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Abstract

 

Concepts such as modularity and heterogeneity are be-
coming important for a growing number of applications
that use massively parallel computer architectures. Ap-
plication areas which seem to require these concepts ap-
pear in real world computing and action oriented
systems. In many instances the current offerings of high
performance, parallel, general purpose computers are
not well suited to these applications since they do not ad-
dress issues like real-time, time determinism, heteroge-
neous communication, physical size, power consumption,
etc. These issues are important in special systems that
can be viewed as non-conforming to general purpose
markets. The differences in needs will be explored by
looking into two examples of modular and heterogeneous
systems: high performance instrumentation systems and
action oriented systems. We raise some research issues
that need to be resolved in order for modular and hetero-
geneous systems to be used effectively and efficiently.
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1. Introduction

 

The goal of the Frontiers '92 Workshop on Processor Ar-
chitectures was to identify problems that could be ad-
dressed through research, and whose solutions would
promote the availability and use of massively parallel pro-
cessing. In recent years the meaning of "massively parallel
processing" has broadened. In 1986, when the first Fron-
tiers symposium was held, the phrase meant systems with
more than 1000 processing elements, and the architectural
model was definitely SIMD. Now it rightly includes
MIMD architectures, and variations on these two models.
It is less right, however, to call systems with 32 processors

massively parallel, as has been done in some instances. In
this paper our view of architectural models is quite liberal,
encompassing heterogeneous computing environments,
and we definitely are concerned with systems having thou-
sands of processors.

The workshop produced discussion on a broad range of
research issues. We expand on the discussion in selected
areas and identify problems and research issues from those
areas. The nature of this paper, consistent with the work-
shop, is not to report research results. It is to identify re-
search that needs to be done. Our interest is not systems
targeted for general purpose, high performance computing.
It is systems that are in some ways special purpose or ap-
plication specific. The use of "non-conforming" in the title
is meant to indicate systems that differ in substantial ways
from the commercial offerings, or that have unique re-
quirements that are not well met by current offerings. We
begin by defining terms and concepts.

Two important concepts in this paper are modularity
and heterogeneity. By "modular" we mean that a suitable
architecture can be achieved by combining a number of
building blocks (modules). Each module can be a comput-
er in its own right, and in our context each module could
be a homogeneous parallel computer module as well. "Het-
erogeneous" indicates that these modules can be of differ-
ent kinds, that is, they can differ in parallelism, control, I/O
support, and other aspects of their architecture. By having
different kinds of modules it is possible to use a module
that fits a certain part of the application very well, and by
combining modules we get a very good fit between an ap-
plication and the architecture for many applications. An
abstract view of such a system is given in Figure 1, where
there are three modules of different types which communi-
cate with each other and with the external world of periph-
eral devices, instruments, sensors, actuators, etc.
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There are several additional concepts of importance.
The notion that a system is "resource adequate" means that
computational resources, including I/O, have the necessary
power to accomplish the task in an allotted amount of time.
"Embedded" systems are just those in which resources are
closely coupled to other parts of a system, such as sensors
or actuators. Having the capability to configure modular,
heterogeneous systems means that we can achieve embed-
ded systems with resource adequacy, which relieves us
from many of the real-time resource sharing problems.

 

Figure  1. A modular, heterogeneous, parallel system.

 

By studying two areas where modular and heterogeneous
architectures are suggested, specifically instrumentation
systems for large experiments and action oriented systems,
many important architectural aspects will be found. In ad-
dition to the two areas we mention, similar problems and
opportunities can be found in applications originating in
manufacturing, military, medical, environmental, space-
borne, and other endeavors.

In major experiments, such as the new particle colliders
proposed in the U.S. and Europe, data must be acquired
from thousands of physically distributed sensors. Data
rates are high and real-time processing is needed to select
important data and reject the rest. Parallel processing can
be used to advantage on the images of particle tracks and
energies. However, large packaged parallel machines are
not very suitable since processing requirements and the
physical environment makes it necessary to modularize
and embed processing resources in proximity to the sen-
sors. Other characteristics of this environment, and the re-
search issues it raises, are further discussed in Section 2.

