
Design and Implementation of the
REMAP3 Software Reconfigurable

SIMD Parallel Computer

Lars Bengtsson+ , Arne Linde++, Tomas Nordström++, Bertil Svensson+,
Mikael Taveniku++, Anders Åhlander+

+ @ Centre for Computer Science, Halmstad University, Sweden
++ @ Division of Computer Science and Engineering,

Luleå University of Technology, Sweden

ABSTRACT

Highly parallel processor arrays will be useful components in ad-
vanced industrial real-time systems in the future. Especially in ap-
plications where the interaction with the environment utilizes
visual, auditory, or tactile sensory units and advanced motor units
massive parallelism is required. The possibility of making trainable
systems by the use of artificial neural network (ANN) models is ap-
pealing in this context.

In REMAP3, the Reconfigurable, Embedded, Massively Parallel
Processor Project, the focus is on the design of processor array mod-
ules and the mapping of ANN computations on these modules. The
paper describes the structure of the first prototype which utilizes
dynamically programmable logic cell arrays to allow architectural
experimentation with the modules. Examples of processing element
architectures are given. Low-level programming is described.

Presented at DSA -92, the Fourth Swedish Workshop on Computer System Architecture, Linköping, Sweden 13-15 January 1992

2

1 THE REMAP3 PROJECT

REMAP3, the Reconfigurable, Embedded, Massively Parallel Processor
Project, is a joint effort between the Centre for Computer Science at
Halmstad University and the Division of Computer Science and Engi-
neering of Luleå University of Technology. It is based on the conviction
that computing systems for tomorrow’s advanced interactive applica-
tions, incorporating visual, auditory, or tactile sensory units and
advanced motor units, will require massively parallel processing capa-
bilities and new, parallel I/O interfaces. Special attention in the project
is given to the possibility of executing massively parallel learning algo-
rithms, making the total system trainable and giving it an ability to
show adaptive behaviour.

With this point of view, massively parallel processing is now entering
the realm of embedded systems, which, in turn, implies that considera-
tions like application tuned architectures, special purpose I/O process-
ing, and real-time demands are placed in focus.

An architecture based on the paradigms of massively parallel SIMD
computing, application specific, I/O close processing, and trained
behaviour may look like the one shown in Figure 1. It would execute
programs in a cyclic fashion, with data constantly flowing between the
modules.

Figure 1 An embedded, massively parallel, modular system.

The REMAP3 project aims at obtaining a massively parallel computer
architecture put together by modules in a way which allows the archi-
tecture to be adjusted to a specific application. This suggests that a cer-
tain architecture may be”compiled”, thus a modification of each
module and adjustments of the connections between the modules are
enforced.

Within the project, a series of studies has been performed [Svensson,
1989], [Svensson and Nordström, 1990], [Nordström, 1991a, 1991b],
[Nordström and Svensson, 1992] concerning the execution of Artificial

SIMD
Array

SIMD
Array

SIMD
Array

SIMD
Array SIMD

Array

SIMD
Array

SIMD
Array

Actu-
ator

ator
Actu-

Se
ns

or
s

Se
ns

or
s

Environ-

E
nv

ir
on

m
en

t

ment

L Bengtsson, A Linde, T Nordström, B Svensson, M Taveniku, A Åhlander

Design and Implementation of the REMAP3 Software Reconfigurable SIMD Parallel Computer 3

Neural Network (ANN) algorithms on highly parallel SIMD comput-
ers, with special emphasis on architectures based on bit-serial process-
ing elements (PEs).

The results show that SIMD is the best suited parallel processing para-
digmot today for artificial neural networks and that the demands on
the inter-PE communication can be met with surprisingly simple
means. Arrays of bit-serial PEs can be very efficiently used for ANN
computations. Since multiplication is the single most important opera-
tion in these computations, there is much to gain in the bit-serial archi-
tecture if support for fast multiplication is added. This will be
demonstrated in the PE design for REMAP3 shown below.

