­
fectly and that broadcast or ring communication can be very effi­
ciently utilized. Bit-serial processing is very interesting for ANN,
but hardware support for multiplication should be included. Fu­
ture artificial neural systems for real-time applications will require
flexible processing modules that can be put together to form
MIMSIMD systems. © 1992 Academic Press, Inc.

1.0. INTRODUCTION

This paper is intended to provide a survey of the use
and design of massively parallel computers for artificial
neural networks (ANNs) and to draw conclusions based
on reported implementations and studies. The simple
control structure that characterizes massively parallel
computers can be SIMD (Single Instruction stream, Mul­
tiple Data streams) or a highly restricted form of MIMD
(Multiple Instruction streams, Mu1tiple Data streams)
that we call SCMD (Same Code for Multiple Data
streams).

We try to identify the architectural properties that are
important for simu1ation of ANNs. We also emphasize
the importance of the mapping between algorithms and
architecture. ANN computations are communication in­
tensive, a fact which may put strong demands on the
communication facilities of the architecture. Moreover,
the requirements vary with the ANN model used and the
mapping between the algorithm and the architecture.

* Also at Centre for Computer Science, Halmstad University, S-
30118 Halmstad, Sweden.

0743-7315/92 $3.00
Copyright © 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

The paper is organized into three parts: The first part
(Sections 1 through 7) is ANN-oriented. It .concentrates
on ANN models and those characteristics of the models
that are of interest when considering parallel implementa­
tion. In this part we first go through the basic~ of artificial
neural networks and ANN algorithms. We then discuss
some general computational topics that are relevant for
the implementation of any ANN model, such as the pre­
cision of the calculations and the opportunities for paral­
lel execution. We conclude the ANN-oriented part with a
discussion of different measurements of speed for ANN
computations.

The second part (Sections 8 and 9) is architecture­
oriented. Here we define different classes of parallel
computer architectures and give a review of the types of
ANN algorithms that have been implemented on com­
puters of these classes.

In the final part of the paper (Section 10) we analyze
what experiences can be drawn from the reported imple­
mentations and try to determine what requirements will
be placed on massively parallel computers for ANN sim­
u1ation in the future-in batch processing, in real-time
applications, and in action-oriented systems. In real-time
applications, the speed of the input data flow and the
requirements for output data are set by the environment.
In action-oriented systems, sensory, motor, and process­
ing parts, all possibly utilizing neural network principles,
are seen as integrated systems capable of interacting with
the environment. These systems are sometimes called
"sixth-generation computers" [2, 3].

2.0. THE BASICS OF ARTIFICIAL NEURAL NETWORKS

In this section we describe the basic properties and
terminology of biological neurons and networks. We also
show some simple models of these biological structures.

It should be noted that ANN s are often far from being
good biological models. Instead they may be seen as bio­
logically inspired algorithms. Studying "the real thing"
will give perspective on how simple our models are and
how complex the brain is.

260

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 261

Synapses

(

.. ::::.:;;,.,:::::::::::."'\·::::~:::·
.. ..><: ..

·· ...

FIG. 1. The principal components of a basic neuron. The input comes to the neuron through synapses on the dendrites. If there are enough
stimuli on the inputs there will be an activation (impulse) through the axon which connects to other cells via synapses.

2.1. The Biological Neuron

The basic building block of the brain is the nerve cell
(neuron). In humans there are about 1012 neurons. Neu­
rons come in many varieties. They are actually all differ­
ent but can be grouped into at least 50 types of cells.

The principal components of a neuron are shown in
Fig. 1. There is a cell body, a number of dendrites (input),
and an axon (output). The axon splits and connects to
other neurons (or muscles, etc.) The connections func­
tion like a sort of chemical resistor and are called syn­
apses. Thus the complexity of the brain is not limited to
the vast number of neurons. There is an even larger num­
ber of connections between neurons. One estimate is that
there are a thousand connections per neuron on average,
giving a total of 1015 connections in the brain.

Neurons can often be grouped naturally into larger
structures (hundreds of thousands of neurons). It has
been established that some groups/areas of the brain are
organized in a way that reflects the organization of the
physical signals stimulating the areas, i.e., topological
order. The result is that nearby areas in the brain corre­
spond to nearby areas in signal space. This order is ac­
complished even when the fibers that are transporting the
signals do not exhibit any apparent order. The order
seems also to be achieved without any guidance as to
what is right or wrong. The resulting maps are therefore
often called self-organizing maps. Examples are visual
and somatosensory cortex. Each of these structures of­
ten connects to other structures at a higher level.

2 .1.1. Adaptation and Learning

The brain would not be as interesting, nor as useful,
without its ability to adapt and to learn new things. There
are basically two ways in which adaptation takes place,
by changing the structure and by changing the synapses.
The first has the nature of long-term adaptation and often

takes place only in the first part of an animal's life. The
second, changes of synapses, is a more continuous pro­
cess that happens throughout the animal's entire lifetime.

2 .1.2. Information Processing

The information processing in a neuron is done as a
summation or integration of information fed into it. The
information is represented as brief events called nerve
impulses. t The interval or frequency conveys the infor­
mation. According to Hubel [50] the impulse rates may
vary from one event every few seconds or even slower to
about 1000 events per second at the extreme upper limit.
The normal upper limit is often cited to be 100 to 200
impulses per second. The "speed" of the impulses along
the axon is around 0.1 to 10 m/s. The length of an axon
varies from less than a millimeter to more than a meter.

2.2. The Artificial Neuron

The first and very simple model, however much used,
is the model in which information is contained as levels/
values corresponding to the impulse frequencies. Then
the integration of pulses is done as a summation. The
synapses are represented as weights, Wj, multiplied by
inputs ij. To make the model more powerful, a nonlinear
function, f, is applied to the sum, and the result, o =

j(Zwjij), is sent to the neurons connected to it (Fig. 2).
As with their biological counterparts the artificial neu­

rons are not very interesting by themselves. A large num­
ber of artificial neurons are necessary for interesting
computations. By changing the structure of the connec­
tions and adaptation rules it is possible to radically
change the type of computations made by the network.
Some of the models used are described in Section 3.0.

t This is not true for all neurons·: There are, for example, neurons in
the retina which have "graded" response. See e.g. [50] or [100] for
more on this topic.

262 NORDSTROM AND SVENSSON

ll
wl -

i2
w2 f(x) -;---

'3
w3 LW/j __r r--E---
...

in
wn -,

FIG. 2. The simplest model of a neuron. It can be seen as a model of
Fig. 1. The output has the form o = .f('2wiij).

2. 3. Layered Models

In many models there are layers of neurons; see Fig. 3.
There has been some confusion about how to count the
number oflayers. One method is to count the node layers
including the input layer, and another method is to count
weight layers (or node layers excluding the input layer).
In this paper we use the word "node" or "weight" in
front of the word "layer" when it is needed to avoid
confusion. When we count layers we use weight layers,
since this is the most relevant method when considering
the computational effort. This method of counting im­
plies that one (weight) layer is the smallest network pos­
sible. This single-layer network corresponds to the con­
cept of perceptrons [109]. Node layers which have no
connection to input or output are called hidden layers;
e.g., in Fig. 3 there are two hidden layers.

A compact way of giving the size of a multilayer net­
work is to present the sizes of the node layers with an
'' x '' in between. For example, 203 x 60 x 26 states that
the input node layer has 203 nodes, the hidden node layer
has 60 nodes, and the output node layer has 26 nodes.
Between each layer a fully connected weight layer is as­
sumed. Thus, we consider this a two-layer network.

3.0. SOME OF THE MOST COMMONLY USED ANN
ALGORITHMS

During the past 10 years the artificial neural networks
area has developed into a rich field of research. Many
new models or algorithms have been suggested. Not all
these models have been implemente-d on parallel com­
puters. This is not to say that some of them are not suit­
able for parallel execution. On the contrary, a common
characteristic of all neural network algorithms is that
they are parallel in nature. For the purposes of this paper,
however, we review the most common ANN algorithms
only, in order to be able to discuss their implementation
on PFU"allel computers.

The models are characterized by their network topol­
ogy, node characteristics, and training rules [76]. We de­
scribe some frequently used and discussed models.

1. Multilayer feedforward networks with supervised
learning by error back-propagation (BP), also called gen­
eralized delta rule [110]. The feedforward back-propaga­
tion model is used as a pattern classifier or feature detec­
tor, meaning that it can recognize and separate different
features or patterns presented to its inputs .

2. Feedback networks (also referred to as recurrent
networks). Different variations in node topology and
node characteristics have been proposed: symmetric
connectivity and stochastic nodes: Boltzmann machines
[41, 42, 50]; symmetric connectivity and deterministic
nodes: Hopfield nets [47, 48, 49, 95] and meanfield the­
ory [95, 96]; and nonsymmetric connectivity and determi­
nistic nodes: recurrent back-propagation (RBP) [1, 99].
The feedback models can be used as hetero- or autoasso­
ciative memories, but also for solving optimization prob­
lems. Using an ANN as an autoassociative memory
means that whenever a portion or a distorted version ofa
pattern is presented, the remainder of the pattern is filled
in or the pattern is corrected.

3. Self-organizing maps (SOM), also called self-orga­
nizing feature maps (SOFM) or topological feature maps
(TFM), developed by Kohonen [62, 63]. This is one of the
more frequently used models with unsupervised learning.
SOM, with its learning vector quantization variations
(LVQ1-3), is used for vector quantization, clustering,
feature extraction, or principal component analysis [63].

4. Sparse distributed memory (SDM). suggested by
Kanerva [58], who argues that it is biologically plausible.
The SDM model has been used, for example, in pattern
matching and temporal sequence encoding [57]. Rogers

. [107] has applied SDM to statistical predictions, and also
identified SDM as an ideal ANN for massively parallel
computer implementation [106].

. "

3.1. Feedforward Networks: Back-Propagation Learning

A feedforward net with three weight layers is shown in
Fig. 3. The network topology is such that each node (neu-

Input Nodes Hidden Nodes

Layer 1

Hidden Nodes

Layer2
(Hidden)

Output Nodes

FIG. 3. A three-layer feedforward network.

,.

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 263

ron) in a layer receive.s input from every node of the
previous layer. As in most models each node computes a
weighted sum of all its inputs. Then it applies a nonlinear
activation function to the sum, resulting in an activation
value-or output-of the neuron. A sigmoid function,
with a smooth threshold-like curve (see Section 4.3), is
the most frequently used activation function in feed­
forward networks, but hard limiters are also used.

In the first phase of the algorithm the input to the net­
work is provided and values propagate forward through
the network to compute the output vector, 0. The output
vector of the network is then compared with a target
vector, T, which is provided by a teacher, resulting in an
error vector, E.

In the second phase the values of the error vector are
propagated back through the network. The error signals
for hidden units are thereby determined recursively: Er­
ror values for node layer l are determined from a
'weighted sum of the errors of the next node layer, l + 1,
again using the connection weights-now "backward."
The weighted sum is multiplied by the derivative of the
activation function to give the error value, o.

Now, finally, appropriate changes of weights and
thresholds can be made. The weight change 11w~cn in the
connection to unit i in layer l from unitj in layer l - 1 is
proportional to the product of the output value, Oj, in
node layer l- l, and the error value, o;, in node layer l.
The bias (or threshold) value may be seen as the weight
from a unit that is always on and can be learned in the
same way. The algorithm is summarized in Algorithm 1.

Algorithm 1. Back-Propagation Training Algorithm

1. Apply input OC0l = 1.
2. Compute output ojn = f(netjn + bjn), where netj'l =

~;w}Po)l-O for each layer.
3. Determine error vector E = T - 0.
4. Propagate error backward.

If node j is an output node then the jth element of
the error value vector D is
OJ[) = OJl)(l - OJ[))(tJ[) - OJ[)) = oj0 (1 - OJ[))eJ[)
else
oj[) = oj[J(l - oj[)) ~;o)l+l)w~+l).
Here we have used the fact that the sigmoid func­
tion f(x) = 11(1 + e-x) has the derivative f' =

f(l -f).
5. Adjust weights and thresholds:

11 wW = YJO([) o(Hl
lJ l J '

11 b ~ll = YJO ~n.
6. Repeat from 1.

By remembering between iterations and adding a por­
tion of the old change to the weight it is possible to in­
crease the learning rate without introducing oscillations.
The new term, suggested by Rumelhart and McClelland

[110], is called the momentum term and is computed as
wljn(n + 1) = wljn(n) + 11wljn(n) + al1wljn (n - 1), where a
is chosen empirically between 0 and 1. Many other varia­
tions of back-propagation exist and some of them have
been studied by Fahlman [23].

3.2. Feedback Networks

A feedback network consists of a single set of N nodes
that are completely interconnected; see Fig. 4. All nodes
serve as both input and output nodes. Each node com­
putes a weighted sum of all its inputs: netj = ~ ;Wj;O;.

Then it applies a nonlinear activation function (see Sec­
tion 4.3) to the sum, resulting in an activation value-or
output-of the node. This value is treated as input to the
network in the next time step. When the net has con­
verged, i.e., when the output no longer changes, the pat­
tern on the output of the nodes is the network response.

This network may reverberate without settling down to
a stable output. Sometimes oscillation may. be desired,
otherwise oscillation must be suppressed.

Training or learning can be done in supervised mode
with the delta rule [111] or back-propagation [1], or it can
be done unsupervised by a Hebbian rule [111]. It is also
used "without" learning, where the weights are fixed at
start to a value dependent on the application.

3.3. Self-Organizing Maps

Relying on topological ordered maps and self-organiza­
tion as important concepts, Kohonen developed the
SOM [62, 63] which form mappings from a high-dimen­
sional input space into a low-dimensional output space.
These maps have been used in pattern recognition, espe­
cially in speech recognition, but also in robotics, auto­
matic control, and data compression. The SOM algo­
rithm proceeds in two steps: (i) the network node whose
value is closest to the input vector is identified, and (ii)
the nodes belonging to the neighborhood of this node (in
the output space) change their values to become closer to

FIG. 4. A seven-node feedback network.

264 NORDSTROM AND SVENSSON

the input. These two, steps are repeated with ever­
decreasing neighborhood size. The resulting nodes or
neurons will develop into specific detectors Of different
signal patterns.

Described below is the ''shortcut version'' ofthe basic
SOM algorithm. This version is motivated by the reduc­
tion of the computational effort compared to the original
one.