In an action oriented system, sensory, motor, and pro-
cessing parts, all possibly utilizing neural network princi-
pals, are seen as an integrated system capable of
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interacting with the environment in real-time. Integrated
should not mean that there is only one block of computa-
tion, instead it should be seen as a number of cooperating
smaller blocks. Each block is carrying out different styles
of signal processing, e.g. pattern recognition, vector quan-
tization, or error correction. Many blocks are potentially
implemented as artificial neural networks (ANN). This
modularization corresponds very well to how the brain is
organized, where real neurons often can be found to be
grouped into larger structures (hundreds of thousands of
neurons). In Section 3 we further explore the idea of action
oriented systems.

 

1.1 Demands placed on systems

 

The intended application areas, and the key concepts, lead
to a number of demands on these massively parallel sys-
tems. The first demand is 

 

real-time

 

 

 

performance

 

. The im-
plication of this demand is that for each task there must
always be enough computational and I/O resources guar-
anteed. Since hardware is often cheap it is natural to use
resource adequacy as a hardware design philosophy. Dif-
ferent tasks require different computing paradigms and
system architectures. As a consequence, the final system
may be heterogeneous. Therefore, we need to find overall
system architectures in which we can still deal with, and
guarantee, the real-time demands.

The second demand is 

 

embedded

 

 

 

implementations

 

.
Miniaturization and low power consumption are necessary
to achieve an embedding of resources. By taking advan-
tage of the advances made in VLSI technology and pack-
aging, e.g. multichip module techniques, the goals of both
miniaturization and low power consumption can be met. In
many cases embedding also leads to distributed systems,
which in turn implies that modularization is required.
Communication needs can be critical. Processing is fre-
quently required to be close to sensors and massively par-
allel I/O becomes an important issue.

The third demand is support for 

 

safety critical

 

 

 

func-
tions

 

 and preparedness for 

 

harsh environments

 

. Fault toler-
ant processor arrays and communication, and/or fault
tolerant computational models are increasingly important
for applications where human safety is involved. Alterna-
tively, fault tolerance is needed when applications require
computing equipment to operate in places where condi-
tions are harsh or repair is difficult.

The fourth demand is the ability to function in dynam-
ic, 

 

real-world environments

 

. Adaptability to changing en-
vironments, and self-organization in relation to input
patterns that have never before been encountered, are nec-
essary functions. An emerging technology in order to
achieve such advanced behavior is the application of neu-
ral network principles. A way to cope with the complexi-
ties involved with advanced systems functioning in natural
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environments is to use a multitude of cooperating ANNs,
organized in layers and hierarchies. Support for this must
then be given in the architecture.

The fifth, and final, demand that we consider here is the
need for 

 

new development methods and tools.

 

 Action-ori-
ented systems, as well as other systems where the environ-
ment can not be fully modeled, must be developed through
interaction. This interaction exists both between the system
designer and the system, and between the system and the
environment. Developing/training the system on-line, us-
ing the real sensors and actuators, must be supported.

 

1.2 Contrasting system design goals

 

Unfortunately the problem areas mentioned above, cou-
pled with the system demands, do not fit very well into the
current offerings of high performance, parallel, general
purpose computers. General purpose computers do not
have the need or luxury to address the range of issues of
the embedded systems we are investigating. As examples
of different design goals and constraints consider:

 

General Purpose           versus Embedded Systems

 

• Maximum performance • Resource adequate
• Throughput oriented • Real-time, time determinism
• Size is of minor concern • Size is important
• Standard languages like HPF • Custom programming
• Normal I/O capabilities • High I/O bandwidth
• Standard data formats • Data transformations

When the first massively parallel machines were devel-
oped each processing element (PE) was very simple, often
bit-serial [4, 16, 18]. Many of the organizations that devel-
oped such machines now have moved towards highly par-
allel computers where each PE is much more powerful [13,
19]. This is partly a result of technology advances, and
partly a reaction to the market pressure towards high maxi-
mum performance and general purpose usage. As a vendor
put it at the workshop: "The market is only interested in
using 32-bit data".

