
Supporting efficient channel-based communication
in a mesh network-on-chip

Sebastian Raase, Süleyman Savas, Zain Ul-Abdin and Tomas Nordström
Centre for Research on Embedded Systems, Halmstad University

{sebastian.raase, suleyman.savas, zain-ul-abdin, tomas.nordstrom}@hh.se

ABSTRACT
In the dataflow programming model, data flows through uni-
directional communication channels. In order to maximize
performance in highly parallel systems, it is necessary to pro-
vide a low-overhead communication mechanism. This pro-
posal for dedicated hardware support implementing channel-
based communication does not require changes to the core
mesh architecture or the instruction set, is relatively cheap
to implement in hardware and aims to reduce the over-
head for channel-based communication substantially com-
pared with a software-only solution. The estimated speedup
for token submission exceeds 43x.

1. INTRODUCTION
Exploiting parallelism is becoming increasingly important

for many different, extensively studied reasons. As Amdahl’s
law shows, even a relatively modest amount of serial exe-
cution reduces the achieveable speedup through large-scale
parallelization immensely. Thus, for maximum performance,
especially on highly parallel systems, loss of parallel execu-
tion needs to be avoided.

Applications developed using the dataflow programming
model are inherently parallel, making them a suitable choice
for parallel architectures. In this model, independent pro-
cesses (actors) communicate through channels, which are im-
plemented as FIFOs. When a process is divided into smaller
processes to be executed in parallel, these processes usually
need to communicate. Communication may even represent a
significant share of the processing time, limiting application
performance. In order to avoid or minimize the overhead of
communication, it should either be kept as short as possible
or overlapped with computation.

While some parallel architectures, e.g. Ambric [1], sup-
port circuit-switched channels in hardware, most architec-
tures use a packet-switched message-passing network-on-chip
with different topologies. However, these messages are often
not exposed to the user and hidden behind a shared-memory
or other abstraction.

The Epiphany [2] manycore architecture provides a two-
dimensional packet-switched mesh network-on-chip imple-
menting a shared address space. To support dataflow appli-
cations on this architecture, we have implemented a com-
munications library [3], which provides an abstraction of
communication channels. Even though this level of abstrac-
tion is beneficial in terms of productivity, the overhead of
a software-only solution turned out to be prohibitive, espe-
cially for small messages.

Comparing our software solution to our experiences with

the Ambric architecture, we believe that hardware-based
support for communication channels will reduce the over-
head and allow for substantial performance gains in dataflow
applications. Therefore, we propose a simple hardware ex-
tension to efficiently support channel-based communication
between cores on a manycore architecture.

The rest of this paper is organized as follows. Section 2
discusses related works. Section 3 discusses the challenges
we considered in our design, which is described in section 4.
Section 5 concludes the work.

2. RELATED WORKS
The Alewife multiprocessor [4] supported both commu-

nication channels and shared memory accesses on top of
their communication network to efficiently support appli-
cations preferring either abstraction. However, they require
the CPU to actively receive each message, which becomes
infeasible if packets become small and frequent.

HAQu (Hardware-Accelerated Queuing) [5] provides one-
to-one communication channels by adding a hardware unit
to each core, but also ties in rather deeply with the memory
subsystem. In this system, software and hardware queues
are compatible and distributed across cores. The CAF (Core-
to-core Communication Acceleration Framework) [6] cen-
tralizes queue management in a NoC-level hardware unit
(QMD), providing multi-producer, multi-consumer queues.
Both approaches focus on the cache hierarchy and, in con-
trast to our design, require changes to the instruction set
architecture. The Pronto message passing system [7] is de-
signed for manycore architectures. Using DMA, this system
reduces the end-to-end latency, but, unlike our approach,
requires a network round-trip per message to handle buffer
management and synchronization.