REMAP3 is an experimental project. A sequence of gradually evolved
prototypes is being built, starting with a small, software configurable
PE array module, implemented as a Master’s thesis project [Linde and
Taveniku, 1991]. With only slight modifications in PE array architec-
ture, but with a new high-performance control unit, the second proto-
type is now being built, almost full-scale in PE number, but far from
miniaturized enough for embedded systems.

The early prototypes rely on dynamically programmable logic cell
arrays (FPGAs). Therefore, different variations of the prototypes can
be realized by reprogramming. The FPGAs are designed for high
speed. Thus, the speed and the logical size of the prototype systems
suffice for new, demanding applications, but the physical size does not
allow embedded multi-module systems to be built from the proto-
types.

Based on the experiences from the FPGA based prototype modules, a
proposal for a VLSI implemented module will be made, as well as for a
system architecture for a heterogeneous system of modules.

Switching to the paradigm of trainable systems and modular, mas-
sively parallel computing, tightly coupled to sensors and actuators,
will most certainly call for new application development methods. In
connection with REMAP3, ideas on a programming environment for
the development of trainable integrated systems are being formulated
[Wiberg, 1991].

2 THE REMAP3 SIMD COMPUTER PROTOTYPE

The logical structure of the parallel computer is shown in Figure 2. The
machine is a SIMD (Single Instruction Multiple Data) organized archi-
tecture meaning that a large number of Processing Elements (PE’s) are
working in parallel with different data, but all doing the same thing on
this data. It is the task of the Control Unit to broadcast the microinstruc-
tion (control and address) plus the system clock to all PEs in the sys-
tem. The micro instructions are very low-level such as ADD,
SUBTRACT, MOVE, BROADCAST etc. in each clock cycle. Thus, the
Control Unit has complete control of all actions in the system. This
means that the machine is synchronizedon very low level; therefore no
synchronization problems occur when different actions need to be
done in a specific order.

4

The PE’s forms an array of processors which today is linearly con-
nected. Each PE may communicate with two of its nearest neighbours
(NORTH,SOUTH). Also, broadcast is possible where one PE may send
information to all PE’s in the system. This feature is very useful in neu-
ral network execution. Each PE has its own memory (256 k * 1 bit) and
the mode of operation is bit-serial meaning that each operation (micro-
instruction) operates on one or two bits of data only. I/O is handled
with a corner-turner section which transforms the byte parallel data
from the outside world to the bit serial world of the array.

The Reconfigurability of the PE-array has been accomplished by using
FPGA’s (Field Programmable Gate Arrays) that are downloaded with con-
figuration data whenever the PEs need to be reconfigured. Different
configurations may thus be used for different applications and algo-
rithms. One configuration may suit a specific algorithm in image
processing, another may suit some special neural network execution
and a third may be used for a signal processing application. Detailed
research on the perfect combination of architecture/algorithm is thus
possible with this prototype.

At the top, a Master Processor controls it all. All I/O, FPGA configura-
tion downloading and instruction initiation are handled by this part. In
the implementation, a conventional microprocessor (the 68000) has
been used for this purpose. A link to a Host computer (Workstation or
PC) enables the use of convenient environment for software develop-
ment for the parallel array (microprograms in low- and high-level
descriptions).

Figure 2 Logical structure of the REMAP3 SIMD computer

3 THE CONTROL UNIT (CU)

The principal task of the Control Unit [Bengtsson,1991] is to generate
microinstructions and the global system clock to the processor array.
Each microinstruction consists of an address part (max. 32 bits) and a

Control Unit

Master ProcessorHost connection

I/O

Memory PE’sI/O & Adder tree

(Workstation or PC)

L Bengtsson, A Linde, T Nordström, B Svensson, M Taveniku, A Åhlander

Design and Implementation of the REMAP3 Software Reconfigurable SIMD Parallel Computer 5

control part (max. 32 bits). The address is generated by the Address Proc-
essor part and the control field by the Controller part. This Controller is
a microprogrammed one-stage pipeline running at max. 10 MHz, gen-
erating a new microinstruction every 100 nanoseconds. The microword
is 96 bits wide, 32 bits controlling the array and 64 bits controlling the
CU itself.