Certainly the grand challenge problems present strong
motivation and incentive to architects and corporations [9].
While all of the problems require very high computational
rates, most do not have real-time requirements. The one
exception is weather forecasting where response time, al-
though real, is not short. All can be handled using hard-
ware configured as large systems in controlled
environments. This has left the field of real-time, embed-
ded, and action-oriented systems without major support.
Many of the design goals of a general purpose highly par-
allel computer do not apply for this class of machines.

This paper suggests that modular, heterogeneous sys-
tems will play an important role in the future use of mas-

sively parallel processing. Sections 2 and 3 give examples
of these systems and describe some unique aspects and en-
vironments of their use. Section 4 emphasizes the research
issues that must be addressed for success with these special
systems that do not conform to current commercial offer-
ings.

 

2. High performance instrumentation 
systems

 

An informative example of massive parallelism in an em-
bedded real-time system occurs in the field of high energy
physics (HEP). Particle colliders like the Superconducting
Super Collider (SSC) in the U.S., or the Large Hadron Col-
lider (LHC) in Europe produce very large quantities of ex-
perimental data in very short time spans. At projected
beam collision intervals of 15 ns, one of the sensing instru-
ments for the new colliders will output data at rates in the
neighborhood of 1013 bytes/s [3]. The problem is to ac-
quire interesting data from the vast quantity produced, and
then to find "events" of interest in the data such as particle
tracks and peaks of energy. These results are further pro-
cessed to determine energy, momentum, time duration, and
other aspects that represent the physics of the events.

Hierarchical and parallel configurations of computers
are used extensively for data acquisition and processing in
the instrumentation systems of colliders [8]. Detectors sur-
round the site of collisions in a physically large volume ex-
tending approximately 10 meters along the beam axis and
2 meters in diameter. In the terminology of the physicists,
the computer structure is in levels of "triggers". For the
LHC the first level trigger acts as a filter by identifying re-
gions of interest within the total set of detectors. The sec-
ond level trigger typically locates particle tracks or peaks
of energy. It thus reduces the data but increases the infor-
mation passed to a third level where the physics of the
events is processed. Our own work is at the second level. A
massively parallel processing array based on the Blitzen
SIMD device [5] is being evaluated for use by CERN in
the LHC [7].

 

2.1 System properties

 

This instrumentation system displays many of the proper-
ties that were described in Section 1. It also provides ex-
amples of research issues that must be addressed to realize
trigger structures or comparable systems. Note that SSC
and LHC are in the early phases of development, with ini-
tial experiments expected in the late 1990's, and thus these
issues are current and ongoing research issues.

If we consider the requirements of HEP instrumenta-
tion, the need for modular and heterogeneous properties
becomes apparent. The system is real-time in that colli-
sions occur at definite time intervals and the interesting
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data for a collision must be gathered and processed, at least
through the second level where it is reduced such that it
can be saved by the third level for off-line physics calcula-
tions. Collisions occur at 15 ns intervals. It is the responsi-
bility of the first level to determine which collisions are
producing potentially interesting data and to pass that re-
duced amount of data to the second level. A tentative goal
for the second level in LHC is to gather and process at a
100 kHz decision frequency. Thus, the real-time process-
ing interval is just 10 

 

µ

 

s. To put this in a computer time
context, the overhead for sending one message between
processors in the Intel Paragon is about 25 

 

µ

 

s.
The system is heterogeneous in that different process-

ing technologies and architectures are used at different lev-
els of the hierarchical arrangement. The general structure
is shown in Figure 2 [6]. Data rates differ dramatically, as
do processing requirements. SIMD parallel processing ar-
rays are being evaluated for the second level, but MIMD is
likely for the third level. Analog devices may be used in
the first level. Within a level, the processors are homoge-
neous, but they must communicate with different types of
processors in the other levels. 

 

Figure  2. Hierarchical trigger structure with heteroge-
neous processors.