In this work, we propose a simple hardware peripheral,
which provides virtual point-to-point communication chan-
nels on top of an existing message-based communication in-
frastructure. Each of these channels uses a pre-allocated
message buffer and can be used with very low overhead by
the application software to transmit tokens between cores.
Our design is suitable for manycore architectures providing
distributed memories with limited or no cache coherence.

3. CHALLENGES
We have identified three major challenges, which must be

considered in order to provide useful support for channel-
based communication on top of a message-based infrastruc-
ture. These are blockwise processing of data, speed differ-
ences between producers and consumers, and network la-



tency. This section covers them in detail. We assume that
the network is reliable and does neither corrupt or drop mes-
sage. In addition, it must not reorder messages from a single
source to a single destination.

3.1 Blockwise Processing
The majority of dataflow applications require actors to

collect multiple input tokens, possibly from different sources,
before producing output tokens. The number of tokens pro-
duced or consumed by an actor may also vary wildly over
short time intervals, even if the average throughput is con-
stant. These bursts of activity put transient pressure on
the network, which may influence the latency of unrelated
messages. More importantly, feedback loops between such
actors may cause deadlocks if the maximum number of to-
kens in the loop is below a specific threshold. This becomes
more apparent if some actors engage in vector processing,
as vectors may require multiple messages to be transmitted
between actors.

By buffering the channels, these deadlocks are avoided.
Additionally, the transient network pressure from bursts of
activity is reduced, affecting latency and throughput in-
stead. In theoretical approaches, communication channels
are often assumed to be unbounded, but since real systems
do not support infinite memory, buffer sizes must be finite.

We believe that there is no universally optimal buffer size.
Too small buffers may lead to deadlocks whereas too large
buffers can cause buffer-bloat and consequently increased or
fluctuating latency (jitter) and reduced throughput.

3.2 Speed Differences
In dataflow applications, producers and consumers should

generally run at the same speed. System architects try to
approximate this by identifying bottlenecks and distributing
resources appropriately. However, real parity can usually
not be achieved; some throughput difference remains, with
either the producer or the consumer being faster than its
counterpart. Large speed differences also occur if one of the
communication partners fails or, more likely, is currently
preempted. While transient speed differences can be caught
adequately through buffering, permanent speed differences
eventually lead to deadlock or data loss.

If a producer produces tokens faster than the consumer
can consume them, all intermediate buffers will fill up. As
soon as they are full, the next token that is sent will ei-
ther need to overwrite a previously received token, stall, or
be dropped, depending on the underlying communication
and buffering policies. The first two options lead to data
loss, which is generally unacceptable due to the high cost
of recovering whereas stalling causes back pressure, which
may interfere with unrelated communication and carries the
risk of deadlock. Systems employing these communication
strategies either have to provide additional means to avoid
deadlocks [4] or ignore the problem by requiring the con-
sumer to receive packets at all times [8], both of which we
consider undesirable solutions.

We believe that the only real solution to this problem is
preventing the producer to submit tokens if it cannot guar-
antee their delivery. This prevents the producer from over-
running the communication channel in the first place, but
requires extra communication between consumer and pro-
ducer. As an example, the Pronto message passing system
[7] uses a handshaking approach, which involves a network

round-trip for each message.
If the consumer is faster than the producer, it will need to

spend some fraction of its time waiting, which only wastes
clock cycles and energy. While low-power idle states and
dynamic re-clocking strategies may be beneficial in those
cases, they are outside the scope of this paper.

3.3 Network Latency
In order to prevent a producer from overrunning its com-

munication channel, it needs to know when to stop produc-
ing tokens. This information needs to flow from the con-
sumer to the producer through the network in the opposite
direction of the data stream, introducing a feedback loop. In
traditional computer architectures employing strong memory-
ordering guarantees, where communication latency is not
exposed to the application, this is not a correctness, but a
performance problem. In distributed systems however, pro-
viding such guarantees may restrict scalability, leading to
the use of weakened memory-ordering models between pro-
cessing elements or abandoning the shared memory model
altogether. In such systems, network latency introduces in-
consistent knowledge about the state of the communication
channel while it is in use.