Algorithm 2. The SOM Algorithm "Shortcut Version"

1. Find the node (or memory) me closest to input x.

llx(tk) - mc(tk)ll = min llx(tk) - m;(h)il.
i

2. Find the neighborhood Nc(tk).
3. Make the nodes in the neighborhood closer to input.

m;(tk+!) = m;(tk) + a(tk)[x(tk) - m;(tk)]
for i E Nc(tk)

m;(tk+!) = m;(tk) otherwise.
4. Repeat from step 1 with ever-decreasing Nc and a

(neighborhood and gain sequence).

With a small change in the update equation (step 3 in
Algorithm 2) we can use the same framework for Learn­
ing Vector Quantization (LVQ), where the map functions
as a clustering or classification algorithm.

3.4. Sparse Distributed Memory

SDM developed by Kanerva [58] may be regarded as a
special form of a two-layer feedforward network, but is
more often-and more conveniently-described as an
associative memory. It is capable of storing and retriev­
ing data at an address referred to as a "reference ad-

Address register

Compare II
'f

Location
Addresses

1011 011

1011....011

0101.. .. 111

0110 101

0111....011

1101....101 ...
...

0111....111

1011....010

Dist Sel

dress." A major difference compared to conventional
Random Access Memories (RAMs) is that, instead of

. having, e.g;, 32-bit addresses, SDMs may have 1000-bit
addresses. Since it is impossible to have a memory with
21000 locations, SDMs must be sparse. Also, data are
stored in counters instead of 1-bit cells as in RAMs

The SDM algorithm has a comparison phase, in which
the sparsely distributed locations that are closest to the
reference address are identified, and an update (write)
or retrieval (read) phase, in which a counter value in each
of these locations is used (see Fig. 5).

Algorithm 3. The SDM Algorithm

Training the network (i.e., writing to the memory):

1. The address register is compared to the location
addresses and the distances are calculated.

2. The distances are compared to a threshold and
those below the threshold are selected.

. '
3. In the selected rows,

where the data-in register is 1 the counter is incre-
mented, '
where the data-in register is 0 the counter is
decremented.

Recall from the network (i.e., reading from the mem­
ory):

1. The address register is compared to the location
addresses and the distances are calculated.

2. The distances are compared to a threshold and
those below the threshold are selected.

1 0

1 0

0 -2
1 0

4 1 . .
. .
0 1

0 -3

Data-in register

1 0 . . 0 r--
3 -1 . . 1

1 0 . . r---3

I 5 0

0 1 1
0 1 . . 2
0 0 . . 0

2 -
1

0
0

-1 .
.
1

0

'Store

'f

Up-down
counters

··I!IG<-
i Retrieve Select

Sums 1241-61 621 1 I •

Data-out register l1 I o I 1 I 1 I ~
·l-s41 1 I !
·lo I 1 It

FIG. 5. The organization of a Sparse Distributed Memory as an array of addressable locations. Note that the address as well as the data can be
of hundreds of bits in length, and yet there are only a small number (like thousands) of memory locations.

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 265

3. The selected rows are added columnwise.
Where the sum is greater than zero the data-out
register is set to one, else it is set to zero.

4.0. COMPUTATIONAL CONSIDERATIONS

The computations involved in neural network simula­
tions show great similarities from one model to another.
In this section we discuss some topics that are of general
interest and not specific to one single model.

4.1. Basic Computations

For feedforward and feedback network algorithms the
basic computation is a matrix-by-vector multiplication,
where the matrices contain the connection weights and
the vectors contain activation values or error values.
Therefore, an architecture for ANN computations should
have processing elements with good support for multiply,
or even multiply-and-add, operations and a communica­
tion structure and memory system suitable for the access
and alignment patterns of matrix-by-vector operations.

Assuming N units per layer, the matrix-by-vector mul­
tiplication contains N 2 scalar multiplications and N com­
putations of sums of N numbers. The fastest possible way
to compute this is to perform all N 2 multiplications in
parallel, which requires N 2 processing elements (PEs)
and unit time, and then form the sums by using trees of
adders. The addition phase requires N (N - 1) adders and
O(log N) time.

The above procedure means exploitation of both node
and weight parallelism (defined later). For large ANNs
this is unrealistic, depending on both the number of PEs
required and the communication problems caused. In­
stead, most of the implementations that have been re­
ported take the approach of basically having as many PEs
as the number of neurons in a layer (node parallelism)
and storing the connection weights in matrices, one for
each layer. The PE with indexj has access to row j of the
matrix by accessing its own memory. Referring to Algo­
rithm 1, a problem appears in step 4 relative to step 2.
While step 2 corresponds to the matrix-vector operation
WO, step 4 corresponds to wra. This means that we need
to be able to access wr as efficiently as we can access W.
This introduces a mapping problem which we will return
to in Section 6. Regardless of the mapping chosen, multi­
ply-and-add is the basic operation in these calculations.

The first step of the SOM algorithm, using an inner­
product as distance measure, can also be seen as a ma­
trix-by-vector multiplication, where the matrix is com­
posed of the weight vectors of the nodes and the vector is
the training vector. Another distance measure used for
the first step is a Euclidean metric which cannot be de­
scribed as a matrix-vector operation. Still the basic oper­
ation in both metrics is multiply-and-add. Discussion on

the two different distance measures can be found in [63,
88]. From the resulting vector a maximum or minimum
must be found. The efficiency of this operation is strongly
dependent on the communication topology, but may also
depend on the characteristics of the PEs. In a later sec­
tion we will demonstrate how bit-serial processors offer
specific advantages. After a maximum (or minimum)
node is found its neighbors are selected and updated. The
selection time will depend on the communication topol­
ogy, and the update time on the length of the training
vectors.

Also in SDM the first step is a matrix-by-vector multi­
plication. But as both the matrix and the vector are bi­
nary valued the multiplications are actually replaced by
exclusive-or and the summation by a count of ones. The
counters are thereafter compared with a threshold. In all
active positions the up-down counters are updated.

Thus, to be efficient for ANN computations computers
need to have support for matrix-by-vector multiplica­
tions, maximum finding, spreading of activity, count of
ones, and comparisons. In some of the implementations
that we review these matters have been solved on exist­
ing parallel computers, in others new architectures have
been devised, targeted at computations of this kind.

4.2. Numerical Precision

In order to optimize the utilization of the computing
resources, the numerical precision and dynamic range in,
e.g., the multiply-and-add operations should be studied
with care.

With optical, analog, or bit-serial computers it is not
very attractive to use 32- or 64-bit floating-point numbers
for weights and activation values. The issue of weight
sensitivity becomes important; how sensitive are the net­
works to weight errors? Unfortunately, one of the most
used algorithms, back-propagation, is very sensitive to
the precision and number range used [39]. This is due to
the existence of large flat areas in the error surface, in
which the BP algorithm may have difficulty in determin­
ing the direction in which to move the weights in order to
reduce the error. To make progress from such areas high
numerical precision is needed. If the neural network cal­
culations are run on a computer which has advanced
hardware support for floating-point calculations the re­
quired accuracy does not raise any problem. On the other
hand, for many tasks of integer type, like low-level vision
problems, the use of floating-point numbers will lead to a
more complex architecture than necessary.

Using ordinary back-propagation with low precision
without modifications will lead to instability and the net
will often be unable to learn anything. There are modifi­
cations to back-propagation which seem to improve the
situation somewhat [13, 21, 78, 116], and there are exper­
iments in which different precision is used at different

266 NORDSTROM AND SVENSSON

stages of the algorithm [86]. By using high precision at
the beginning of the training and lessening the precision
as the network trains, the number of bits needed for
weights in the fully trained network can be very low (a
few bits). Without too large modifications, 8-16 bits per
weight seems to be sufficient for most problems [11, 21,
85, 135]. More exact calculations of the sensitivity to
weight errors and the precision needed can be found in
[21' 121' 122, 123].

By some authors [39, 135] weights have been found to
need a large dynamic range, implying floating-point rep­
resentation. However, the use of weight saturation, i.e.,
limiting the weights to a certain limit, may remove the
need for floating-point numbers [85].

Low precision is also attractive for ANN s as it makes
the algorithms more biologically plausible [131]. An up-

. per limit of the accuracy that the brain needs for its calcu­
lation could be estimated to 7-8 bits; i.e., neurons have a
'"dynamic range" of about 100 levels. The calculations
are also fault tolerant. That is, if one neuron fails to fire,
the computation is still carried out in the right fashion.

Finally, it should be noted that there is probably a
trade-off between using few weights (nodes) with high
precision and using many weights (nodes) with low preci­
sion.

4.3. Sigmoid

In many of the algorithms, e.g., BP and Hopfield net­
works, a sigmoid function likef(x) = 11(1 +e-x) needs to
be calculated; see Fig. 6. To do this efficiently many
implementations use a table lookup instead of direct cal­
culation (typically with 8 bits precision). Others try to
approximate the sigmoid with a piecewise linear function
[11] like(e) in Fig. 6. Also, an approximation based on
power of 2 calculations has been proposed, with digital
computers in mind [94], (c) in Fig. 6.

A combination of table lookup and power of 2 calcula­
tion was tried in [136] for the GF11 computer, but in the
end only table lookup and interpolation were used.

Table lookup on SIMD computers without local ad­
dress modification seems difficult but is possible by a
cyclic rotation and comparison. It takes n steps to do n
table lookups using n PEs connected in a ring [132].
Other ways to distribute the lookup table have been dis­
cussed by Marchesi et al. [80].

In [115] ex was calculated by means of range reduction
techniques. The total number of operations required to
calculate the sigmoid was five add/subtracts, one logical,
two divisions, two shifts, and three multiplications.

In the backward phase the derivativef(x) is to be cal­
culated. The much used sigmoidf(x) = 1/(1 + e-x) has
the "nice" derivative given by f'(x) = f(x)(l - f(x)).

Some networks and training situations have turned out
to benefit from a sigmoid function between -1 and 1

Sigmoids between 0 and 1

The most common ones

a) I
/(x) = --

1 +e-x
. b)

/(x) = {
I x>O

o x::;;o

Sigmoids between -1 and 1

Approximations

f(x) = - x>
c) { I 2- (x + 1) 0

2-(l>1+ 1l x::;;o

d) { x2 -- x>O
f(x) = l+x2

o x::;;o

0.000976
x+5
16

e)
x+2

/(x) = --;r-
x+ 11
1:6

0.99902

A)
X

f(x) = I +lxl

x::;;-5

-5 <x::;;-1

-l<x::;;l

l<x::;;5

x~5

B) 1 _ e-2x
f(x) = tanh(x) = --

1 + e -2x

C) 2
/(x) = iatan(7tx)

FIG. 6. Some of the used activation functions of sigmoid type.

instead of the usual 0 and 1. Some are given in Fig. 6. The
function (A) has the useful property that is does not in­
volve any transcendental functions.

4.4. Data Representation

When real and/or analog inputs to the ANN are used,
the data representation must be studied carefully. For the
binary code the problem is that Hamming distance (HD)
is not a valid measure of similarity; see Table I. The so­
called thermometer code, or the simple sum of ones,
solves the problem with the HD but is wasteful of code
bits, and thus stands in contrast to the requirement of
using as few bits as possible.

Penz [93], referring to Willshaw et al. [134], has sug­
gested a modification to the thermometer code, called the
closeness code. This code has as few active positions as
possible; i.e., it is optimally sparse, but still retains the
HD as a similarity measure. The number of ones in anN­
bit vector is logz N.

There is a denser (with respect to code word length)
version of a closeness code suggested by Jaeckel [56, 59]
which could be called a band~pass code. The name re­
flects the fact that the thermometer code may be seen as a
set of low-pass filters but Jaeckel's suggestion may be
seen as a set of band-pass filters. Both a closeness and a

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 267

TABLE I
Different Ways to Encode Data: Binary, Thermometer, Closeness, and Band-Pass Codes

Binary Thermometer Closeness Band Pfiss
Decimal

value Code HD £ode HD Code HD Code HD

0 000 0 0000000 0 11100000 00 0 11000 0
I OOI I IOOOOOO I OI110000 00 2 11100 I
2 010 I IIOOOOO 2 0011IOOO 00 4 01100 2
3 011 2 1110000 3 00011100 00 6 01110 3
4 100 I ! 1111000 4 000011IO 00 6 00110 4
5 10I 2 1111IOO 5 00000111 00 6 0011I 5

6 110 2 1111110 .6 xOOOOOll IO 5/4 00011 4

7 11I 3 111111I 7 xxOOOOOI 11 4/2 10011 3

10001 2
1100I
11000 0

Note. All but the binary codes have Hamming distance (HD) as the measure of similarity. Closeness
and thermometer codes are wasteful of code· bits, but the closeness code has fewer active bits. Band
pass has good code density while keeping the HD as the measure of distance ..

band-pass code can be extended to a circular code as
shown below the dashed lines in Table I. A circular code
is useful when coding things like angles.

When coding sets of mutually unrelated items, like let­
ters in an alphabet, it is important not to introduce order
or similarities that do not exist. Coding a, b, c, ... as 1, 2,
3, ... introduces a similarity between adjacent letters
which has no relation to their use in language. Instead, 26
nodes of which only one is active, may be used.

4.5. Bit-Serial Calculations

Many of the massively parallel processors use bit­
serial PEs. For the majority of operations, processing
tiines on these co~puters grow linearly with the data
length used. This may be regarded as a serious disadvan-

In

tage (e.g., when using 32- or 64-bit floating-point num­
bers), or as an attractive feature (use of low-precision
data speeds up the computations accordingly). In any
case, bit-serial data paths simplify communication in
massively parallel computers.

4.5.1. Multiplication Done Bit-Serially

In simple bit-serial processors the multiplication time
grows quadratically with the data length. However, bit­
serial multiplication can actually be performed in the time
required to read the operands (bit by bit, of course) and
store the result. The method, based on the carry-save
adder technique, .requires as many full adders as the
length of one of the operands. Figure 7 shows the design
of such a multiplier circuit.

FIG. 7. Design of a two's-complement bit-seriai multiplier. It is operated by first shifting in the multiplicand, most significant bit first, into the
array of M flip-flops. The bits of the multiplier are then successively applied to the input, least significant bit first. The product bits appear at the
output with least significant bit first.

. .. '

268 NORDSTROM AND SVENSSON

This design was proposed but not implemented in the
LUCAS project [27], and will be used in the continued
project, REMAP3 (Reconfigurable, Embedded, Mas­
sively Parallel Processor Project). A similar multiplier
design has also been proposed for ''Centipede,'' a further
development of the AIS-5000 concept [135].

