European Telecommunications Standards Institute TM6#34

7-11 June 2004

Gent, Belgium

Source:	Adhoc Group:
	Ludger Dreier, KEYMILE
	Michael Horvat, Infineon
	Ragnar Jonsson, Conexant
	Marc Kimpe, Adtran
	Tomas Nordström, FTW
Author:	Ludger Dreier
Title:	Adhoc report on noise calibration
Document Number	WD13 (042W13)
Date:	2004-06-10
Document for:	decision
Agenda item:	SDSL

Abstract: *Text modification proposal for clause 12.2.4.1 (Differential mode noise calibration) for SDSL*

1. Introduction

The Adhoc group agreed, that the current text in clause 12.2.4.1 (Differential mode noise calibration) from SDSL standard is not correct and also contains unclear text.

The text from the current SDSL draft is modified, to make it correct and to improve the clearness.

12.2.4.1 Differential mode noise calibration

The differential mode noise injection is calibrated using the configuration shown in figure 12.3. During calibration the R_x side of the noise injector is terminated by the design impedance R_V (= 135 Ω) and the L_x side of the noise injector is terminated by an impedance Z_{Lx} . The noise levels given in clause 12.5 specify the PSD dissipated in R_V on the R_x side when Z_{Lx} on the L_x side is equal to the calibration impedance Z_{cal} . The impedance Z_{cal} is defined in figure 12.4.

Figure 12.3: Configuration for noise level calibration

Figure 12.4: Calibration impedance Z_{cal}

When calibrating the noise source, the impedance Z_{Lx} on the L_x side of the noise injection circuit shall be equal to the calibration impedance Z_{cal} as given in figure 12.4. For this case the PSD dissipated in the impedance R_v shall be equal to the PSD $P_{xn}(f)$ for the cross talk noise defined in clause 12.5.1.

NOTE: This calibration method is theoretically equivalent to the following: For an arbitrary value of the impedance Z_{Lx} , the PSD dissipated in R_v from a calibrated source is equal to:

 $P_x(f) = G(f, Z_{Lx}) P_{xn}(f).$

For a calibrated noise source this theoretically determined P_X should be identical to the measured PSD dissipated in R_V in the presence of Z_{L_X} .

The impedance dependent correction factor is specified as:

$$G(f, Z_{Lx}) = \left| \frac{\frac{1}{Z_{cal}} + \frac{1}{Z_{inj}} + \frac{1}{R_v}}{\frac{1}{Z_{Lx}} + \frac{1}{Z_{inj}} + \frac{1}{R_v}} \right|^2,$$

where Z_{cal} is the calibration impedance given in figure 12.4, Z_{inj} is the Norton equivalent impedance of the noise injection circuit (see figure 12.2), and $R_v = 135 \Omega$ is the SDSL design impedance. (Editors note: End of Note)

The noise generator gain settings determined during calibration shall be used during performance testing. During performance testing the noise injection circuit will be configured as shown in figure 12.1. Because the loop impedance and the impedance of the modem under test may differ from the impedance's Z_{Lx} and R_v used during calibration, the voltage over the Rx port of the modem may differ from the voltage U_x observed during calibration.