The producer needs to stop producing as soon as the com-
munication buffer is full, even though this information might
not have reached it yet. It could be informed before the
buffer gets full, so that tokens arriving late can still be stored
in the buffer. However, this threshold depends on the net-
work latency, which may depend on unpredictable factors,
and misjudgment might lead to data loss. Alternatively,
the producer can consider buffer spaces as reserved unless it
knows for sure that they are available. Then, data loss can-
not occur. However, in this case the producer needs to know
the total buffer size in advance and needs to be informed
whenever buffer space becomes available. This method re-
quires additional buffer space (depending on latency) to pre-
vent unreasonable overblocking and introduces shared state
between producer and consumer. Consequently, whenever
channels are established or dissolved, care must be taken to
avoid race conditions.

4. DESIGN
In this chapter, we describe our proposed hardware sup-

port for communication channels. Since the core concepts
stem from our Epiphany communications library, we intro-
duce it first, and then describe the structure and behavior
of source and destination ports in detail.

4.1 Communications Library for Epiphany
We have implemented a channel-based communications li-

brary for the Epiphany manycore architecture [3], which is
also suitable for other shared address-space architectures.
The Epiphany architecture employs a 2D mesh network-on-
chip with XY routing. The mesh uses a weak memory model,
so that read-after-write and write-after-write accesses to dif-
ferent non-local destinations happen in a non-deterministic
order. While writes are fast asynchronous fire-and-forget
operations, the architecture implements remote reads as a
slow read request answered by a write [2], stalling the core.

Our library provides communication channels, which are
unidirectional FIFOs connecting a single pair of source and
destination ports and carry fixed-size messages (tokens) only.
Each channel supports five access functions, which are listed



in Table 1, and can be operated in both blocking and non-
blocking modes.

Type Function Blocking Description

Source
write yes Send tokens

space no
Returns number of tokens
writable without blocking

Dest.
read yes Read and consume tokens
peek no Read tokens

level no
Return number of tokens
readable without blocking

Table 1: Access Functions in e-commlib

Associated with each channel is a fixed-size ring buffer,
which is allocated in the destination core’s local memory.
It is used concurrently by both the source and destination
cores. Synchronization is done through read and write point-
ers, which are updated atomically. To avoid remote reads,
both pointers are cached within both cores.

We have found that especially for small token sizes, the
overhead of maintaining the pointers becomes prohibitive.
On the other hand, supporting per-channel buffer sizes and
keeping the buffers in fast local RAM allows balancing ap-
plication memory, network latency and deadlock avoidance
depending on the application’s needs.

4.2 Overview
We propose dedicated hardware units, which handle buffer

and rate management. These hardware units (source and
destination ports) form the endpoints of a virtual, unidi-
rectional communications channel. The channel’s buffer is
not located in dedicated hardware registers, but uses the
destination core’s memory. Buffer management is done ex-
clusively by the destination port and tokens cannot be larger
than a single network transaction; larger messages must be
transmitted as multiple tokens.

Figure 1 provides an overview of the structure of source
and destination ports, their connections and the information
exchanged between them. When a channel is established,
both the source and destination ports need to be informed
about the other end and the buffer size. Then, for each
transmitted token, an acknowledgement is sent back to the
sender as soon as the corresponding token has been removed
from the destination buffer.

DATA

DEST

ACK

SIZE

SPACE

Source Port

DATA-IN

SRC

BASE

SIZE

RD-OFF

Destination Port

WR-OFF

DATA-OUT

message transfer;
triggered by write to DATA

acknowledgement;
triggered by read
from DATA-OUT

values must match

point to remote port

Figure 1: Overview of ports.

Both token and acknowledgement transfers are atomic by
design, avoiding the need for additional synchronization. By

counting the number of transmitted, but not yet acknowl-
edged tokens, the source port implements rate-limiting to
prevent buffer overruns.