4.5.2. Floating-Point Calculations Done Bit-Serially

Floating-point calculations raise special problems on
SIMD computers with bit-serial PEs. Additions and sub­
tractions require the exponents to be equal before the
operations are performed on the mantissas. This align­
ment process requires different PEs to take different
actions, and this does not conform with the SIMD princi­
ple. The same problem appears in the normalization pro­
cedure.

However, these problems may also be solved by a
fairly reasonable amount of extra hardware. Ahlander
and Svensson [140] propose the addition of stacks in the
PEs to hold the mantissas during alignments and normal­
izations. This arrangement allows floating-point opera­
tions to be performed as fast as data can be provided bit­
serially from the memory.

4.5.3. Search for Maximum or Minimum Done
Bit-Serially

Some operations benefit from the bit-serial working
mode and can be implemented very efficiently. Search
for maximum or minimum is such an operation. Assum­
ing that one number is stored in the memory of each PE,
the search for maximum starts by examining the most
significant bit of each value. If anyone has a one, all PEs
with a zero are discarded. The search goes on in the next
position, and so on, until all bit positions have been
treated. The time for this search is independent of the
number of values compared; it depends only on the data
length (provided that the number of PEs is large enough).

5.0. PARALLELISM IN ANN COMPUTATIONS

For implementation on a parallel computer, parts of
the algorithm that can be run in parallel must be identi­
fied. Unfolding the computations into the smallest com­
putational primitives reveals the different dimensions of
parallelism.

5.1. Unfolding the Computations

A typical ANN algorithm has the following structure:

For each training session
For each training example in the session

For each layer (going Forward and Backward)
For all neurons (nodes) in the layer

For all synapses (weights) of the node
For all bits of the weight value

This shows that there are (at least) six different ways of
achieving parallelism:

Training session parallelism
Training example parallelism

Layer and Forward-Backward parallelism
Node (neuron) parallelism

Weight (synapse) parallelism
Bit parallelism

5.2. The Dimensions of Parallelism

Here follows a discussion on each of the different ways
of achieving parallelism. Which of the dimensions of par­
allelism are chosen in any particular implementation will
depend on the constraints imposed by the hardware plat­
form and by the constraints of the particular algorithm
that is to be implemented.

5.2.1. Training Session Parallelism

Training session parallelism means starting different
training sessions on different PEs. Different sessions may
have different starting values for the weights, and also
different learning rates. Using parallel machines with
complex control makes it even possible to train networks
of different sizes at the same time.

5.2.2. Training Example Parallelism

The number of training examples used is usually very
large, typically much larger than the number of nodes in
the network. The parallelism of the training set can be
utilized by mapping different training examples to differ­
ent PEs and letting each PE calculate the outputs for its
training example. The weight changes are then summed.

Doing the weight update this way (batch or epoch up­
dating) means that it is not done exactly as in the serial
case. Back-propagation is known to perform gradient de­
scent if update of weights takes place after processing of
all the training data [110, 119]. Empirically it is found that
updating after each pattern will save CPU cycles, at least
on a sequential computer.

Training example parallelism is easy to utilize without
communication overhead. Thus it gives an almost linear
speedup with the number of PEs. However, a corre­
sponding reduction in training time (time to reduce the
total error to a specific level) should not be taken for
granted. Even if this method gives a more accurate gradi­
ent it does not necessarily allow more weight updates to
occur. Therefore there is a limit on the amount of actual
training time speedup that is achievable using this
method of parallelism. Parker [92] has shown that on a

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 269

30 x 30 x 10 network and 4156 training examples the
optimal batch size was only 18. Beyond that level the
refinement of gradient was wasted. This means that the
use of extensive number crunching circuitry in order to
utilize training example parallelism, although giving high
CUPS (Connection Updates Per Second) performance,
does not guarantee a corresponding reduction of training
time.

Training example parallelism also demands that the
PEs have enough memory to store the activation value of
all the nodes in a network. With a 256-kbit memory per
PE and 32-bit floating-point number representation, only
about 8000 nodes can be simulated [119]. On the other
hand, any sparsity of the network connections can be
fully exploited with this type of parallelism.

5.2.3. Layer and Forward-Backward Parallelism

In a multilayer network the computations may be pipe­
lined; i.e., more than one training pattern is going
through the net at the same time. If the model has a
backward pass, like BP, it is also possible to "fold" the
pipeline back again.

5.2.4. Node (Neuron) Parallelism

The parallel processing performed by many nodes in
each layer is perhaps the most obvious form of parallel­
ism in an ANN. Each node computes a weighted sum of
all its inputs. This form of parallelism corresponds to
viewing the calculations as matrix operations and letting
each row of the matrix map onto a processor.

Most of the layered models only send their activation
values forward after all nodes have been calculated in a
layer. This means that the maximum parallelism is avail­
able for the widest node layer (excluding the input layer).
If this degree of parallelism is fully utilized, all layers
with less nodes cannot fully utilize the computer.

5.2.5. Weight (Synapse) Parallelism

At each input to a neuron the arriving activation value
is multiplied by the weight of the specific input. This can
be done simultaneously at all inputs to the neuron. The
subsequent summation of all the products may also be
parallelized using a suitable communication structure.

5.2.6. Bit Parallelism

Utilizing the full degree of bit parallelism (i.e., treating
all bits in a data item simultaneously) is often taken for
granted. However, giving up this form of parallelism, and
treating data bit-serially, increases the possibilities of us­
ing some of the other forms.

5.3. The Degrees of Parallelism

The typical degree of parallelism varies widely be-
. tween the six different kinds, as the table below shows.
As an illustration, the degrees of parallelism of the well­
known NETtalk application (see section 7 .2.1) have been
given as well.

Parallelism Typical range NETtalk

Training session 10-103 100
Training example 10-W 5000
Layer and Forward-Backward 1-6 1
Node (neuron) 100-106 120
Weight (synapse) 10-105 203
Bit 1-64 32

The table gives an indication of what dimensions should
be utilized in a massively parallel computer. Such a com­
puter is capable of performing at least thousands of ele­
mentary operations simultaneously. Hence an ANN im­
plementation that is to utilize the computing resources
efficiently must utilize at least one of the following di­
mensions:

Training session parallelism
Training example parallelism
Node parallelism
Weight parallelism

The use of the two first-mentioned types is of interest
only in batch processing situations in order to train a
network. In real-time applications where the ANN is in­
teracting with the outside world, training session and
training example parallelism are not available. In those
cases, node and/or weight parallelism must be chosen,
maybe in combination with, e.g., bit and layer parallel­
ism.

6.0. COMMUNICATION

A high degree of connectivity and large data flows are
characteristic features of neural computing models.
Hence the structure and bandwidth of internal and exter­
nal (i.e., 110) communication in the computer to be used
are of great importance. Depending on what dimension of
parallelism is chosen the demands on the communication
will be different. We review the major communication
principles and comment on their use in ANN implemen­
tations.

6.1. Communication by Broadcast

In most parallel computers the most efficient way to
communicate is to broadcast, since so many destinations
receive information simultaneously. In fact, in SIMD
computers broadcast is also used to distribute control
information. As shown above, training example parallel-

270 NORDSTROM AND SVENSSON

Memory Processor
Array

01 Wu w12 WB 81 net1

02 W21 82

W31

0 w 8
..
"" 1::

FIG. 8. Mapping of node parallelism into a processor array.

ism has a very large amount of possible parallelism. Since
the basic communication needed with this form of paral­
lelism is broadcasting it is a good choice if the maximum
speed (CUPS) is to be obtained. If the batch or epoch
type of weight updating cannot be used, node or weight
parallelism must be used. With the required communica­
tion patterns in those forms of parallelism it is less obvi­
ous how broadcast can be used, and therefore it is harder
to obtain maximum performance.

Using node parallelism, perhaps the most natural way
to map the forward pass of a BP calculation on a proces­
sor array is to see it as a matrix-vector multiplication and
map each row of W into one PE; see Fig. 8. In each step
of the multiplication process, one PE broadcasts its node
activation o; to all other nodes. Each PE then multiplies
the value with a weight value from the corresponding
column of W and adds the result to a running sum net;.
After all activation values have been sent and multiplied,
each PE holds one element of the resulting vector. In the
backward phase, summation is required across the PEs
instead of within each PE. This is slow unless another
communication structure is added, e.g., an adder tree as
proposed in [124]. Mapping in this way may also intro­
duce inefficiency problems if the layers are of very differ­
ent sizes. It is also difficult to utilize any sparsity in the
connections with this method.

6.2. Grid-Based Communication

A natural way to arrange the communication required
for weight parallelism is grid-based communication suit­
able for two-dimensional arrays of PEs. The PEs of the
top edge, say, correspond to the source node layer, and
the PEs of the right edge, say, correspond to the destina­
tion node layer. The weight matrix is distributed overthe
rest of the PEs. The input layer nodes at the top send
their values down over the matrix by vertical broadcast.
Then there is a horizontal summation phase. This is then
repeated for the next layer, first horizontally and then
vertically.

This scheme has been used or suggested by, e.g.,
Singer [120] and Fujimoto and Fukuda [33].

6.3. Communication by Circulation

One way to solve the communication when node paral­
lelism is used is by a "systolic" ring structure [52, 70-72,
100]; see Fig. 9. In the forward phase (upper part of the
figure) the activation values are shifted circularly along
the row of PEs and multiplied with the corresponding
weight values. Each PE accumulates the sum of the prod­
ucts it has produced. In the backward phase (lower part
of the figure) the accumulated sum is shifted instead.

This scheme shares the possible inefficiency problems
with the broadcast-based scheme (see end of Section
6.1).

6.4. Communication by General Routing

Some massively parallel computers, e.g., the Connec­
tion Machine, provide support for general routing by
packet switching. Utilizing this facility is a straightfor­
ward method on these computers, but, since general
routing normally is much slower than regular communi­
cation, the ANN computations will be communication
bound, maybe with the exception of sparsely connected
networks.

An implementation of directed graphs on computers
lacking general routing capability has been suggested by
Tomboulian.[128]. It relies on SIMD computers with very
modest communications facilities. Sending a value or a
message between two nodes amounts to routing the mes­
sage from PE to PE. A send is divided into time slots
where each node knows if or where it should pass the
current incoming message. There are means to extend
the communication pattern dynamically which makes it
very attractive for networks that use structural adapta­
tion, like Fahlman and Lebiere's "Cascade Correlation" ·
[24] or Kassebaum et al. 's [60] and Tenorio and Lee's
self-organizing neural network (SONN) algorithm [125,
126].

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 271

Computing Wx wn w22 w33
Time step 1

wu w2, w32

w,4 w2s w3,

w,3 w24 w3s

w,2 w23 w34

wn w22 w33 wu w2, w32

w33 ComputiJ;~.g WT 0
Time step 1

wn w22

w,s w2, w32

w,4 w2s w3,

w,3 w24 w3s

w,2 w23 w34

w33 w,s w2, w32 wn w22
Time stepS

FIG. 9. Forward (top) and backward (bottom) phase of a BP calculation on a systolic ring processor.

Tomboulian's method has for dense networks been
found to consume a great deal of PE memory for its ta­
bles [128]. For sparse networks the time and memory
requirements are proportional to the product of the aver­
age number of connections per neuron and the diameter
of the array.

6.5. Comments on Communication

For all communication strategies except the general
routing methods, sparse connection matrices will lead to
underutilization of the computer's PE resources. Lawson
et al. have addressed this problem with their "SMART"
(sparse matrix adaptive recursive transform) machine
[73]. By using tables and special hardware they can make
use of zero-valued connections to reduce simulation size
and time. The communication is based on a ring structure
together with a bus. However, Lawson's solution is not
directly applicable on a massively parallel SIMD com­
puter.

The massive flow of data into and out of the array,
which will be the case in practical real-time applicrtions
and also in out of core calculation (very large s1mula-

tions), places specific demands on the communication
structure. In the design of a massively parallel computer
for ANN, the PEs should be optimized for the typical
operations, in order not to make the processing computa­
tion bound. Furthermore, the interconnection network
should be optimized for the computational communica­
tion pattern, in order not to make the processing com­
munication bound. Finally, the I/0 system should be op­
timized to suit the needs of the application, in order not
to make the system I/0 bound. So far not very much
attention has been paid to the latter problem complex,
but it is certainly very much connected with the commun­
ication matters.

Training example parallelism is the form of parallelism
that puts the weakest demands on communication. How­
ever, it is not interesting in real-time applications or in
pure recall situations.

7.0. MEASURING THE SPEED OF ANN SIMULATIONS

In order to compare different implementations, some
kind of standard measuring procedure is needed. The

_-·

272 NORDSTROM AND SVENSSON

number of multiply-and-add operations per second of
which the computer is capable might be considered for
such a measure, since this operation was identified as the
most important one in most of the algorithms. However,
it can serve only as an upper limit for performance; i.e., it
marks the lowest speed that the computer manufacturer
guarantees will never be exceeded. The utilization of this
potential may be very different for the various ANN
models and for different problem sizes.
- Some of the commonly used indications of speed will
be given below. They are of two kinds: first, there are
general speed measurements, similar to the multiply-and­
add performance measure. In order for these to be of any
real value, the ANN model and problem size for which
they were measured should always be given as additional
information. Second, there are benchmarks, i.e., com­
monly implemented applications of specific size. The
area is still too young (i.e., in the present "wave") for
benchmarks to be very well developed.

7 .1. Measurements

Some measurements commonly used in the ANN com­
munity are the following.

7.1.1. CPS or IPS-Connections (or Interconnections)
per Second

Each time a new input is provided to an ANN, all
connections in the network must be computed. The num­
ber of connections per second that the network can per­
form is often used as a measure of performance. When
measuring CPS, computing the nonlinear thresholding
function should be included. Comparing the CPS mea­
sure to the multiply-and-add measure roughly indicates
how well the specific algorithm suits the architecture.
When comparing CPS values for different implementa­
tions, the precision of calculation is important to con­
sider. Other things which may influence the CPS measure
are the problem size and the choice of nonlinear
thresh9lding function.

7.1.2. CUPS or WUPS-Connection (or Weight)
Updates per Second

The CPS number only measures how fast a system is
able to perform mappings from input to output. To indi­
cate the performance during training a measurement of
how fast the connections can be updated is given as a
CUPS figure. In a back-propagation network both the
forward and the backward passes must be computed.
Typically the CUPS number is 20-50% of the CPS num­
ber.

For self-organizing maps CUPS have been used as the
number of connections in the network multiplied by the
number of network updates per second, despite the fact
that very few connections are actually updated when us­
ing small neighborhoods at the end of a training session.