The CU interfaces to the Master Processor through the MP Interface.
The VME bus standard with 16-bit transfers is used for the connections
of all cards in the system.

Figure 3 The Control Unit

The Controller part sequences the microprogram execution by means
of a AM29C331 sequencer chip. This can be thought of as an advanced
program counter, including a stack for subroutine calls, a counter reg-
ister for looping, a breakpoint register and more. The principal output
of this chip is a 16-bit address delivered to the microprogram memory.

The microprogram memory (the Writable Control Store - WCS) is an 8k
deep and 96 bits wide static CMOS storage. Microprograms are down-
loaded from the Master Processor to this memory under complete soft-
ware control. The 96 bits of output is fed directly to the pipeline-register,
which holds the current microinstruction while the next one is being
calculated in the pipeline.

The Address Processor is composed of three major parts – the Register
File, the ALU and the Address Register. The first one contains 64 regis-
ters with 32 bits each, constructed from two AM29C334 chips. This
part is actually shared with the MP Interface in such a way that the MP
writes in the file, and the Address Processor reads from it. This also
facilitates parameter passing between the MP and the parallel compu-
ter.

The ALU is the AM29C332 chip, capable of full 32 bit arithmetic and
logical operations.

The Address Register serves the purpose of a pipeline-register in the
data-path. It holds the current address while the next one is being cal-
culated by the Address Processor.

An important feature of the address processor is its ability to do a read-
modify-write operation in one clock cycle (100 ns). This is important for
the sake of performance, especially since the PE’s work bit-serially.

MP Interface Clock

Address
Processor Controller

PE instr.PE address (32 bits)

To/From MP

(32 bits)

System clock

6

Figure 4 The Controller and the Address Processor

4 THE PROCESSOR ARRAY

In the project, two steps are taken in the development of the final com-
plete machine. In the first step, the alpha version is implemented con-
sisting of the Control Unit Card, the Master Processor Card and the
LUPUS Processor Card. LUPUS has been designed and implemented
as a Master’s thesis project at Luleå University of Technology [Linde
and Taveniku, 1991]. The structure of it is shown in Figure 5.

The FPGA’s on this card hold 12 PEs of the type depicted in Figure 6.
Each PE has a static storage of 256k * 1 bit. The PEs are linearly con-
nected (nearest neighbour communication) as well as connected to a
common broadcast bus. This facilitates “one-to-all” transmission, use-
ful e.g. in neural network execution. I/O is channelled through a cor-
ner-turner (CT) section (also implemented with FPGA’s), transforming
the byte parallel data from the outside world to the bit-serial world of
the array.

The LUPUS processor card is capable of running at 3 MHz.

The second step to the final processor array (the beta version) will uti-
lize the latest FPGA family from XILINX – the X4000. These circuits
will permit more PE´s to be implemented in each chip, giving at least
32 PE´s on each card. Eight such cards will give 256 PE´s in total.

Sequencer

WCS

pipeline register address register

ALU

Register File

PE instruction PE address

The Controller The Address Processor

L Bengtsson, A Linde, T Nordström, B Svensson, M Taveniku, A Åhlander

Design and Implementation of the REMAP3 Software Reconfigurable SIMD Parallel Computer 7

Figure 5 The LUPUS processor card.

4.1 Processing Element

As shown in Figure 6 the PE is divided into a number of sections. This
is reflected in the -code as different fields which are defined as
InMux,CarryMux,RMux,TagCtl and Multiplier. The C (carry) flipflop
is mostly a carry register but it can also be used as a temporary storage,
for example in compare and search instructions. The T (Tag) register is
used as an activation control register but it can also be used as a tem-
porary storage. The R/W or T control determine whether data is to be
written to memory or not, this is controlled by the tag control section
of the micro word

.