 

The system is modular in that processors must be physical-
ly near the source of data to accommodate high bandwidth
transfers from the sensors and the collision frequency.
Since sensors are densely distributed over the 10 m length
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of the instrument and around the circumference, the three
levels in the processing hierarchy are also distributed.
There is a tree structure to the hierarchy with the first level
being the leaves. Thus modules of SIMD arrays can be
used for the second level, and a reduced number of MIMD
modules, or possibly just one, for the third level. Essential-
ly, the system is modular since it is necessary to use piece-
wise coverage of detectors in the collision volume. It is
also massively parallel due to the number of processing el-
ements needed to provide the interfaces and processing for
those detectors.

A further characteristic of the systems we are studying
is that processors are embedded with other electronics and
mechanics. This is clearly the case with instrumentation
for HEP. It is impractical as well as unworkable to think of
running 560,000 wires transferring a cumulative 107

megabytes per second, as expected for the transition radia-
tion detector (TRD) [3], from the instrument site to a room
with a computer system.

The final characteristic for this example has been intro-
duced in the paragraphs above. There is a high bandwidth
I/O requirement. For the TRD example, the major burden
is on input with an expected bandwidth of 107 MB/s into
the first level and 7.7*105 MB/s into the second. In gener-
al, some formatting or transformation of data may be nec-
essary. For this example application it is necessary since
the instruments produce small outputs that can be repre-
sented in a few bits. The bits are gathered into 32-bit words
for transmission over HiPPI channels, then must be trans-
formed by a corner turning process for alignment with pro-
cessing elements.

Figure 3 shows one SIMD module with 1024 PEs as it
may be used for the second level trigger. Several such
modules are needed for the total system. A region of inter-
est is selected by the first level and delivered via a HiPPI
channel to this level. The array of PEs was sized to satisfy
I/O and processing rates, and the region is mapped to the
array. Results of feature extraction algorithms are passed
to the third level. The flow of regions of interest is continu-
ous during an experiment, with a goal of 10 

 

µ

 

s for process-
ing each 16 by 240 pixel region.

All of these characteristics are described to emphasize
the need for application specific solutions rather than com-
mercially available systems. This became apparent in prac-
tice through the process used by CERN to selectively
refine the choices for the final system to be used in the
LHC. In their process, a progressive set of evaluations is
made. They first identified candidate technologies, then
specified benchmark tests. Results were presented at a con-
ference held at CERN, in Geneva Switzerland. A candidate
commercial massively parallel system had effective deci-
sion frequencies that met the desired rate. However, it
achieved the good rate only by accumulating a large num-
ber of events and processing events in parallel. This pro-
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duced long latencies for the earlier events accumulated,
followed by a burst of results for all events. The irregular,
bursty nature of the processing was not acceptable in the
overall design of the instrumentation. The lack of modular-
ity in a fixed commercial system was a detriment in this
case. Other researchers using systems with more modulari-
ty proposed adequate resources, still using a high degree of
parallelism, that more closely matched the problem size. A
single event could be processed using parallelism, but
events were not accumulated into parallel data sets. Re-
sults were produced at the uniform time interval of input
data arrival for the events.

 

2.2 Design problems

 

Application specific systems like the second level trigger
described above frequently require the solution of many
interesting problems. There are research issues and re-
search approaches to the problem solutions. We briefly
identify some issues that relate to this example, then defer
to Section 4 for the main discussion of research direction
for these non-conforming massively parallel computers.

An interesting high level design problem is mapping
the application, expressed as algorithms and data proper-
ties, into an architecture. The problem exists from two
points of view: selecting the processing resources and con-
figuring those resources. The richness of devices and archi-
tectural arrangements of those devices into solutions

provides many parameters that can be exploited during a
design phase. Tools and techniques to assist in the mapping
could be very useful.

Algorithms and data rates for high energy physics
strongly imply a heterogeneous, hierarchical structure. Re-
search is needed in methods for partitioning tasks and
communicating through the hierarchy. Fault tolerance and
reliability issues must be addressed since experiments are
expensive and the system is complex.