7.1.3. Epochs

An epoch is defined as a single presentation of each of
the examples in the training set, in either fixed or random
order. The concept is well-defined only for problems with
a fixed, finite set of training examples. Modification of
weights may occur after every epoch, after every pattern
presentation, or on some other schedule.

The epochs concept is sometimes used when me~s~r­
ing the number of times one must run through the tramm~
set (one run is one epoch) before some predefined condi­
tion is met. This is used to compare different versions of
an algorithm or different algorithms. When doing this one
should be aware of the fact that the computational effort
to go through an epoch may vary considerably from one
algorithm to another. Even if an algorithm learns in half
the number of epochs it can still take longer time because
the calculations are more complicated.

An epochs per second measure may also be use~ as an
alternative to CUPS to indicate the speed of learmng. It
gives a number that is easier to grasp than the CUPS
number. Of course the measure is strongly related to the
problem and training set used.

For problems where an epoch is not well defined,
learning time may instead be measured in terms of the
number of individual pattern presentations.

7.1.4. CPSPW-Connections per Second per Weight
(or SPR-Synaptic Processing Rate)

A measure that indicates the balance between process­
ing power and network size (i.e., number of weights) ~as
been introduced by Holler [46]. His argument for the Im­
portance of this measure is the following: Biologica~ n~u­
rons fire approximately 100 times per second. This Im­
plies that each of the synapses processes signals at a rate
of about 100 per second; hence the SPR (or, to use Hol­
ler's terminology, the CPSPW) is approximately 100. If
we are satisfied with the performance of biological sys­
tems (in fact, we are even impressed by them) this num­
ber could be taken as a guide for ANN implementations.
Many parallel implementations have SPR numbers which
are orders of magnitude greater than 100, and hence have
too much processing power per weight. A conventional
sequential computer, on the other hand, has an SPR ~u_m­
ber of approximately 1 (if the network has about a mdhon
synapses); i.e. ii is computationally underbalanced. It
should be noted that Holler's argument is of course not
applicable to batch processing training situations.

7.2. Benchmarks

There are some commonly used problems that may be
considered benchmark problems. They are used in a
number of different ways, e.g., to measure learning
speed, quality of ultimate learning, ability to generalize,
or combinations of these factors. Thus their use is not

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 273

restricted to speed compctrisons. On the contrary, most
of the benchmarks have been introduced to compare al­
gorithms and not architectures. This means that most of
the benchmarks should not be used to compare suitability
of architectures for the simulation of ANN s. Among such
benchmark problems are the XOR problem, the Parity
problem, and the Two Spirals problem [22]. They are all
small problems intended for qualitative comparison of
algorithms.

7.2.1. NETtalk

A larger and more realistic application is known as
NETtalk, a text to phoneme translation solved by a back­
propagation network, described by Sejnowski and Ro­
senberg [114]. The task is to train a network to produce
the proper phonemes, given a string of letters as input.
This is an example of an input/output mapping task that
exhibits strong global regularities, but also a large num­
ber of more specialized rules and exceptional cases. It is
often used as a benchmark.

The experimental setup used by Sejnowski and Rosen­
berg [114] described by Fahlman in [22] was the follow­
ing: The input to the network is a series of seven consec­
utive letters from the training text. The central letters in
this sequence is the "current" one for which the phone­
mic output is to be produced. Three letters on either side
of this central letter provide a context that helps to deter­
mine the pronunciation. Of course, there are a few words
in English for which this local seven-letter window is not
sufficient to determine the proper output. For the study
using this "dictionary" corpus, individual words are
moved through the window so that each letter in the word
is seen in the central position. Blanks are added before
and after the word as needed. Some words appear more
than once in the dictionary, with different pronunciations
in each case; only the first pronunciation given for each
word was used in this experiment.

A unary encoding is used. For each of the seven letter
positions of the input, the network has a set of 29 input
units: one for each of the 26 letters in English, and three
for punctuation characters. Thus, there are 29 x 7 = 203
input units in all. The output side of the network uses a
distributed representation for the phonemes. There are
21 output units representing various articulatory features
such as voicing and vowel height. Each phoneme is rep­
resented by a distinct binary vector over this set of 21
units. In addition, there are 5 output units that encode
stress and syllable boundaries. Typically 60 to 120 hidden
units have been used.

In the absence of very large benchmarks, we will some­
times use figures on NETtalk to compare architectures (if
they have been reported). Otherwise we will report the
implemented network structure and training method to­
gether with the performance measure given.

8.0. CHARACTERIZATION OF COMPUTER
ARCHITECTURES

As the structure of ANN algorithms is naturally paral­
lel it is relatively easy to make use of a very large number
of PEs. Computers with a very large number of PEs are
often called massively parallel. Being massive should
mean that the structure gives an impression of being
solid. That is, the number of units should be so high that
is impossible to treat them individually; they must be
treated en masse. By definition then, each PE must be
told what to do without specifying it individually. This is
actually the concept of the SIMD or SCMD computer
(defined later).

The lower bound for massive parallelism will then be
set by the largest computer in which each PE is treated as
an individual with its own instruction flow (MIMD). We
think that for the moment 212 = 4096 is a suitable limit.

An interesting extension to massively parallel is the
concept of continuously parallel. This should mean the
limit of massively parallel as the number of processing
elements becomes infinite [77].

It is useful to have characterizations also of the lower
degrees of parallelism. To get a reasonable "definition"
with a nice symmetry we suggest a rough division be­
tween highly parallel, moderately parallel, and barely
parallel. By defining the limits to 212 , 28 , 24, 2° we have an
easy-to-remember scheme for the characterization.
When appropriate, in the future the limits may be moved
upward. Summarizing this we get the following "defini­
tions" which will be used in this paper (N stands for the
number of PEs):

Continuously parallel
,Massively parallel
Highly parallel
Moderately parallel
Barely parallel

N-'>oo
N 2=- 212
2s:,; N < 212

24 :,; N < 28

2° < N < 24

This characterization is completed with an ''orthogonal''
one describing the computational power of the PEs. The
power or complexity can of course be measured in many
ways but as a coarse measure we use the bit-length of the
natural data type for the processing elements. These two
characterizations result in the diagram shown in Fig. 10.

We will concentrate on the massively and highly paral­
lel architectures in the next section. But we will also, for
comparison, include some moderately and even barely
parallel computers like Warp systems with more complex
control. This is because the use of these computers has
given interesting results with respect to algorithms and
ways of mapping ANN s to a parallel computer. It should
be noted that many of those algorithms do not use the
powerful control, but instead use a SIMD or SCMD
structure.

274 NORDSTROM AND SVENSSON

No of PEs

2 12

2s

Massively
Parallel

Highly
Parallel

Moderately
Parallel

Barely
Parallel

2 4
SimplePE

8 16 32 64 PE data length
ComplexPE

FIG. 10. Classifying architectures for ANN by dividing according to
the number of and complexity of the processing elements that are used.

Equally important as the degree of parallelism is the
organization of the computer. The much used character­
ization due to Flynn [28] divides the computers into
groups according to the number of instruction streams
and the number of data streams. Of interest for ANN
computations are the groups with multiple data streams:
SIMD (Single Instruction stream, Multiple Data streams)
and MIMD (Multiple Instruction streams, Multiple Data
streams).

To characterize a MIMD computer used as a SIMD
architecture, SCMD (Same Code for Multiple Data
streams) is suggested and used in this paper.

8.1. Division of SIMD

The SIMD category in itself shows great architectural
variations. We briefly review some of the major groups.

8.1.1. Systolic Arrays

Systolic arrays represent a general methodology for
mapping high-level computations into hardware struc­
tures. Developed at Carnegie Mellon by Kung and others
[68], the concept relies on data from different directions
arriving at cells/PEs at regular intervals and being com­
bined. The number of cells in the array and the organiza­
tion of the array are chosen to balance the 110 require­
ments.

Systolic architectures for ANN have been proposed
by, among others, Hwang et al. [52] and Kung and
Hwang [70, 71]. They have found that a ring structure or
cascaded rings are sufficient (cf. Section 6.3 on communi­
cation by circulation).

8.1.2. Linear Processor Arrays

In this group are theprocessor arrays with the simplest
structure, the linear (one-dimensional) arrays. The linear
structure is often combined with the ring structure and ·
the bus structure (i.e., broadcast). Actually, the arrays in

this group are typically not massively parallel due to the
limitations of the communication structure. Some of the
arrays can be scaled to at least a few thousand proces­
sors. They can however be strung together with similar
arrays and form a multiple SIMD array which can be
much larger than any single SIMD module.

8.1.3. Mesh-Connected Processor Arrays

In silicon the planar structure of the connecting me­
dium will tend to favor planar communication networks.
Therefore, it is natural to build the communication on a
mesh or a grid; i.e., each PE-has four (or eight) neigh­
bors. Even the computers with multidimensional com­
munication have included mesh connections for faster
local communication. Examples of mesh-connected ar­
rays are DAP (Distributed Array Processor) [51], MPP
[101], and BUTZEN [9].

8.1.4. Multidimensional Processor Arrays

Multidimensional architectures like hypercubes allow
aj more general communication pattern than any of the
previous arrays. That is, no PE is further away than logz
N steps, where Nis the number of PEs.

It has been found that general communication is used
mainly for transfers between "parameter spaces" (e.g.,
image__..,. edges__..,. corners). None of the efficient imple­
mentations of ANN algorithms on any ofthe studied ar­
chitectures used/needed multidimensional communica­
tion.

9.0. PARALLEL COMPUTERS DESIGNED OR USED FOR
ARTIFICIAL NEURAL NETWORKS

Placing some of the parallel computers used for ANN
into the diagram of Fig. 10 results in the map shown in
Fig. 11.

We will now give brief descriptions of these machines
and review the reported ANN implementations. We cer­
tainly do not cover all the massively and highly parallel
machines but our selection should be representative. The
order of presentation is alphabetical within each group.

9 .1. Massively Parallel Machines with Simple PEs

9.1.1. AAP-2

AAP-2 [132] is a two-dimensional (2D) mesh-con­
nected computer enhanced with bypasses and ripple
through operations. It contains 64K (256 by 256) bit-serial
PEs featuring a simple 1-bit AL U and a 144-bit register
file. There is also a 15-bit control register which can con­
trol each PE individually in a primitive way.

BP has been implemented in a node and weight paral-

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 275

No of PEs

24

CM-2
AAP-2
ASP
GAPP

MP-1

2 4
SimplePE

Massively
Parallel

Highly
Parallel

Moderately
Parallel

Barely
Parallel

16 Comple~2PE 64 PE data length

FIG. 11. A way of classifying architectures for ANN. A corre­
sponds to massively parallel machines with simple PEs in Section 9.1, B

'to highly parallel machines with simple PEs in Section 9.2, C to highly
parallel machines with complex PEs in Section 9.3, and D to moderately
parallel machines with complex PEs in Section 9.4.

lei fashion using an interesting circular way to perform
table lookup of the sigmoid function. Using 26 bits for
weights and activations and a 256 x 256 x 256 network
18 MCUPS was achieved. When different sizes of the
layers were used the efficiency decreased.

9.1.2. Associative String Processor (ASP)

The ASP is a computer designed and built by Univer­
sity of Brunei and Aspex Ltd. in England, with Lea as the
principal investigator [74]. The computer consists of sim­
ple PEs (1-bit full adder, n +a-bit comparator) which are
strung together into "strings" of more "complex" types
such as 32-bit integers. Each processor has a 96-bit data
register and a 5-bitactivity register. Each string is linked
by a communication network and there are data ex­
changes and buffers to support high-speed data I/0. The
architecture is expandable up to 262, 144 processors ar­
ranged as 512 strings of 512 processors each. A 16K ma­
chine has been built and a 64K machine is to be com­
pleted by the summer of 1992.

Krikelis and Grozinger [67] have implemented Hop­
field net and BP on a -Simulator of the architecture. In the
Hopfield net one neuron is mapped onto each PE as long
as the internal memory is sufficient (1800 nodes). At this
maximum, the real machine should be able to run at 1600
MCPS.

The BP network implementation also uses node and
weight parallelism simultaneously. On a 63 x 45 x 27
network 4323 PEs are utilized, but in some time instances
there are only 46 PEs actively taking part in the calcula­
tion. The weights are represented by 16-bit fixed-point

numbers. A thresholded picture (1 bit deep) is used as
input and the activation in the other nodes is represented
by 12 bits. The sigmoid is approximated with a group of
conditionals. The simulation indicates a performance of
12 MCUPS on the real machine.

9.1.3. Connection Machine (CM, CM-2)

The Connection Machine [40, 127] manufactured by
Thinking Machines Corporation (TMC) is for the moment
the most massively parallel machine built (from 8K up to
64K processing elements). In addition to its large number
of processors, two of its strong points are its powerful
hypercube connection for general communication and
the multidimensional mesh connection for problems with
regular array communication demands. In the CM-2
model TMC also added floating-point support, imple­
mented as one floating-point unit per 32 PEs. This means
2048 floating-points units on a 64K machine, giving a
peak performance of 10 GFlops.

CM-2 is one of the most popular parallel computers for
implementing ANN algorithms. Most of the implementa­
tions so far concern BP, but within this model different
forms of parallelism have been utilized in different appli"
cations.

Rosenbergand Blelloch [108] constructed an algorithm
in which each neuron is mapped onto one PE and each
weight (synapse) is mapped onto two PEs. This unusual
mapping is chosen in order to use some special communi­
cation features of the Connection Machine. Their map­
ping could be seen as a general· method for mapping di­
rected graphs onto a computer with "copy scan,"
"send," and "plus-scan" operations. The resulting per­
formance, limited solely by communication, was 2.8
MCUPS for NETtalk and around 13 MCUPS maximally.
Forward-backward parallelism was mentioned but not
implemented.

Brown [12] compared two different ways of paralleliz­
ing BP. One method used node parallelism with one PE
per neuron and the other was the method (node plus
weight parallelism) suggested by Rosenberg and Blelloch.
Brown found that the latter had better performance.

Zhang et al. [139] combined training example and node
parallelism plus good knowledgeof the CM-2 communi­
cation and computational structure to achieve high per­
formance on quite different sizes of ANNs. On NETtalk
using 64K PEs they could get around 40 MCUPS (and 175
MCPS).

Using Zhang et al.'s approach on a much larger prob­
lem (280.5 megabyte of training examples) Diegert [19]
reached 9.3 MCUPS on a 16K PE machine. With 64K
PEs the estimated performance is 31 MCUPS. This is
good in comparison with the NETtalk performance
above, when considering that the training data are moved
in and out of the secondary storage all the time.