Ports are a limited resource in each core and can not be
reasonably shared between channels. Our research suggests
that many dataflow actors only require few high-speed chan-
nels and that a software implementation for additional chan-
nels is sufficient.

Applications are free to use both the port infrastructure
and any other means of communication offered by the sys-
tem simultaneously to ensure full software compatibility and
highest performance.

4.3 Detailed Description
Each source port is a simple peripheral unit consisting of

at least the five registers DATA, DEST, ACK, SIZE and SPACE,
as shown in figure 1. Additional registers may be added for
additional functionality, such as interrupt-driven operation.

Writing to the DATA register triggers a transmission of a
token through the communication channel. As long as the
SPACE register contains a zero-value, a write should stall. Al-
ternatively, write attempts may fail immediately and raise
an exception. The source port is configured by writing to
the DEST and SIZE registers. The SPACE register contains an
approximation of the available space in the channel buffer
and is never written to explicitly. Writing the SIZE register
also sets the SPACE register to the same value. Addition-
ally, it is decremented by the data width whenever the DATA

register is written, and incremented whenever the ACK regis-
ter is written. When this register contains a zero-value, the
channel buffer is full and writing to the channel is currently
not allowed. The ACK register is never accessed by software;
this register is remotely written to by the destination port
to update the local SPACE register.

Each destination port is a dedicated peripheral unit, man-
aging accesses to the channel buffer from both the local core
(reading) and the source port (writing). Figure 2 shows how
four of the at least seven registers are used to manage the
channel buffer, which is located in local memory.

DATA-IN

SRC

BASE

SIZE

RD-OFF

Destination Port

WR-OFF

DATA-OUT

Memory

message
buffer

0x0000

non-consumed
messages

Figure 2: Destination Port and Channel Buffer

The channel buffer is designed as a ring buffer and the
BASE and SIZE registers contain its location in local memory.
The two offset registers RD-OFF and WR-OFF contain the read
and write offset from the base address, and are updated
automatically when the buffer is accessed by the port. The
SRC register references the source port for this channel.

A token arrives as a remote write request to the DATA-

IN register, where it is written to the local memory address



(BASE+ WR-OFF), after which the WR-OFF register is updated
by the hardware. To consume a token from the buffer, the
local core reads from the DATA-OUT register, which results
in a memory read from the address (BASE + RD-OFF), an
update to the RD-OFF register, and the transmission of an
acknowledgement message to the source port’s ACK register.
If the channel buffer is empty, reading the DATA-OUT register
should stall. Alternatively, the read attempt may fail imme-
diately and raise an exception. The DATA-IN and DATA-OUT

registers may be aliased.
The RD-OFF and WR-OFF registers are never written explic-

itly. Instead, they are set automatically whenever the SIZE

register is written. However, the RD-OFF register should be
readable in order to implement a non-consuming read (peek)
operation, if application software requires such functionality.

A communications channel is initialized by writing the
source and destination port addresses to the DEST and SRC

registers, respectively. At the destination, a contiguous mem-
ory buffer must be allocated and its base address written to
the BASE register. The configuration is then finalized by
writing the channel’s buffer size in bytes to the SIZE reg-
ister, which will update additional registers as well. Care
must be taken to avoid using the channel before both ends
are fully configured, since doing so may lead to inconsistent
shared state and data loss or loss of buffer space.

Since accesses to the DATA, DATA-IN and DATA-OUT are
atomic, the data width of these registers decides the maxi-
mum token size. However, shorter accesses may be possible
if the underlying communication network and memory sub-
system support them. While it should also be possible to
use different access widths even for a single message (such as
submitting a message as a word and receive it as two half-
words), this is subject to endianness issues and may lead to
unaligned memory accesses. Thus, implementations are free
to put additional restrictions to such accesses.