Figure 6 The LUPUS PE

X3020
6 pcs. SRAM 256k*1

6 pcs. SRAM 256k*1

X3090
6 PE’sCT

I/O Memory IN + PE

X3090
6 PE’s

X3020

CT

µ

0
1
N
S

M in

M

U

X

R

In

And(In,r)

Or(In,R)

Xor(In,T)

Add(In,R,C)

Xor(In,R)

R

Multiplier

Multiplier

C

T

M
U
X

M
U
X

1

C
C(Add)
In

To Memory

To R/W

memory

T Control

M
U
X

on

8

4.2 The Corner Turner

The Corner Turner (CT) performs the transformation between a con-
ventional byte oriented I/O format and the internal bit-slice format.
This is obtained by a two dimensional shift operation as shown in Fig-
ure 7. In the vertical shift mode MP shifts in and out data at the top and
bottom, respectively. During this time the PEs can perform computa-
tions in the PE memories. Transfer between CT and the PE memories is
made by a horizontal shift, i.e. one bit-slice is transferred each cycle.
Because of their very simple structure, the corner turners are capable of
running much faster than the PE’s (speed up to 40 MHz) thus enabling
fast input and output to the PEs.

From Master Processor

To Master Processor

Figure 7 Corner Turner principle

4.3 Xilinx Programmable Gate Arrays

The structure of the Xilinx circuits is shown in Figure 8. The chip con-
sists of a number of Combinatorial logic blocks (CLBs), some input-
output blocks (IOBs) and an interconnection network (ICN). These cir-
cuits are user programmable, thus enabling the CLBs, IOBs and ICN to
be programmed by the user. This is accomplished at power up by a
reprogramming sequence that loads the on-chip RAM with the config-
uration. The RAM can be loaded from an external memory or from a
microprocessor, the latter is used for LUPUS. It takes about 200ms to
reprogram the circuits.

The IOBs connect the I/O-pads to the ICN; these blocks can be config-
ured as input, output or bidirectional blocks. The CLBs are configura-
ble logic blocks consisting of one 32 bit lockup table for logic functions
and two flipflops for state storage, these blocks are only connected to
the ICN.

The ICN connects the different blocks in the chip, it consists of four
kinds of connections: short-range connections between neighbouring
blocks, medium-range connections connecting blocks on slightly larger

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

L Bengtsson, A Linde, T Nordström, B Svensson, M Taveniku, A Åhlander

Fr
om

 P
E

 M
em

or
ie

s

T
o

PE
 M

em
or

ie
s

Design and Implementation of the REMAP3 Software Reconfigurable SIMD Parallel Computer 9

distances, long-lines connecting whole rows and columns together,
and a global nets for clock and reset signals broadcast throughout the
whole chip.

Figure 8 Xilinx XC3000 overview

 Figure 9 shows the structure of the IOBs and CLBs.

I/O Block

CLB

Switching
 matrix

Connections

interconnect
metal segments

CLB

Switching
matrix

Grid of general

10

Figure 9 XC3000 I/O Block and Combinatorial Logic Block

5 PROGRAMMING

Program development is (or will be) supported at various levels.
Microprograms, i.e. the programs in the WCS addressed by the
sequencer, is the lowest level of program on a REMAP3 computer. As a
first step we have implemented a low-level language that we call
MASS, described in section 5.1. A future higher-level language for
microprogramming is planned, and is outlined in section 5.2 below.

PAD

VCC
Passive
Pull Up

SLEW
RATE

Three-
state
Invert

=1

Output
Select

D Q=1

R

 Out
Inverter

Q D

R (Global Reset)

.t

.o

.ok

.j

.q

.ik

XC3000 IOB

Program-controlled memory cells

D Q

RD

D Q

RD

Combinatorial
function

F

G
QY

QX

.Y

.X

.di

.a

.b

.c

.d

.e

(Global Reset)

XC3000 CLB

.k

L Bengtsson, A Linde, T Nordström, B Svensson, M Taveniku, A Åhlander

Design and Implementation of the REMAP3 Software Reconfigurable SIMD Parallel Computer 11

Above the microprogramming level, i.e. in the Master Processor, there
will be a data-parallel language like C* [TMC, 1990] or Parallaxis
[Bräunl, 1989] and we are also considering using application specific
languages like Pygmalion [Treleaven, 1991] for artificial neural net-
works programming.