276 NORDSTROM AND SVENSSON

Singer's implementation of BP [118, 119], which is the
fastest implementation on the CM-2, uses training exam­
ple parallelism. He reports a maximum of 1300 MCPS
and 325 MCUPS on a 64K PE machine when using 64K ·
training vectors.

Deprit [18] has compared two implementations of re­
current back-propagation (RBP) on the CM-2. First he
used the same mapping as Rosenberg and Blelloch (R&B)
with a minor modification to include the feedback con­
nections. The second mapping was node parallelism with
the communication method suggested by Tomboulian
[128]; see Section 6.4. The basic finding was that the
R&B method was clearly superior for densely connected
networks, such as that used in NETtalk. Note that the
R&B implementation is still communication bound, indi­
cated by the fact that the simulation time changed almost
imperceptibly when software floating point was used in­
stead of the hardware units.

Obermayer et al. have implemented large SOM models
on the CM-2 [91]. Node parallelism with up to 16K PEs
(neurons) was used. The input vector length (input space
dimension) was varied and lengths of up to 900 were
tested. The same algorithm was also implemented on a
self-built computer with 60 T800 (Transputer) nodes con­
nected in a systolic ring. In addition to algorithmic analy­
sis the two architectures were benchmarked. The conclu­
sion was that the CM-2 (16K PEs) with floating-point
support is equal to 510 Transputer nodes for the shortcut
version of SOM. As a 16K CM-2 has 512 Weitek FPUs,
each with approximately the same floating-point perfor­
mance as one T800, it can be concluded that the shortcut
method is basically computation bound. In a ''high-com­
munication" variant of SOM, a 30-node Transputer ma­
chine would run at one-third of the CM-2 speed.

Rogers [105] has used CM-2 as a workbench for explor­
ing Kanerva's SDM model. Rowwise mapping (node par­
allelism) is used for the selection phase (steps 1 and 2 in
Algorithm 3), but for the store/retrieve phase weight par­
allelism is used (as many PEs as there are counters). As
the number of physical PEs in Rogers' implementation is
of the same order as the number of counters in one
column he actually uses node parallelism and rowwise
mapping, letting the CM-2 sequencer take care of the
looping over each column. Implementing this in *Lisp on
an 8K CM-2 results in a performance of only approxi­
mately 3 iterations per second (256-bit address, 256-bit
data, 8192 locations). Using a pure rowwise mapping in
C* one of the present authors has been able to achieve
between 30 and 70 iterations per second on a CM -2 of this
size. The difference is probably due to some unnecessary
but expensive communication needed in going from 1D to
2D representation.

The still relatively poor performance of SDM on CM-2
is found to depend on at least three factors: PEs are
underutilized during the select/retrieve phase using node

parallelism where as few as 0.1-1% of the total number of
PEs are active; the natural rowwise mapping demands
time-consuming sum-reduction across PEs; the "opti­
mal" mixed mapping [89] (see Section 9.2.5) is hard to
implement efficiently with the current sequencer.

9.1.4. DAP

The Distributed Array Processor-produced by ICL
(International Computers Limited) and AMT (Active
Memory Technology Ltd.) [51]-is a series of 2D SIMD
computers with different sizes and different hosts. The
sizes range from 1024 to 4096 PEs. The processing ele­
ments are simple and bit-serial. To overcome the short­
comings of the ordinary 2D array (its long distance com­
munication performance) row and column "highways"
have been included. A 4K DAP gives 32-48 Mflops and
computes 8-bit multiplications at 250 Mops and 8-bit mul­
tiplications by scalar constant at 600 to 1200 Mops. In a
forthcoming machine there will be some support for mul­
tipliCation in each PE. It will then give 560 MFlops maxi­
mally for a 4K PE machine.

Forrest et al. [29, 30] report the use of the ICL DAP to
implement Hopfield net, BP, Elastic net (applied to trav­
eling salesman problems), etc. They also use Transputers
for similar tasks. However, no performance figures are
given; it is more of a feasibility study. The authors de­
scribe and use four of the various types of parallelism:
node, weight, training example, and training session.

Nuiiez and Fortes [90] have used the AMT DAP to
implement BP, recurrent BP, and mean field theory. The
calculations are treated as matrix operations, which with
our terminology results in a combination of weight and
node parallelism. For activation distribution the DAP
broadcast highways are utilized in a way similar to the
grid-based communication method. On a 4K machine
with 8 bits used for weight and activation the perfor­
mance is 100-160 MCUPS for BP. With 16 bits used
instead, the figures are 25-40 MCUPS. A NETtalk (203
x 64 x 32) implementation on the 1K DAP using 8 bits
resulted in 50 MCUPS.

9.1.5. MasPar (MP-1)

MasPar MP-1 [8, 15, 87] is a SIMD machine with both
mesh and global interconnection style of communication.
It has floating-point support, both VAX and IEEE stan­
dards. The number of processing elements can vary be­
tween 1024 and 16,384. Each PE has forty 32-bit regis­
ters, a 4-bit integer ALU, floating-point "units" to hold
Mantissa and Exponent, an addressing unit for local ad­
dress modifications, and a 4-bit broadcast bus.

MP-1 has a peak performance, for a 16K PE machine,
of 1500 MFlops single-precision [87]. It is programmed in
parallel versions of Fortran (MasPar Fortran) or C (Mas­
Par C) or a C-derived language (MasPar Application Lan­
guage) for more direct contact with the hardware [15].

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 277

Chinn et al. [14] and Grajski et al. [35, 36] have imple­
mented BP and SOM using floating-point arithmetic. Es­
timating the performance of a 16K PE machine from the
figures of a 2K, 4K, and 8K machine gives approximately
10 MCUPS with BP on a 256 x 128 x 256 network,
utilizing node and weight parallelism. The mapping of
SOM into MP-1 is one PE to each SOM node. It was
measured to give 18 MCUPS on a 4K machine when 32-
dimensional input vectors (or larger) were used.

9.2. Highly Parallel Machines with Simple PEs

9.2.1. AIS-5000, Centipede

AIS-5000 [113] manqfactured by Applied Intelligent
Systems Corp. has up to 1024 bit-serial PEs arranged as a
linear array. The PEs are similar to those of CM, DAP,
and BUTZEN. The basic problem when using AIS-5000
for ANN is the lack of support for multiplication and the
difficulties in performing the backward phase of back­
propagation (BP). Both of these difficulties have been
addressed in [124] for other linear processor arrays. In a
new generation using the new Centipede chip [135] better
support for multiply-and-add is incorporated and table
lookup is also possible.

AIS-5000 is intended mainly for image processing ap­
plications like inspection, but Wilson [135] has shown a
neural network implementation of feedback type (Hop­
field). Despite the difficulties mentioned, between 19 and
131 MCPS (depending on the precision used) is achieved
using node parallelism.

9.2.2. Connected Network of Adaptive ProcessorS
(CNAPS)

CNAPS, manufactured by Adaptive Solutions, Inc., is
one of the first architectures developed especially for
ANN. Called X1 in the first description by Hammerstrom
[37], it is a 256-PE SIMD machine with a broadcast inter­
connection scheme. Each PE has a multiply (9 x 16 bit)­
and-add arithmetic unit and a logic-shifter unit. It has 32
general (16-bit) registers and a 4-kbyte weight memory.
There are 64 PEs in one chip. The user may choose 1, 8,
or 16 bits for weight values and 8 or 16 bits for activation
values.

With 16 bits for weights and 8 bits for activation the
peak performance is 5 GCPS for a feedforward execu­

. tion, and 1 GCUPS using BP learning. For NETtalk 180
MCUPS is achieved using only one chip (64 PEs).

The performance of CNAPS on SOM was reported by
Hammerstrom and Nguyen [38]. The figures are based on
a 20-MHz version of CNAPS. With 512 nodes/neurons
and a 256-dimensional input vector, best match using a
Euclidean distance measure can be carried out in 215 !J-S,
using 16-bit weights. Making their CUPS figure compara­
ble to others, the performance is about 183 MCUPS.

9.2.3. Geometric Arithmetic Parallel Processor (GAPP)

GAPP is a mesh-connected SIMD systolic array. On
one chip there are 72 PEs (6 x 12), each with 128 bits of
RAM. Designed for image processing and working bit­
serially, it runs at a clock speed of 10 MHz. The process­
ing element is very simple, basically a full adder. The
chip was developed by Holsztynski of Martin Marietta
Aerospace Corp. and manufactured by NCR Corp [16]. It
was the first commercially available systolic chip.

Brown et al. have used GAPP to implement BP [11].
As there is no floating-point support on GAPP they use
fixed-point numbers. Ten bits precision is used for the
activation values and 15 bits (4 + 11) for the weights. The
sigmoid function is approximated by a stepwise linear
function. Both weight and node parallelism are used. No
performance figures are reported.

Barash and Eshera [5] have also used GAPP to imple­
ment feedforward networks with BP learning. Using a
variation of communication by circulation described in
Section 6.3 they combine weight and node parallelism.
With a 40K GAPP and 8 bits for weight and activation
values they estimate a performance of 300 MCUPS. The
major bottleneck is reported to be the calculation of the
sigmoid function.

9.2.4. L-Neuro

The Laboratoires d'Electronique Philips (LEP), Paris,
have designed a VLSI chip called L-Neuro. It contains 16
processors working in SIMD fashion. In association with
these chips Transputers are imagined as control and com­
munication processors. Weights are represented by
two's-complement numbers over 8 or 16 bits, and the
states of the neurons are coded over 1 to 8 bits. The
multiplication is done in parallel over 16 or 32 weights but
bit-serially over the weight values, and as only one out­
put node atthe time is calculated (in one chip) it can be
considered a weight parallel implementation. The node
activation value must go outside the chip for distribution
to other nodes, and no support for the calculation of the
sigmoid function is needed/implemented inside the chip.
Duranton and Sirat [20, 21] have described implementa­
tions of SOM, Hopfield, and BP networks using this chip
as a building block.

9.2 .5. REMAP3

REMAP3 is a cooperative research project between
Lulea University of Technology and Halmstad Univer­
sity, both in Sweden. The project is aimed at obtaining a
massively parallel computer architecture put together by
modules in a way that allows the architecture to be ad­
justed to a specific application. This suggests that a cer­
tain architecture may be ''compiled''; thus a modification
of each module and adjustments of the connections be-

278 NORDSTROM AND SVENSSON

tween the modules are enforced. The intended applica­
tio;n area in a broad sense is embedded industrial sys­
tems. A multimodule system is well suited for
implementing a multiple-network artificial neural system.

A small prototype of a software configurable processor
array module with bit-serial processors has been imple­
mented [75] and a larger system consisting of several
modules is in the process of being designed. Different
variations can be realized by reprogramming. An archi­
tecture tuned for neural network computations, including
a fast bit-serialmultiplier, has been designed. Ahlander
and Svensson [140] describe how support for floating­
point calculations may be embedded in the bit-serial
working mode if needed, resulting in impressive floating­
point performance when implemented with VLSI.

The mapping and performance of some common ANN
models (BP, Hopfield, SOM, SDM) have been reported
[124, 88, 89]. As an example, a 4K PE machine reaches
953 MCPS or 413 MCUPS on BP when running at 10
MHz and using 8-bit data. A node parallel version of BP
is used. For 16-bit data, 546 MCPS ·or 219 MCUPS is
achieved. An SDM model running 30 iterations per sec­
ond on a 8K CM-2 can run at speeds above 400 iterations
per second on a 256-PE REMAP3 (10 MHz) with
counters. The implementation uses a "mixed mapping"
of the SDM model: rowwise mapping for the selection
phase and columnwise for the store/retrieve phase.

9.3. Highly Parallel Machines with Complex PEs

9.3.1. GFll

GFll is an experimental SIMD computer built at IBM
Research Laboratory [7]. It has 566 PEs running at 20
MHz and a peak performance of 11 GFlops (as the name
implies). It is intended primarily for quantum chromo­
dynamics (QCD) predictions. Each PE has two floating­
point adders, two floating-point multipliers, and one
fixed-point unit. Table lookup and selection are the only
data-dependent operations available.

The memory is organized as a three-staged hierarchy
of progressively larger and slower memories. The com­
munication is done via a three-staged Benes network.
The machine is programmed in conventional C with calls
to special-purpose procedures. This generates, after an
optimization step, large blocks of microcode. Using a
very simple controller the code is sent to all processors
(there is also an address generator/relocator).

Witbrock and Zagha have been able to use this com­
puter, before it was completed, to run ANN algorithms
[136]. They implemented BP and benchmarked it with the
NETtalk text-to-speech benchmark, achieving a speed of
900 MCUPS on a 356-processor computer. Because of
the memory hierarchy they needed a few tricks to obtain
this high speed.

Witbrock and Zagha discuss various ways to parallel­
ize BP and finally choose training example parallelism.
When all the weight changes are added, log2 N steps are
required. They also discuss in detail how to compute the
sigmoid function and how to implement Recurrent BP
because this model is their main interest. They conclude
that a sophisticated communication network is not neces­
sary if processor-dependent addressing is available.

9.3.2. Hughes Systolic/Cellular Architecture
' .

The Hughes machine is a mesh-connected SIMD archi-
tecture made for image formation of synthetic aperture
radar (SAR) pictures. The prototype used has 256 PEs,
each with seven function units working on 32-bit fixed­
point data (two multipliers, two adders, a divider, a nor­
malizer, and a sorter), 24 memory registers, and a small
local memory.

On this computer Shams and Przytula have imple­
mented BP [115]. Training example parallelism was used
in one "dimension" of the mesh and node parallelism
with communication by circulation in the other dimen­
sion. Benchmarking with NETtalk resulted in a perfor­
mance of 100 MCUPS, including loading and unloading
operations. For recall only the result was 240 MCPS.

9.3.3. UCL Neurocomputer

Treleaven et al. have set out to construct a general­
purpose "neurocomputer" [129]. Each PE is a 16-bit
RISC (16 instructions) containing an on-chip communica­
tion unit and on~chip local memory. For communication
a ring structure and a broadcast bus are used. Each PE
has a unique address to support a more general type of
logical communication. The ALU can add and subt,ract in
one clock cyclebut it only supports multiplication with a
multiply step. This means that the performance of each
PE will be low on ANN problems that have many multi­
plications. ,

The 5-MHz, 1.5-f.Lm CMOS chip which was ready in
1990 could contain only two PEs and have a maximum
CPS rate of 156 kCPS/PE or 312 kCPS/chip. It looks like
the complex control part of the chip made it difficult to
include a more powerful ALU with a one-cycle multiply­
and-add. The UCL approach should be compared with
theCNAPS approach in which emphasis is.placed on the
basic computation of ANN s and the controller is shared
between all the PEs (SIMD).