Since the DATA and DATA-OUT registers are memory-mapped,
the communication channel can be used for DMA transfers
if the DMA engine supports a constant source and/or desti-
nation address for the whole transfer and can be stalled.

5. DISCUSSION AND CONCLUSION
Compared to shared-memory approaches often taken by

manycore architectures, a channel-based communication in-
terface maps well to the actor model and seems beneficial
for dataflow applications. We have implemented a generic
software library on the Epiphany platform providing such
an interface on top of the existing network-on-chip.

The time to transmit a token between two cores can be
broken down into a token submission time tS , a token trans-
mission time tT and a token retrieval time tR, where tT
depends on the underlying communication hardware and is
not affected by our proposal. Table 2 shows the per-token
fraction of tS in cycles for 64-bit tokens. For the software
implementations, this time is further divided into a constant
overhead for buffer management (163 cycles) and the actual
data submission, which uses the memcpy library function to
be generic [3]. Replacing this function call with a fixed-size
direct copy provides a 1.9x speedup, but the overall overhead
is still significant, considering the token size.

Our proposed hardware implementation reduces the token
submission time for small token sizes substantially. We have
measured the real overhead on the Epiphany. In the ideal
case, submission of a 64-bit token requires a single store in-

case time speedup
SW (memcpy) 163 + 183 cycles (base) 1.0x
SW (direct) 163 + 20 cycles 1.9x
HW (looped) 8 cycles 43.3x
HW (unrolled) 3 cycles 115.3x
HW (ideal) 1 cycle 346.0x

Table 2: Per-token submission times (64-bit tokens)

struction, which can take as little as a single clock cycle. In
a more realistic setting, where a message may consist of mul-
tiple tokens and imperfect scheduling incurs pipeline stalls,
per-token submission times of three clock cycles are feasi-
ble when using loop unrolling, or eight clock cycles without,
resulting in substantial speedups compared to the software
solution. We also measured the initial startup overhead to
be approximately 15 clock cycles.

We have proposed a hardware peripheral for channel-based
communication suitable for distributed manycore architec-
tures. In contrast to other works, our approach does not
require changes to the instruction set architecture or the
CPU core itself. The expected performance gain is expected
to be substantial, with preliminary measurements showing
speedups in excess of 43x using realistic assumptions.

6. REFERENCES
[1] M. Butts, B. Budlong, P. Wasson, and E. White,

“Reconfigurable work farms on a massively parallel
processor array,” in 16th International Symposium on
Field-Programmable Custom Computing Machines,
2008.

[2] A. Olofsson, T. Nordström, and Z. Ul-Abdin,
“Kickstarting High-performance Energy-efficient
Manycore Architectures with Epiphany,” in 48th
Asilomar Conference on Signals, Systems and
Computers, 2014.

[3] S. Raase, “A Dataflow Communications Library for
Adapteva’s Epiphany,” Tech. Rep. diva2:895406,
Halmstad University, 2015.

[4] J. Kubiatowicz and A. Agarwal, “Anatomy of a
Message in the Alewife Multiprocessor,” in 7th
international conference on Supercomputing, 1993.

[5] S. Lee, D. Tiwari, Y. Solihin, and J. Tuck, “HAQu:
Hardware-accelerated queueing for fine-grained
threading on a chip multiprocessor,” in 17th
International Symposium on High Performance
Computer Architecture, 2011.

[6] Y. Wang, R. Wang, A. Herdrich, J. Tsai, and
Y. Solihin, “CAF: Core to Core Communication
Acceleration Framework,” in 25th International
Conference on Parallel Architectures and Compilation,
2016.

[7] S. S. Kumar, M. T. A. Djie, and R. Van Leuken, “Low
overhead message passing for high performance
many-core processors,” in First International
Symposium on Computing and Networking, 2013.

[8] T. Von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser, “Active messages: a mechanism for integrated
communication and computation,” in ACM SIGARCH
Computer Architecture News, 1992.