5.1 Low-level micro-programming. The MASS microcode
assembler.

The MASS Microcode ASSembler is a general purpose tool for writing
microprograms for microprogrammed hardware. A ‘FIELD’ statement
in the source code informs the assembler about an interval of bits in
the microword that should be assigned a specific name, and what
mnemonic (or numeric) codes that this field can have. A leading aster-
isk (‘*‘) on one mnemonic defines the default value for this field, if
other than the first one. Numeric values are assigned to each mne-
monic by the assembler starting with zero (if no initializer is explicitly
given) at the left-most position and then by increments (by one) to the
right in the list.

The ‘INCLUDE’ statement is used to specify a file which should be
included in the source text flow. Commonly used statements could in
this way be conveniently re-used. The Control Unit has many fields in
the microword that are never changed. All of these are gathered in the
file “CU.fields”.

The ‘SIZE’ statement informs the MASS assembler about the width of
the microwords in bits.

Currently, MASS runs on SUN SPARC stations under the UNIX oper-
ating system.

Example. The following example shows how MASS is used to write a
microroutine which adds two vectors A and B and puts the result back
in vector A. The start addresses (pointing to the least significant bit-
slice) of the two vectors are stored in Register File registers R0 and R1
respectively. The fieldlength (number of bits per vectorelement) is
stored in register R2. The PE structural design used in this example can
be seen in Figure 6.

#SIZE 96

#INCLUDE “CU.fields”

#FIELD PE_INMUX 64 3 { IN_ZERO, IN_ONE, IN_CARRY, IN_UP,
IN_SH, IN_BR, IN_MEM, IN_DOWN }

#FIELD PE_FUNCMUX 67 3 { R_R, R_AND, R_OR, R_XOR, R_ADD,
R_XOR_T, R_MULT, R_IN }

#FIELD PE_CARRYMUX 70 2 { C_C, C_ADD, C_IN, C_XX }

#FIELD PE_TAGOPS 72 2 { TTT, TFT, *TTU, TFU }

#FIELD PE_MULT 74 3 {M_HLT, M_SH, M_MULT, M_MULT_SH,
M_CLR, M_SH_CLR, M_XX, M_YY }

12

#FIELD PE_RW 77 1 { WRITE, *READ }

/* Decrement address to A. Clear Carry-bits and R-bits in all PE’s */

 A_ADDR= R0, APMNEM = DECR_A, W_ADDR = R0, W_ENABLE =
ENABLE, PE_INMUX= IN_ZERO, PE_FUNCMUX=R_IN,
PE_CARRYMUX=C_IN;

/* Loop for number of bits (transfer R2 to counter register in sequencer) */

/* Address vector B */

SEQMNEM = FOR_D, DBUSSEL = REGFILE, A_ADDR = R2, B_ADDR =
R1, APMNEM = ZERO_EXTB;

/* Increment address to vector A, address vector A*/

/* Move B-bit to the R flip/flop */

A_ADDR=R0, APMNEM = INCR_A, W_ADDR = R0, W_ENABLE =
ENABLE, PE_INMUX= IN_MEM, PE_FUNCMUX=R_IN;

/* Address vector A */

/* Add one bit with carry */

A_ADDR = R0, APMNEM = ZERO_EXTA, PE_INMUX=IN_MEM,
PE_FUNCMUX=R_ADD, PE_CARRYMUX=C_ADD;

/* Store result in vector A */

/* Increment address to vector B, address vector B */

/*Jump back in the loop if counter register <> 1 */

A_ADDR = R1, APMNEM = INCR_A, W_ADDR = R1, W_ENABLE =
ENABLE, SEQMNEM = DJMP_S, MEM_CNTRL = WRITE;

/* Done, signal to the master */

STATDATA = DONE;

STATCLOCK = HIGH, STATDATA = DONE;

Soon there will also be a MACRO facility in MASS. This will greatly
improve the readability of the source code, and will make the writing
of MASS code easier.