9.3.4. Transputers

The Transputer [54, 133] is a single-chip 32-bit micro­
processor. It has support for concurrent processing in
hardware which closely corresponds to the Occam [10,
53, 55] programming modeL It contains on-chip RAM
and four bidirectional 20 Mbits/ s communication links.

[1

USING AND DESIGNING,MASSIVELY PARALLEL COMPUTERS FOR ANN 279

By wiring these links together a number of topologies can
be realized. Each Transputer of the T8oo: type is capable
of 1.5 MFlops (20 MHz) and architectures with up to 4000
Transputers are being built [133]. ·

The next generation of Transputers, called T9000, will
provide around 10 sustained MFlops and have 16 kbyte
of cache memory on chip. The communication has also
been improved to support through-routing without pro­
cessor involvement. This will be an even better building
block for highly parallel computers for the nineties.

Back-propagation has been implemented by Hwang et
al. [52, 71] and Petkov [98] using node parallelism and
communication by circulation. Forrest et al. have imple­
mented the Hopfield, BP, and Elastic net models on both
DAP and Transputers [29, 30]. No figures of performance
have been given, but Transputers with their relatively
low communication bandwidth (relative to their compu­
tational capabilities) are more efficiently used if small­
grain partitioning can be avoided. That is, node and
weight parallelism should be avoided, especially if they
are described as general graphs.

The SOM of Kohonen has been implemented by
Hodges et al. [45] and Siemon and Ultsch [117]. Both
implementations just distribute the nodes over the PEs
and use ring comm1.1nication to distribute the input vector
and to find the global minimum. As long as the neighbor­
hood is larger than the number of PEs this mapping is
quite efficient. Good performance will be achieved also
for high input dimension. Siemon and Ultsch state a per­
formance of 2.7 MCUPS on a 16 Transputer machine
applied to a network sized 128 x 128 using 17 input di­
mensions. Hodges et al. presented an equation for the
performance but no concrete implementation.

A more general implementation framework, called
CARELlA; has been developed by Koikkalainen and Oja
[66]. The neural network models are specified in a CSP­
like formalism [64-66]. The simulator is currently run­
ning on i network of Transputers and some of the models
implemented areSOM, BP, and perceptrons. The perfor­
mance of the simulator j:las not been reported.

The Europea,n PYGMALION project [130] is, like
CARELlA, a general ANN programming environment
which has Transputers as.one of its.target architectures.
Its ANN programming languages are based on C++ and

· C; this together with a graphical software environment
and algorithm libraries makes it a complete ANN work­
bench. Performance figures. or an indica.tion of how to use
massively parallel computers as targets are unfortunately
not given.

9.4. Moderately Parallel Machines with Complex PEs

9.4.1. DSP (Digital Signal Processor) Based

Because the cumint .generation of DSPs and some of
the RISC chips have outstanding multiply-and-add per-

formance it is easy to conceive of them as building blocks
for an ANN computer. There are at least five suggested
architectures usin~ i860, TMS320C40, or TMS320C30.

9.4.1.1. Sandy/8. Building Sandy/8, Kato et al. at
Fujitsu [61] intend to use conventional processors or stg­
nal processors for the calculations and simple ring struc­
tures for communication. The system is projected to uti­
lize 256 TMS320C30. The expected maximal
performance using BP is above 500 MCUPS. Only 118
MCUPS is expected on NETtalk (203 x 60 x 26) as the
mapping can utilize only 60 PEs.

. 9.4.1.2. Ring Array Processor (RAP). The RAP is a
multi-DSP systein for layered network calculations de­
veloped at the International Computer Science Institute,
Berkeley, California [6, 83]. Each PE consists of a
TMS320C30 connected to other PEs via a bus interlace
into a ring network. The 4-PE computer (one board)
which has been implemented runs at maximally 13.2
MCUPS [82, 83]. A 16-PE system is estimated to run at
46 MCUPS.

9.4.1.3. GigaCoNnection (GCN). Hiraiwa et al. [43J
at Sony Corp. are building an ANN computer called
GCN in which each PE consists of a processor similar to
the core of i860, 2 FIFOs, and '4 Mbyte RAM. Each PE
will fit into a single chip (by 1992). The PEs are connected
into a 2D mesh with wraparound. The ANN algorithm is
mapped on the architecture using node parallelism in one
direction (systolic ring) and tra.iriing example parallelism
in the other. The expected BP performance when running
128 PEs at 50 MHz will be above 1 GCUPS for a 256 x
80 x 32 network. The tra.ining data are then distributed
into 32 groups.

9.4.1.4. TOPS!. • TOPS! is a computer architecture
built at Texas Instruments [31]. Each PE or module can
be sa.id to consist of a TMS320C40 and a 32-bit general
processor like MC68040 together with support for com­
munication. There are two complementary communica­
tion structures, one general reconfigurable inter-PE net­
work and one hierarchical bus for broadcasting
information. Only the latter is needed for the implemen­
tation of Hopfield and BP networks. A 100-module com­
puter will run BP at a maximum speed of approximately
150 MCUPS, and a 1000 module computer at approxi­
mately 1.4 GCUPS.

9.4.1.5 .. PLANNS (Planar Lattice Architecture. for
Neural Network Simulations) and TLA (Toroidal Lattice
Architecture. PLANNS is an improved version of the

· TLA, both suggested by Fujimoto and Fukuda [32-34].
They use node and weight parallelism with grid-based
communication. Load balancing is a.chieved by first
mapping the computations onto a virtual TLA and then
splitting the work to suit a physical TLA. The physical

280 NORDSTROM AND SVENSSON

processor array must be able to support m~sh communi­
cations.

A 16-PE Transputer array has been used as a prototype
TLA resulting in 2 MCUPS oil a feedforward network
using BP. The authors claim an almost linear~ speedup
with the number of PEs when their load balancing
scheme is used. By using a more powerful PE like i860
and a larger number of nodes (some 30,000) they are
planning to reach 10 GCUPS in a future implementation.

9.4.2. Warp

Warp is a one-dimensional array of 10 or more power­
ful processing elements developed at Carnegie Mellon in
1984-1987 [69]. Each cell/PE has a microprogrammable
controller, a 5-MFlops floating-point multiplier, a 5-
MFlops floating-point adder, and a local memory. Com­
munication between adjacent cells can be conducted in

,parallel over two independent channels: a left-to-right X
channel and a bidirectional Y channel. In 1991 Intel re­
leased a single-chip version of the Warp concept called
iWarp [97]. Systems with up to 1024 iWarp chips can be
built and can give a theoretical performance of 20
GFlops. Implementing a computer with these chips will
at least double the performance figures given for Warp
below.

Back-propagation was implemented by Pomerleau et
al. [100] trying both node and training example parallel­
ism. They found that with training example parallelism
they could simulate much larger networks and/ or at
higher speeds. On NETtalk the 10-PE Warp reached 17
MCUPS.

An implementation of Kohonen SOM has been de­
scribed by Mann and Haykin [79]. Using training exam­
ple parallelism between 6 and 12 MCUPS was achieved.
Some minor problems with the topology ordering process
when using training example parallelism were reported.
The authors suggest that either the network start at some
order instead of at random state or the network be trained
sequentially for the first 100-1000 steps, after which the
training example parallelism is "turned on."

9.5. Other High-Performance Architectures

9.5.1. Vector (Super) Computers

For the sake of comparison with well-known powerful
computers of a ·more conventional kind, some figures
from implementations on a couple of, so-called, super­
computers are given.

9.5.1.1. CRAY X-MP. The performance on a Cray X­
MP was given in the DARPA neural networks study [17]
to be 50 MCPS. It can be compared to the theoretical
maximal performance of 210 MFlops [44]. Even though
the 50 MCPS performance is often cited, it is difficult to
draw any conclusions from this, as the network size, the

training algorithm, and even whether or not training is
included are unknown.

9.5.1.2. NEC SX-2 and SX-X. NEC's SX-2 is a con­
ventional supercomputer with four general vector pipe­
lines givinga peak performance of 1.3 GFlops [44]. On
ANN its performance is 72 MCUPS on NETtalk and its
maximal performance on BP is 180 MCUPS [4] via [61].

9.5.2. VLSI Implementations

Even though the intention of this paper primarily is to
review more complete computers, there are a few border­
line cases liktf L-Neuro, UCL neurocomputer, and
CNAPS. There are many other interesting suggestions
and realizations of chips for ANN. More material and
surveys can, for instance, be found in [17, 46, 84, 103,
112}. To review only the digital ones would lead to an­
other paper of this length. Here we mention a few of the
digital realizations:

9.5.2.1. Faure. Faure and Mazare [25, 26]have sug­
gested an asynchronous cellular architecture which con­
sists of a 2D mesh of size 65 x 65 for ANN.· Each PE has
a routing and a processing part running at 20 MHz. The
routing is intended to control up to four message trans­
fers in parallel. Using 16 bits for weights and an array
configured for NETtalk the designers claim 51.4
MCUPS. Basically, node parallelism is used but each
node is distributed over two PEs.

9.5.2.2. Hitachi. Masaki et al. and Yasunaga et al. at
Hitachi have dev(;!loped a wafer scale integration (WSI)
neural network [81, 137, 138]. On one 5-inch silicon wafer
they can have 540 neurons, each having up to 64 weights
(the 64 largest values are chosen). Node parallelism is
used, and the neurons communicate through a time­
shared digital bus. Each PE has an 8 by 9-bit multiplier
and a 16-bit accumulator. The measured time step is 464
ns. The performance of a wafer is then 138 MCPS. They
intend to build a system out of 8 wafers and could then
theoretically achieve 1100 MCPS. No on-chip learning is
available.

9.5.2.3. SIEMENS. Ramacher and his colleagues at
Siemens [102-104] have suggested and built parts of a 2D
array composed of systolic neural signal processor mod­
ules. The basic components of their MA16 chip are pipe­
lined 16-bit multipliers together with adders. Ill, this re­
spect the design is similar to CNAPS. However, the
Siemens architecture does not use broadcast-based com­
munication, but instead uses a systolic data flow (parti­
tioned in groups of four). Each chip has a throughput on
the order of 500 MCPS. To get a complete system, 256
MA16 chips are concatenated, which should give a maxi­
mum performance of 128 GCPS. No estimated learning
rates have been given.

.. ...

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 281

10.0. DISCUSSI.ON AND CONCLUSIONS

10.1. 'ANN and Parallel Computers

Practically every powerful, parallel computer will do
well on ANN computations that use training ~example
parallelism. It is the kind of computation that even brings
the performance close to the peak performance. This is of
course interesting for people who do research on: training
algorithms or do application development where the
training of the system can be done in batch. However, for
training in real time, this form of parallelism cannot be
applied; the user is obliged to use node or weight parallel­
ism instead. This places other demands on the architec"
ture, resulting in lower performance figures.

This is clearly illustrated by the various BP implemen­
tations made on the Connection Machine: Singer, relying
entirely on training example parallelism, achieves 325
MCUPS. Zhang et al., on:ly partly utilizing training exam­
ple parallelism, reach 40 MCUPS. Rosenberg and Blel­
loch, finally, who on:ly use other forms of parallelism, end
up with a maximum performance of 13 MCUPS. The
latter implementation is so heavily communication bound
that it does not even matter if bit parallelism is utilized or
not!

However, if the architecture meets the communication
demands, near peak performance can be reached also in
real-time training. The vertical and horizontal highways
of the DAP architecture seem to be the key to the good
performance reported for this machine [90]. On a com­
puter where the maximum number of 8-bit multiply-and­
add operations per second is 450-700M, 160 MCUPS (8
bit) implies a very little amount of communication over­
head.

A major conclusion from this survey is that the regular­
ity of ANN computations suits SIMD architectures per­
fectly; in none of the implementations studied has a real
MIMD division of the computational task been required.

·The majority of ANN computations following the most
popular models of today can be mapped rather efficiently
onto existing architectures. However, some of the
models, for example, SDM, require a highly or massively
parallel computer capable of performing tailored, but
simple, operations in parallel and maintaining a very
large amount of storage.

10.2. Communication

Broadcast and ring communication can be very effi­
ciently utilized in ANN computations. In highly parallel
machines, broadcast or ring communication alone has
proved to be sufficient. For massively parallel machines
it is difficult to use only broadcast without using training
example parallelism. This is due to the fact that the num­
ber of nodes in each layer, or the number of inputs to
each node, seldom is as large as the number of PEs in the

machine. On a two-dimensional mesh machine, broad­
cast in one direction at a time may be used and node and
weight parallelism may be combined. Thus, broadcast is
an extremely useful communication facility also in these
machines. The "highways" of the DAP architecture
serve this purpose.

10.3. Bit-Serial Processing
.,

Bit-serial processor arrays are very promising host ma­
chines for ANN computations. Linear arrays, or arrays
with broadcast, are suitable for utilizing node parallelism.
In mesh-connected arrays node and weight parallelism
may be used simultaneously, if desired. Multiplication is
the single most important operation in ANN computa­
tions. Therefore, there is much to gain in the bit-serial
architectures if support for fast multiplication is added,
as shown in Centipede and the REMAP3 project.

As an illustration of this we can compare the perfor­
mance figures for the implementations of BP on AAP-2
and REMAP3, respectively. On the 64K PE AAP-2 ma­
chine, which lacks support for multiplication, 18 MCUPS
using 26 bits data are reported on a network that suits the
machine perfectly. The same performance can be
achieved on a 512-PE linear array REMAP3 implementa­
tion, in which bit-serial multipliers are used. AAP-2 also
lacks a fast broadcasting facility, but this is of minor im­
portance compared to the slow multiply operations.

10.4. Designing a General ANN Computer

A fruitful approach when designing. a massively or
highly parallel computer for general ANN computations
is to start with a careful analysis of the requirements that
are set by the low-level arithmetic operations and design
processing elements which meet these demands. Then an
architecture is chosen that makes it possible to map the
computations on the computational structure in a way
that makes processing and communication balanced.

It seems that broadcast communication often is a key
to success in this respect, since it is a way to time-share
communication paths efficiently. The approach has been
used in both the CNAPS and the REMAP3 design pro­
cesses, both resulting in "on:ly" highly (not massively)
parallel modules with broadcast, the former with bit­
parallel processors, the latter with bit-serial ones. Nei­
ther design utilizes all the available parallelism; instead
they leave weight parallelism to be serialized on the same
processor. Both reach near peak performance on a vari­
ety of algorithms.