Real-time computing in HEP has the constraint of very
short response or computation times. Providing real-time
for a problem with response times in the microseconds is
different from that for one with milliseconds of time. For-
tunately, the problem does not require response to a wide
set of irregular inputs driven by interrupts. It is real-time
from the point of view of needing to complete a fixed rou-
tine and perform related I/O within a very short time span.
This is well-suited to the resource adequacy notion, assum-
ing sufficiently adequate devices are available.

In the next section we give a second example of appli-
cations where standard parallel processing systems are not
suitable. It contrasts in several ways to the instrumentation
example above, but it also has similarities and presents
several of the same research needs.

                      

 

Figure  3. Mapping detector data to a processing array in the second level trigger.
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3. Action oriented systems

 

An action oriented system (AOS) is used as the second ex-
ample of an application area where modular and heteroge-
nous computers will be needed. Here these aspects are
combined with embeddedness, real-time responses, high I/
O and internal communication bandwidth, etc., which gen-
erates a need for non-conforming massively parallel pro-
cessing systems.

The concept of action oriented systems (or computing)
has been developed by Michael Arbib for many years and
is often called "sixth generation computers" by Arbib him-
self [1]. That particular term has become more appropriate
since the introduction of the MITI real world computing
(RWC) program in Japan [10], which replaces the much
debated fifth generation project. This is because many of
the goals of the RWC program are focused on expanding
the knowledge in the field of action oriented systems!

Many of the ideas of action oriented systems are drawn
from the organization and function of the human brain.
The key-concepts of action oriented computing are:

- 

 

Cooperative computing

 

Using the brain as a model, we find a number of coop-
erating areas instead of a large homogeneous information
processing facility. Each area is, of course, highly parallel
and can for now be approximated as homogeneous in
structure. This makes it very natural to suggest a heteroge-
neous modular computer for simulating action oriented
systems. As each module communicates with many other
modules in a massively parallel way, this structure puts
strong demands on intermodule communication.

- 

 

Perceptual robotics

 

An AOS generates its knowledge about the surround-
ing world by exploration. The system interacts with the en-
vironment through a process of Perception -> Decision ->
Action. The perception can be sensors for images, speech,
tactile information, etc. As these sensors are massive, inex-
act, and many times incomplete, the system must be highly
parallel, robust and fault tolerant. And as real-world infor-
mation is volatile, the system must work in real-time.

- 

 

Learning

 

In contrast to the computers of today which need exact
instructions (rules or programs) to function, an action ori-
ented system will base much of its actions on learning. The
system should be able to self-organize the information it
gains from exploration of the world, and integrate informa-
tion from many different sources to create an internal mod-
el of the world. From past experiences incorporated in the
internal model, it should be able to make decisions on what
actions are appropriate. Much of this learning will be im-
plemented as artificial neural networks, but certainly any
universal or domain knowledge can and should be incorpo-
rated in advance (like the laws of Newton).

In Section 1.1 most of the demands of an AOS were
summarized. But besides issues mentioned there, the close
interaction with sensors and actuators will need attention.
This closeness makes it desirable to have the computations
take place in the sensors/actuators in a massively parallel
fashion. Another issue is development methods for appli-
cations using AOSs. As learning instead of programming is
emphasized, the possibility to develop/train the system on-
line or in-the-loop (using the real sensors and actuators)
seems desirable. Still the system must support ways to
handle timing constraints in a natural way. Future develop-
ment environments for AOS should probably be graphical-
ly based, using domain specific symbols (hierarchically),
and time attenuations [14, 17]

After looking at one early example of an AOS in Sec-
tion 3.1, we will discuss suitable architectures for AOSs in
Section 3.2. Following that, we find that not only will AOS
influence research in non-conforming computers, but also
the research in the field of artificial neural networks.

 

3.1 Application  areas  for  action  oriented 
systems

 

The areas where action oriented systems first will be intro-
duced are in manufacturing, robotics, autonomous vehi-
cles, and the control field in general. As these areas already
are action oriented and modular (but not necessarily ANN
based) it is not hard to realize that ANN based AOSs are
interesting. Often the problems are complex enough to
need the complexity of multiple ANNs.