10.5. Implementing Artificial Neural Systems

The real challenge for computer architects in connec­
tion with the neural network area in the future lies in the
implementation of Artificial Neural Systems, i.e., sys-

282 NORDSTROM AND SVENSSON

terns composed of a large number of cooperating modules
of neural networks. Each of the modules should be al­
lowed to implement a different network structure, and
the modules must be able to interact in different ways and
at high speed. This implies that heterogeneous systems
composed of homogeneous processing arrays must be
developed, and that special attention must be paid to the
problem of interaction between modules and between pe­
ripheral modules and the environment. The role of
MIMD architectures in neural processing probably lies in
this area, actually meaning that MIMSIMD (Multiple In­
struction streams for Multiple SIMD arrays) architec­
tures will be seen.

These new computer architectures are sometimes re­
ferred to as "sixth-generation computers," or "action­
oriented systems" [2, 3], since they are capable of inter­
acting with the environment using visual, auditory, or
tactile sensors, and advanced motor units.

So far these matters have not been addressed by very
many computer architects (nor by artificial neural net­
work researchers). We believe that flexible, massively (or
maybe only highly) parallel modules are important tools
in experimental work aimed at building such systems for
qualified real-time pattern recognition tasks.

ACKNOWLEDGMENT

This work has been partly financed by the Swedish National Board
for Technical Development (NUTEK) under contract no. 900-1583.

REFERENCES

1. Almeida, L. D. Backpropagation in perceptrons with feedback. In
NATO ASI Series: Neural Computers. Neuss, Federal Republic of
Germany, 1987.

2. Arbib, M. A. Metaphorical Brain 2: An Introduction to Schema
Theory and Neural Networks. Wiley-Interscience, New York,
1989.

3. Arbib, M. A. Schemas and neural network for sixth generation
computing. J. Parallel Distrib. Comput. 6, 2 (1989), 185'--216.

4. Asogawa, M., Nishi M., and Seo, Y. Network learning on the
supercomputer. In Proc. 36th IPCJ Meeting, 1988, pp. 2321--'2322.
[In Japanese]

5. Barash, S.C., and Eshera, M.A. The systolic array neurocompu­
ter: Fine-grained parallelism at the synaptic level. In First Interna­
tional Joint Conference on Neural Networks, 1989.

6. Beck, J. The ring array processor (RAP): Hardware (Tech. Rep.
90-048, International Computer Science Institute, Berkeley, CA,
1990.

7. Beetem, J., Dehneau, M., and Weingarten, D: The GF11 parallel
computer. Iri Dongarra (Ed.). Experimental Parallel Computing
Architectures. North-Holland, Amsterdam,.1987.

8. Blank, T. The MasPar MP-1 Architecture. In Proc. COMPCON
Spring 90, San Francisco, CA, 1990, pp. 20-24.

9. Blevins, D. W., et al. Blitzen: A highly integrated massively paral­
lel machine. J. Parallel Distrib. Comput. (1990), 1SO-l60.

10. Bowler, K. C., et al. An Introduction to OCCAM 2 Programming.
Studertlitteratur, Lund, Sweden, .1987.

11. Brown, J. R., Garber, M. M. and Vanable, S. F. Artificial neural

network on a SIMD architecture. In Proc. 2nd Symposium on the
Frontiers of Massively Parallel Computation. Fairfax, VA, 1988,
pp. 43-47.

12. Brown, N.H., Jr. Neural network implementation approaches for
the Connection machine. In Neural Information Processing Sys­
tems, Denver, CO, 1987, pp. 127-136.

13. Caviglia, D. D., Valle, M., and Bisio, G. M. Effects of weight
discretization on the back propagation learning method: Algorithm
design and hardware realization. In International. Joint Confer­
ence on Neural Networks, San Diego, CA, 1990, Vol. 2, pp. 631-
637.

14. Chinn, G., et al. Systolic array implementations of neural nets on
the MasPar MP-1 massively parallel processor. In International
Joint Conference on NeuralNetworks, San Diego, CA, 1990, Vol.
2, pp. 169...,173.

15. Christy, P .. Software to support massively parallel computing on
the MasPar MP-1. In Proc. COMPCON Spring 90, San Fran~isco,
CA, 1990, pp. 29.,.33.

16. Cloud, E., and Holsztynski, W. Higher efficiency for parallel pro­
cessors: In Proc. 1EEE SOUTHCON, 1984.

17. DARPA. Neural Network Study. AFCEA. Fairfax, VA, 1988.

18. Deprit, E. Implementing recurrent back-propagation on the Con­
nection Machine. Neural Networks 2, 4 (1989), 295-314.

19. Diegert, C. Out-of-core backpropagation. In International Joint
Conference on Neural Networks, San Diego, CA, 1990, Vol. 2, pp.
97-103.

20. Duranton, M., and Sirat, J. A. Learning on VLSI: A general pur­
pose digital neurochip. In International Conference on Neural
Networks, Washington, DC, 1989.

21. Duranton, M., and Sirat, J. A. Learning on VLSI: A general­
purpose digital neurochip. Philips J. Res. 45, 1 (1990), 1-17.

22. Fahlman, S. Benchmarks for ANN. Information and data sets of
common benchmarks have been collected by Scott Fahlman and
are available by internet ftp. The machine for anonymous ftp are
"pt.cs.cmu.edu" (128.2.254, 155) below the directory "/afs/cs/
project/connect/bench". 1990.

23. Fahlman, S. E. An empirical study of learning speed in back­
propagation networks. Rep. No. CMU-CS-88-162, Carnegie Mel­
lon, 1988.

24. Fahlman, S. E., and Lebiere, C. The cascade-correlation learning
architecture. In Neural Information Processing Systems 2, Den­
ver, CO, 1989, pp. 524-532.

25. Faure, B., and Mazare, G. Microprocessing and Microprogram­
ming, A Cellular Architecture Dedicated to Neural Net Emula­
tion. Vol. 30, North-Holland, Amsterdam, 1990.

26. Faure, B., and Mazare, G. Implementation of back-propagation
on a VLSI asynchronous cellular architecture. In Intt;rnational
Neural Networks Conference, Paris, 1990, Vol. 2, pp. 631-634.

27. Fernstrom, C., Kruzela, I., and Svensson, B. LUCAS Associative
Array Processor-Design, Programming and Application Studies.
Springer-Verlag, Berlin, 1986, Lecture Notes in Computer Sci­
ence, Vol. 216.

28. Flynn, M. J. Some computer organizations and their effective­
ness. IEEE Trans. Comput. C-21 (1972), 948-960.

29. Forrest, B. M., et al. Implementing neural network models on
parallel computers. Comput. J. 30, 5 (1987), 413-419.

30. Forrest, B. M., et al. Neurar network models. In International
Conference on Vector and Parallel Processors in Computational
Science III, Liverpool, UK, 1988, Vol. 8, pp. 71-83.

31. Frazier, G. TeraOPs and TeraBytes for neural networks research.
· Texas Instruments Tech. J. 7, 6 (1990), 22-33.

32. Fujimoto, Y. An enhanced parallel planar lattice architecture for

)

('

USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 283

large scale neural network simulations. In International Joint Con­
ference on Neural Networks, San Diego, CA, 1990, VoL 2, pp.
581-586.

33. Fujimoto, Y., and Fukuda, N. An enhanced parillel planar lattice
architecture for large scale neural network simulations. In Interna­
tional Joint Conference on Neural Networks, WasliiD.gton, DC,
1989, Vol. 2, pp. 581-586.

34. Fukuda; N.; Fujimoto, Y., and Akabane, T. A transputerimple­
mentatiorroftoroidallattice architecture for parallel neurocomput­
ing. In International Joint Conference on Neural Networks,
Washington, DC, 1990, Vol. 2, pp. 43-46.

35. Grajski, K. A. Neurocomputing rising the MasPar MP-1. In Przy·
tula and Pnisanna (Eds.), Digital Parallel Implementations of
Neural Networks. Prentice-Hall, Englewood Cliffs, NJ, 1992.

36. Grajski, K. A., et al. Neural network simulation on the MasPar
MP-1 massively parallel processor. In The International Neural
Network Confer!nce, Paris, France, 1990.

37. Hammerstrom, D. A VLSI architecture for high-performance,
low-cost, on-chip learning. In International Joint Conference on
Neural Networks, San Diego, 1990, Vol. 2, pp. 537-543.

38. Hammerstrom, D., and Nguyen, N. An implementation of Ko­
honen's self-organizing map on the Adaptive Solutions neurocom­
puter. In International Conference on Artificial Neural Networks,
Helsinki, Finland, 1991, Vol. 1, pp. 715-720.

39. Hecht-Nielsen, R. Theory of the backpropagation neural net­
works. In International Joif!t. Co.nference on Neural, Networks,
Washington, DC, 1989, Vol. 1, pp. 593-605,

40. Hillis, W. D., and Steel, G. L. J. Data parallel algorithms. Comm.
ACM. 29, 12 (1986), 1170-1183.

41: Hinton, G. E., and Sejnowski~ T: J.- Optimal perceptual inference.
In Proc. IEEE Computer Society Conference on Computer Vision
& Pattern Recognition, Washington, DC, 1983, pp. 448-453.

42. Hinton, G. E., and Sejnowski, T. J. Learning and relearning in
Boltzmann machines. In Rumelhart and McClelland (Eds.). Paral­
lel Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 2, Psychological and Biological Models. MIT
Press, Cambridge, MA, 1986.

43. Hiraiwa, A., et al. A two level pipeline RISC processor array for
ANN. In International .foint Conference on Neural Networks,
Washington, DC, 1990, Vol. 2, pp. 137-140.

44. Hockney, R. W., and Jesshope; C. R. Parallel Computer 2. Adam
Hilger, Bristol, United Kingdom, 1988.

45. Hodges, R. E., Wu, C.-H., and Wang, C.-J. Parallelizing the self­
. organizing feature map on multi-processor systems. In Interna­
tional Joint Conference on Neural Networks,. Washington, DC,
1990, Vol. 2, pp. 141-144.

46. Holler, M. A. VLSI implementations of neural computation
models: A review. Internal Report, Intel Corp., Santa Clara, CA,
1991.

47. Hopfield, J. J. Neural networks .and physi~ systems with e~er­
. gent collective computational ~bilities. Proc. Nat. Acad. Sci. US.A
. 79 (1982), 2554-2558. .

48. H:opfield, J. J. Neur;ons with graded respons~ have collective com­
putationai pro'perties like. those oftwo-state neurons. Proc. Nat.
Acad. Sci. USA 81 (1984), 3088-3092. '

49. Hopfield, J. J., and Tank, D. Computing with neuraf circuits: A
. ·.m~del'. Science 233 (1986), 624-633. · · ' ·

50. Rubel, D. H. Eye, Brpin and Vis.ion. Scientific Am~rican Library,
New York, I9Ss.. · · ·· · ·

1.,: -.

51. Hunt, D. J. AMT DAP-A processor array in a workstation envi­
ronment. Comput. Systems Sci. Engrg. 4, 2 (1989), 107-'114.

·52. Hwang, J.-N.; Vlontzos, ·J. A.; and Kung, S.-Y. A systolic neural

·network architecture for hidden markov models. IEEE Trans.
Acoustics Speech Signal Process. 37, 12 (1989), 1967-1979.

53. INMOS Limited. Occam Programming Model. Prentice-Hall,
New York, 1984.

54. INMOS Limited: The Transputer family 1987, 1987.
55, INMOS Limited. Occam 2 Reference Manual. Prentice-Hall,

London, 1988.

56. Jaeckel, L.A. Some methods of encoding simple visual images for
use with a sparse distributed memory, with applications to charac­
ter recognition. Tech. Rep. 89.29, RIACS, NASA Ames Research
Center, Moffet Field, CA, 1989.

57. Kanerva, P. Adjusting to variations in tempo in sequence tecogni­
tion. Neu'ral Networks Suppl. INNS Abstracts 1 (1988), 106.

58. Kanerva, P. Sparse Distributed Memory. MIT press, Cambridge,
MA, 1988.

59. Kanerya, P. Personal communication, 1990.
60. Kassebaum, J., Tenorio, M. F., and Schaefers, C. The cocktail

party problem: Speech/data signal separation comparison be­
tween backpropagation and SONN. In Neural Information Pro­

. cessing Systems 2, Denver, CO, 1989, pp. 542-549.
61. Kato, H~, e.t al. A parallei 'neurocomputer architecture towards

billion connection updates per second. In International Joint Con­
ference on Neural Networks, Washington, DC, 1990, Vol. 2, pp.
47-50.

62. Kohonen, T. Self-Organization and Associative Memory.
Springer-Veilag. Berlin, 1988, 2nd ed.

63. Kohonen, T. The self-organizing map .. Proc. IEEE 78, 9 (1990),
1464-1480.

64. Koikkalainen, P. MIND: A specification formalism for neural net­
works. In International Conference on Artificial Neural Net­
works,Helsinki, Finland, 1991, Vol. 1, pp. 579-584.

65. Koikkalainen, P., and Oja, E. Specification and implementation
environment for neural networks using communication sequential
processes. In International Conference on Neural Networks, San
Diego, CA, 1988.

66. Koikkalainen,P., and Oja, E. The CARELlA simulator: A devel­
opment and specification environment for netiral networks. Res.
Rep. 15/1989, Lappeertranta Univer~ity of Tech, Finland, 1989.

67. Krikelis, A., and Grozinger, M. Implementing neural networks
with the associative string processor. In International Workshop
for Artificial Intelligence and Neural Networks, Orl~rd, }990.

68. Kung, H. T. Why systolic architectures? IEEE Co~put. (Jan.
1982), 37-46. .

69. Kung, H. T. The Warp computer: An;:hitecture, implementation
and performance. IEEE Trans. Comput. (Dec. 1987) .. '

70. Kung, S. Y. Parallel ru;-chitectures for artificial neural n.ets. In
International· Conference on Systolic Arrays, San Diegp, CA,
1988, pp. 163-174.

.71. Kung, S. Y., and Hwang, LN. Parallel architectures for artificial
neural nets. In Internatiomi/.Conference on Neural Networks, San
Diego, CA, 1988, Vol. 2, pp. 165-172.

72. Kung, S~ Y•., and Hwang, J.' N. A unified systolic architecture for
artificial neural rtetworks. J. Parallel bistrib. Compzd. (Apr.
1989). . '

73. Lawson, J.-C., Chams, A., and Herault, J.' SMART: How to simu­
late huge net~orks .. In Internation~l Neural Network c;onference,
Paris, France; 1990, Vol. 2, pp. 577-580.