One recent example of an action oriented system is
COLUMBUS [20], an autonomous mobile robot devel-
oped at CMU. This robot's single goal is to maximize its
information of the initially unknown environment. The
project has so far concentrated on the algorithms to be used
and not so much on the computer architecture to run the al-
gorithms. COLUMBUS uses a mixture of different algo-
rithms (as could be expected of an AOS). There are two
separate ANNs for sensor interpretation and confidence es-
timations. This information is then used to enhance an ex-
ploration map at a higher level. By means of a modified
dynamic programming algorithm this map is used to de-
cide on an action. The decision is based on where there are
unexplored areas and where there are obstacles. 

Although it appears that the implementors of COLUM-
BUS have not concentrated on the architecture, they have
produced a modular and distributed implementation, using
several SUN SPARC workstations in parallel. As the pro-
cessing power is not embedded (on the robot) a transmis-
sion of sensor and control information by a radio link to
and from the robot is needed. By dropping some sensor in-
formation, and modifying the dynamic programming algo-
rithm used for planning, it has been possible to reach close
to real-time performance (each action taking from 3 to 12
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seconds). Even if the authors indicate that they are satisfied
with this performance, we feel that a different kind of ar-
chitecture could help to speed up parts of the system by ad-
dressing the problem of embeddedness, I/O performance,
and parallelism used.

 

3.2 Architectures for action oriented 
systems

 

The best architecture for an AOS is still an open research
question. An architecture we suggested in [17] views the
system as a number of 

 

nodes

 

 that communicate through
logical 

 

channels

 

. The real-time concept is supported by de-
manding time-determinism for all parts in the system. By
time-determinism we mean that it should always be possi-
ble to determine the execution or cycle time for each com-
putation and communication. To accomplish time
determinism we suggest that 

 

local real-time databases

 

 be-
tween the nodes and the channels be introduced. The three
main concepts of this architecture are described below:

 

Nodes

 

 can be either an I/O interface or a computational
entity, or function as a combination. Each node can differ
in functionality, and communicate with other nodes via the
logical channels. The computation is cyclic [11, 12] and
time-deterministic (no interrupts). We expect many of the
nodes to be implemented as SIMD computers.

 

Channels

 

 also need to adhere to time-determinism and
at the same time give as high communication bandwidth as
possible to the communicating nodes. We expect fiber-op-
tics to be used, together with time division multiplexing. If
this type of multiplexing is not enough, frequency multi-
plexing may be considered in addition.

 

Local real-time databases

 

 are needed to store the
shared data from other nodes and are updated cyclically
from the channels. The data stored in the database reflects
the best available information for its node at a certain time.

Figure 4 shows an implementation of this architectural
concept. Four Operating Nodes, some incorporating mas-
sively parallel I/O and each with a processor array (PE ar-
ray) connected to a local real-time database (LRTDB), are
shown. The Operating Nodes are cyclically controlled by
control units (CU). Channels between the nodes are estab-
lished using time and/or frequency multiplexing on the
shared fiber-optic medium. 

The figure also shows a Development Node which is con-
nected both to the network of operating Nodes and to a Lo-
cal Area Network (LAN) of workstations (WS) running the
development system. The Development Node may be a PE
array (as shown) but may also be another type of computer,
but with the same interface to the shared medium. The
LAN can be removed without affecting the running sys-
tem.

 

Figure  4. An architecture implementing a modular, heterogenous, parallel system for action oriented computing.
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A more detailed description of this architecture concept
can be found in [14, 17]. To test these ideas and explore
possibilities in the design of the nodes, an experimental
system has been built using field-programmable logic de-
vices. Experience from this project, called REMAP [2],
will lead to a VLSI design of modules that can be the base
for building non-conforming computers, especially in the
areas of AOSs. The architecture is intended to be open for
the emerging technologies like analog ANN VLSI chips
that can do much of the computations close the sensors at
extremely high speed.

 

3.3 AOS Influence on ANN research

 

During the last ten years a formal explosion of artificial
neural network research has lead to a number of different
models. Most of the models are naturally parallel and can
easily be implemented on highly parallel computers. In a
study it has been found that for most ANNs a highly paral-
lel SIMD computer with simple communication (broad-
cast) is enough [15]. But when it comes to a number of
cooperating ANN modules relatively few experiments
have been done, and there is no hardware around with the
capacity to do real-time simulation of multi-ANN systems
big enough to be interesting. Many aspects of multi-ANN
are unclear at this time, leading to a need for flexibility in
the systems that implement them, to cope with changes in
models etc.

Some aspects of ANNs in AOS that need to be ad-
dressed are influenced by the real-time aspects. New ANN
models need to be developed since real-time creates a need
for models that can learn continuously, which is not the
case for one of the most popular ANN models (back-prop-
agation learning). And as learning methods using relax-
ation or structural adaptation are not time-deterministic, it
will be hard to use such models for real-time AOS as well.
Real-time also means that some types of parallelism in the
ANN models [15] can not be used. That is, the training ex-
ample and training session parallelism are batch oriented
and simply are not viable for continuous learning. (We
should use the parallelism in weights and nodes instead).
Other aspects of ANNs in AOS that need more research are
those of planning and creating useful internal world mod-
els.

 

4. Research issues

 

Very early in our workshop session it became apparent that
we could not discuss processor architecture in isolation
from the other three workshop topics. They are interrelat-
ed. Thus some of the topics below stray from narrow pro-
cessor issues. Even so, the broader topics all have an
impact on processors and must be considered in arriving at
processor architecture decisions. Our topics do not include

VLSI design issues, even though those also have an impact
on processor architecture.

In previous sections we have given examples of modu-
lar and heterogenous computers. In each example, general
purpose highly parallel computers were not capable of
solving the problems within certain performance con-
straints. Instead we found that a special purpose heteroge-
nous architecture using homogeneous modules was
necessary to generate more effective solutions. But before
such special systems can become readily available as solu-
tions for a broad class of problems, there are a number of
research issues that have to be addressed. Our discussion is
representative rather than exhaustive. We highlight some
specific issues at the system and processor levels, and then
indicate other areas with open research issues.

 

4.1 Configurable systems

 

Systems issues are the global concerns that cannot be re-
solved by considering one PE in isolation, yet they affect
each PE's architecture. The systems of interest in this paper
are by definition different from those which can be pro-
duced in quantity in a commercial manufacturing setting.
They are special in some ways and have unique properties.
The challenge is to provide the tools, techniques, and
methodologies that can lower the cost and improve the
quality of systems configured for special applications.
From the starting point of a problem specification or an al-
gorithm, coupled with acceptance criteria, how does one
arrive at a good system that satisfies the criteria.

An important aspect is that, in the kind of systems we
discuss, the modules need not be as much general purpose
as processor arrays for "traditional" massively parallel
computers. We accept that some modules very strictly fol-
low the SIMD paradigm to be very efficient on some types
of computations (and worse on others). For more irregular
computations, other paradigms (SPMD, MIMD,...) are
used in the modules. That is, we accept heterogeneity in
the system. Assuming that our problem is sufficiently large
that parallelism becomes advantageous, several more spe-
cific issues can be identified:
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•

 

How is the overall problem partitioned into modu-
lar parts?

 

•

 

Which style of parallelism (SIMD, MIMD, combi-
nation) is appropriate? Can we know from problem
parameters?

 

•

 

Which devices, preferably commercially available,
provide the best fit with the problem? 

 

•

 

How do we size a system to provide resource ade-
quacy?

 

•

 

Does an architecture scale from prototype to full
size?

 

•

 

Can we logically rearrange resources due to lasting
changes in the environment or the task to achieve
more generality?

 

•

 

How can we specify benchmarks such that they
provide the desired insight to design alternatives?

 

•

 

Can custom configurations be developed quickly
for evaluation?

 

•

 

How is the evaluation process controlled, given the
richness of possibilities with parallel architectures?