. 74. ,Lt;a,.R. M. ASP: A cost effectiv~ pan;illel micmcompu,ter. IEEE
'Micro. (Oct. 1988), 1P-29.

'75. Linde, 'A., a:nd Taveniku; M. LUPUS-A: reconfigurable proto­
type for a modular massively parallel SIMD. computing· system.''

..... '


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----------~ 

284 NORDSTROM AND SVENSSON 

Masters Thesis Rep. 1991:028E, University of Lulea, Sweden, 
1991. [lrr Swedish] 

76. Lippmann, R. P. An introduction to computing with neural nets. 
IEEE Acoustics Speech Signal Process. Mag. 4 (Apr. 1987), 4-22. 

77. MacLennan, B. J. Continuous computation: Taking massive par­
allelism seriously. In Los Alamos National Laboratory Center for 
Nonlinear Studies 9th Annual International Conference, Emer­
gent Computation, Los Alamos, NM, 1989. [Poster presentation] 

78. Makram-Ebeid, S., Sirat, J. A., and Viala, J. R. A rationalized 
error back-propagation learning algorithm. In International Joint 
Conference on Neural Networks, Washington, DC, 1989. 

79. Mann, R., and Hay kin, S. A parallel implementation of Kohonen 
feature maps on the Warp systolic Computer. In International 
Joint Conference on Neural Networks, Washington, DC, 1990, 
Vol. 2, pp. 84-87. 

80. Marchesi, M., et al. Multi-layer perceptrons with discrete 
weights. In International Joint Conference on Neural Networks, 
San Diego, CA, 1990, Vol. 2, pp. 623-630. 

81. Masaki, A., Hirai, Y., and Yamada, M. Neural networks in 
CMOS: A case study. Circuits and Devices (July 1990), 12-17. 

·82. Morgan, N. The ring array processor (RAP): Algorithms and¥­
chitecture. Tech. Rep. 90-047), International Computer Science 
Institute, Berkeley, CA, 1990. 

83. Morgan, N., et al. The RAP: A ring array processor for layered 
network calculations. In Proc. Conference on Application Specific 
Array Processors, Princeton, NJ, 1990, pp. 296-308. 

84. Murray, A. F. Silicon implementation of neural networks. lEE 
Proc. F. 138, 1 (1991), 3-12. 

85. Murray, A. F., Smith, A. V. W., and Butler, Z. F. Bit-serial neural 
networks. In Neural Information Processing Systems, Denver, 
co 1987, pp. 573-583. 

86. Nakayama, K., Inomata, S., and Takeuchi, Y. A digital multilayer 
neural network with limited binary expressions. In International 
Joint Conference on Neural Networks, San Diego, CA, 1990, Vol. 
2, pp. 587-592. 

87. Nickolls, J. R. The design of the MasPar MP-1: A cost effective 
massively parallel computer. In Proc. COMPCON Spring 90, San 
Fransisco, CA, 1990, pp. 25-28. 

88. Nordstrom, T. Designing parallel computers for self organizing 
maps. Res. Rep. TULEA 1991:17), Lulea University of Technol-
ogy, Sweden, 1991. ' 

89. Nordstrom, T. Sparse distributed memory simulation on RE­
MAP3. Res. Rep. TULEA 1991:16, Lulea University of Technol­
ogy, Sweden, 1991. 

90. Nuiiez, F. J., and Fortes, J. A. B. Performance of connectionist 
learning algorithms on 2-D SIMD processor arrays. In Neural 
Information Processing Systems 2, Denver, CO, 1989, pp. 810-
817. 

91. Obermayer, K., Ritter, H., and Schulten, K. Large-scale simula­
tions of self-organizing neural networks on parallel computers: 
Application to biological modelling. Parallel Comput. 14, 3 (1990), 
381-404. 

92. Parker, K. L. Parallelized back-propagation training and its effec­
tiveness. In International Joint Conference on Neural Networks, 
Washington, DC, 1990, Vol. 2, pp. 179-182. 

93. Penz, P. A. The closeness code: An integer to binary vector trans­
formation suitable for neural network algorithms." In Interna­
tional Conference on Neural Networks, San Diego, CA, 1987, 
Vol. 3, pp. 515-522. 

94. Pesulima, E. E., Panadya, A. S., and Shankar, R. Digital imple­
mentation issues of stochastic neural networks. In International 
Joint Conference on Neural Networks, Washington, DC, 1990, 
Vol. 2, pp. 187-190. 

95. Peterson, C., and Andersson, J. A mean field theory learning algo­
rithm for neural networks. Complex Systems 1 (1987), 995-1019. 

96. Peterson, C., and Hartman, E. Explorations of mean field theory 
learning algorithm. Neural Networks 2, 6 (1989), 475-494. 

97. Peterson, C., Sutton, J., and Wiley, P. iWarp: A 100-MOPS, LIW 
microprocessor for multicomputers. IEEE Micro. (June 1991), 26-
29, 81-87. 

98. Petkov, N. Systolic simulation of multilayer, feedforward neural 
networks. Parallel Process. Neural Systems Comput. (1990), 303-
306. 

99. Pineda, F. J. Generalization of back-propagation to recurrent neu­
ral networks. Phys. Rev. Lett. 59, 19 (1987), 2229-2232. 

100. Pomerleau, D. A., et al. Neural network simulation at warp speed: 
How we got 17 million connections per second. In Proc. IEEE 
International Conference on Neural Networks, San Diego, CA, 
1988. 

101. Potter, J. L. The Massively Parallel Processor. MIT Press. Cam­
bridge, MA, 1985. 

102. Ramacher, U., and Beichter, J. Architecture of a systolic neuro­
emillator. In International Joint Conference on Neural Networks, 
Washington, DC, 1990, Vol. 2, pp. 59-63. 

103. Ramacher, U., et al. Design of a 1st generation neurocomputer. In 
Ramacher, U., & Riickert, U. (Eds.), YLSI Design of Neural 
Networks, Kluwer-Academic Publishers; Dordrecht, The Nether­
lands, 1991. 

104. Ramacher, U., and Wesseling, M. Systolic synthesis of neural 
networks. In International Neural Network Conference, Paris, 
France, 1990, Vol. 2, pp. 572-576. 

105. Rogers, D. Kanerva's sparse distributed memory: An associative 
memory algorithm well-suited to the connection machine. In Proc. 
Conference on Scientific Application of the Connection Machine, 
Moffet Field, CA, 1988, Vol. 1, pp. 282-298. 

106. Rogers, D. Kanerva's sparse distributed memory: An associative 
memory algorithm well-suited to the connection machine. Tech. 
Rep. 88.32, RIACS, NASA Ames Research Center, 1988. 

107. Rogers, D. Statistical prediction with Kanerva's sparse distributed 
memory. In Neural Information Processing Systems 1, Denver, 
co, 1988, pp. 586-593. 

108. Rosenberg, C. R., and Blelloch, G. An implementation of network 
learning on the connection machine. In Proc. lOth International 
Conference on AI, Milan, Italy, 1987, pp. 329-340. 

109. Rosenblatt, F. Principles of N eurodynamics. Spartan Books, New 
York, 1959. 

110. Rumelhart, D. E., and McClelland, J. L. Parallel Distributed Pro­
cessing: Explorations in tf!e Microstructure of Cognition. MIT 
Press, Cambridge, MA, 1986, Vols. I and II. 

111. Rumelhart, D. E., and McClelland, J. L. Explorations in Parallel 
Distributed Processing. MIT Press, Cambridge, MA, 19S8. 

112. Sami, M., and Calzadilla-Da~erre, J. Silt~on Architectures for 
Neural Nets. North-Holland, Amsterdam, 1991. 

113. Schmitt, R. S., and Wilson, S. S. The AlS-5000 parallel processor. 
IEEE Trans. Pattern Anal. Mach. Intel/. 10, 3 (1988), 320-330. 

114. Sejnowski, T. J., and Rosenberg, C. R. Parallel networks that 
learn to pronounce English. Complex Systems 1 (1987) 145-168. 

115. Shams, S., and Przytula, K. W. Mapping of neural networks onto 
programmable parallel machines. In Proc. IEEE International 
Symposium on Circuits and Systems, New Orleans, LA, 1990. 

116. Shoemaker, P. A., Carlin, M. J., and Shimabukuro, R. L. Back­
propagation with coarse quantization of weight updates. In Inter­
national Joint Conference on Neural Networks, Washington, DC, 
1990, Vol. 1, pp. 573-576. 

117. Siemon, H. P., and Ultsch, A. Kohonen networks on transputers: 

_-· 

I, 



USING AND DESIGNING MASSIVELY PARALLEL COMPUTERS FOR ANN 285 

Implementation and animation. In International Neural Network 
Conference, Paris, France, 1990, Vol. 2, pp. 643-646. 

118. Singer, A. Exploiting the Inherent parallelism of artificial neural 
networks to achieve 1300 million interconnects per second. In 
International Neural Network Conference, Paris, Fr;mce, 1990, 
Vol. 2, pp. 656-660. 

119. Singer, A. Implementation of artificial neural networks on the 
Connection Machine Tech. Rep. RL90-2, Thinking Machine, 
Corp., 1990. 

120. Singer, A. Implementations of artificial neural networks on the 
Connection Machine. Parallel Comput. 14, 3 (1990), 305-316. 

121. Sirat, J. A., et al. Unlimited accuracy in layered networks. In First 
lEE Conference on Artificial Neural Networks, London, 1989, pp. 
181-185. 

122. Stevenson, M., Winter, R., and Widrow, B. Sensitivity oflayered 
neural networks to errors in the weights. In International Joint 
Conference on Neural Networks, Washington, DC, 1990, Vol. 1, 
pp. 337-340. 

123. Stevensson, M., Winter, R., and Widrow, B. Sensitivity of feed­
forward neural networks to weight errors. IEEE Trans. Neural 
Networks 1, 1 (1990), 71-80. 

124. Svensson, B., and Nordstrom, T. Execution of neural network 
algorithms on an array of bit-serial processors. In lOth Interna­
tional Conference on Pattern Recognition, Computer Architec­
tures for Vision and Pattern Recognition, Atlantic City, NJ, 1990, 
Vol. II, pp. 501-505. 

125. Tenorio, M. F., and Lee, W.-T. Self-organizing network for opti­
mum supervised learning. IEEE Trans. Neural Networks 1 (1990). 

126. Tenorio, M. F. d. M. Topology synthesis networks: Self-organiza­
tion of structure and weight adjustment as a learning paradigm. 
Parallel Comput. 14, 3 (1990), 363-380. 

127. Thinking Machines Corporation. Connection Machine, Model 
CM-2 Technical Summary. Version 5.1, TMC, Cambridge, MA, 
1989. 

128. Tomboulian, S. Introduction to a system for implementing neural 
net connections on SIMD architectures. In Neural Information 
Processing Systems, pp. 804-813, Denver, CO, 1987, pp. 804-
813. 

129. Treleaven, P., Pacheco, M., and Vellasco, M. VLSI architectures 
for neural networks. IEEE Micro. (Dec. 1989), 8-27. 

130. Treleaven, P. C. PYGMALION neural network programming en­
vironment. In International Conference on Artificial Neural Net­
works, Helsinki, Finland, 1991, Vol. 1, pp. 569-578. 

131. von Neumann, J. The Computer and the Brain. Yale Univ. Press, 
New Haven, CT, 1958. 

132. Watanabe, T., et al. Neural network simulation on a massively 
parallel cellular array processor: AAP-2. In International Joint 
Conference on Neural Networks, Washington, DC, 1989, Vol. 2, 
pp. 155-161. 

Received August 19, 1991; revised October 1, 1991; accepted October 
18, 1991 

133. Whitby-Stevens, C. Transputers-Past, present, and future." 
IEEE Micro. (Dec. 1990), 16-82. 

134. Willshaw, D. J., Buneman, 0. P., and Longuet-Higgins, H. C. 
Non-holographic associative memory. Nature 222 (1969), 960-
962. 

135. Wilson, S. S. Neural computing on a one dimensional SIMD ar­
ray. In 11th International Joint Conference on Artificial Intelli­
gence, Detroit, MI, 1989, pp. 206-211. 

136. Witbrock, M., and Zagha, M. An implementation of back-propa­
gation learning on GF11, a large SIMD parallel computer. Rep. 
No. CMU-CS-89-208, Computer Science, Carnegie Mellon, 1989. 

137. Yasunaga, M., et al. A wafer scale integration neural network 
utilizing completely digital circuits. In International Joint Confer­
ence on Neural Networks, Washington, DC, 1989, Vol. 2, pp. 
213-217. 

138. Yasunaga, M., et al. Design, fabrication and evaluation of a 5-inch 
wafer scale neural network LSI composed of 576 digital neurons. 
In Proc. International Joint Conference on Neural Networks, San 
Diego, CA, 1990, Vol. 2, pp. 527-535. 

139. Zhang, X., et al. An efficient implementation of the backpropaga­
tion algorithm on the Connection Machine CM-2. In Neural Infor­
mation Processing Systems 2, Denver, CO, 1989, pp. 801-809. 

140. Ahlander, A. and Svensson, B. Floating-point calculations in bit­
serial SIMD computers. Res. Rep. CDv-9104, Halmstad Univer­
sity, Sweden, 1991. 

TOMAS NORDSTROM was born May 19, 1963, in Hiirnosand, Swe­
den. He holds an M.S. degree in computer science and engineeriqg from 
Lulea University of Technology, Sweden. Since 1988 he has been a 
Ph.D. student at the same University, and since 1991 he has held a 
Licentiate degree in computer engineering. His research interests in­
clude parallel architectures and artificial neural networks. 

BERTIL SVENSSON was born February 15, 1948, in Eldsberga, 
Sweden. He received his M.S. degree in electrical engineering in 1970 
and his Ph.D. degree in computer engineering in 1983, both from the 
University of Lund, Sweden, where he also served as a researcher and 
assistant professor. In 1983 he joined Halmstad University College, 
Sweden, as assistant professor and became vice president the same 
year. Until recently he was a professor in computer engineering at 
Lulea University of Technology, Sweden, which he joined in 1989. 
Presently he is a professor in computer engineering at Chalmers Uni­
versity of Technology, Sweden. He is also head of the Centre for Com­
puter Science, a research institution of Halmstad University. He has 
been working in the field of highly parallel SIMD computers and their 
applications, e.g., image processing, since 1978. Currently he is con­
ducting research on the design of modular, reconfigurable, massively 
parallel computers for trainable, embedded systems. 