 

4.2 Processor architectures

 

Individual processor issues are more directly related to the
processing power and flexibility of each processor. An ar-
chitectural decision affecting a processor will co-influence
system decisions such as array size. Thus, to do a good
processor design, one can not look only at maximum MIPS
or FLOPS, but must look at the whole system's perfor-
mance and the environment in which the system is sup-
posed to operate. Several specific issues are:

 

•

 

What functional capability is given at each proces-
sor?

 

•

 

What application oriented features for artificial neu-
ral networks, associative processing, signal pro-
cessing, etc. are needed?

 

•

 

What local control features should be implemented
for SIMD processors?

 

•

 

How is massively parallel I/O incorporated?

 

•

 

How is memory capacity and access balanced with
processing resources?

 

•

 

What processing granularity is best, from bit-serial
processors to full 64-bit widths?

 

•

 

What interprocessor communication granularity is
best?

 

•

 

In order to achieve maximum performance per
watt, what trade-off should be made between clock
speed and number of PEs per chip?

 

4.3 Communications and I/O

 

As seen in Figure 1, there are communication paths be-
tween the system and the external environment, and be-
tween modules of the system. If individual modules are
parallel processors there is also intra-module communica-
tion. Since interconnection networks is the subject area of
one of the other workshops, we mention here only the as-
pects that seem especially important. In general, the prob-
lems are all concerned with high bandwidth movement of
data between different types of modules with different I/O
mechanisms and structures. In many cases, processing is
required to be close to sensors or actuators, which may
deal with analog signals. Efficient methods for data format
conversion and corner turning are needed. Interfaces for
HiPPI and other high speed channels must be developed
for continuous modes of operation.

 

4.4 Fault Tolerance

 

Systems to be used in safety critical and/or harsh environ-
ments need to be fault tolerant. Many new possibilities of
fault tolerance have emerged with ANN models. This, to-
gether with a multi-modular structure of ANN, raises many
research issues on how to combine the fault tolerance in
ANN structures with fault tolerance in the hardware struc-
ture. 

 

•

 

How do we retain the inherent fault-tolerance char-
acteristics of ANNs when we map them onto a pro-
cessor array?

 

•

 

What are the methods to distribute fault detection
and correction over a large number of modules?

 

•

 

How can one reason about correctness in time as
well as values, in an action oriented framework?

Redundancy and reconfigurability can be used to increase
chip yield as well as provide reliability. This becomes in-
creasingly important as VLSI technology allows more pro-
cessors per chip and die size increases. Research is needed
to investigate reconfiguration methods for various inter-
connection schemes.

 

4.5 Software development paradigms

 

As mentioned in Section 3 new development paradigms
are needed for non-conforming massively parallel comput-
ers. This is especially apparent for AOSs where an on-line
or in-the-loop application development method is needed.
Some key-concepts for new paradigms will be: graphical
interface, data visualization, data parallelism, incremental
development on a running system, and software compo-
nent reuse. All of these concepts need more research, espe-
cially concerning their use in systems such as we are
describing.
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4.6 Artificial neural networks

 

There are still many challenges for ANN researchers be-
fore large modular ANN (AOS) can be built and its func-
tion understood. Some of the research issues are stated in
Section 3, and many more can be found in the article by
Kahaner describing the MITI's real world computing pro-
gram [10], many of the research issues regarding multi
ANNs are listed. For example, the aspects of how the AOS
should handle information, its representations, storing and
recalling information, integration of multiple information
sources, etc. Other research aspects are concerned with the
ways learning and self-organization are best carried out.
The results of this research have great influence on both
system and module architecture of the computing platform

 

5. Final comments

 

Identifying research topics has the problem of knowing
where to start, and then, where to stop. Given the general
area of processor architectures for massively parallel sys-
tems, we have chosen to emphasize systems which are
unique or special in some way. We refer to these systems
as non-conforming since they differ from commercial of-
ferings. The advantage is that they provide a rich environ-
ment, one with many degrees of freedom, and perhaps
some difficult constraints, for architectural and related re-
search. Two quite different system examples were present-
ed. They were intended to show that massive parallelism
can be used in various application areas and to show the
need for further research to achieve the desired end results. 
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