5.2 High level micro-programming

Following the ideas of Tanenbaum [Tanenbaum, 1990] and the Lucas
Microprogramming language [Fernström et.al, 1986] we intend to
develop a structured microcode assembly language (SMAL) for
REMAP3. Tanenbaum’s microcode language is inspired by high-level
languages like Pascal and is based on assignments and goto’s. For our

L Bengtsson, A Linde, T Nordström, B Svensson, M Taveniku, A Åhlander

Design and Implementation of the REMAP3 Software Reconfigurable SIMD Parallel Computer 13

purpose we will also add program flow control structures like looping,
if-then-else, while-do, and support for higher-language interface by a
module concept.

SMAL will also try to hide the pipelining which is visible in MASS. It
will also hide the register assignments necessary when arguments are
passed from the Master Processor to the Control Unit.

To exemplify, the add_vec function implemented in MASS above
could be written as:

void add_vec(int len, PE_address A, PE_address B)

{

 C = 0; /* Clear carry */

 loop(len);/* Loops over the field */

 {

 R = M[A];/* Get a bit from A */

 R = R + M[B++];/* Add a B bit

 (with carry) */

 M[A++] = R;/* Store Result in A*/

 }

}

Here we have assumed that C and R are two of the flip-flops in the
PEs, and M[address] is corresponds to a memory position in the PE
array.

6 IMPLEMENTATION

The implementation of the computer prototype is divided into two
steps. In the first step the alpha version is developed. This version con-
sists of the Control Unit, the Master Processor and the LUPUS proces-
sor card. This version incorporates 12 PEs of the kind shown in Figure
6 and has been successfully tested.

The Control Unit is made of 65 integrated circuits, connected by wire-
wrapping. It occupies one double-height extended Europe card with
the dimensions 233,5 * 220 mm.

The Master Processor is a commercial product - the PEP-VSBC2 card
containing the 68000 processor and 216 kByte of memory. It occupies
one single-height extended Europe card.

The LUPUS processor card is made of 53 integrated circuits, connected
by wire-wrapping. It occupies one double-height extended Europe
card with the dimensions 233,5 * 220 mm.

These 3 cards are housed in a 19” rack with a double contact VME-bus
backplane. A power supply unit and a fan is also used. Figure 9 below
show the complete arrangement.

14

Figure 10 The 19” rack configuration – the alpha version

In the next step the beta version will be implemented. This will include
the Control Unit (same as in the alpha version), the Master Processor
and a new processor card. The processor card will be built with a new
FPGA family, the XILINX X4000. This will result in a final implementa-
tion with at least 32 PEs per processor card, making the complete com-
puter consist of at least 256 PEs.

In the beta version, the Master Processor will be extended by an Ether-
net interface with the TCP/IPprotocol on-board.

Figure 11 System overview, Beta version

LU
P

U
S

C
on

tr
ol

 U
ni

t

M
as

te
r

Pr
.

 Front view.

power fan

M
as

te
r

Pr
.

C
on

tr
ol

 U
ni

t

LU
P

U
S

VME-bus backplane

Top view.

VME -bus

MP

CU PE
card
1

VME-bus

co
nt

ro
l &

 a
dd

re
ss

es
 &

 c
lo

ck

I/
O

 +
 F

P
G

A
 c

on
fig

.

PE
card

2

PE
card

8

Host connection

TCP/IP or RS232

L Bengtsson, A Linde, T Nordström, B Svensson, M Taveniku, A Åhlander

Design and Implementation of the REMAP3 Software Reconfigurable SIMD Parallel Computer 15

7 APPLICATION SPECIFIC VARIATIONS

7.1 PE architectures for Neural Network Processing

The detailed studies of artificial neural network computations have
resulted in a proposal for a PE that is well suited for this area. The
design is depicted in Figure 9. Important features are the bit-serial
multiplier and the broadcast connection. Notably, no other inter-PE
connections are needed.

The PE is quite general purpose, and the hypothesis is that this is a
useful PE design also in several other application areas.

As shown in [Nordström, 1991a] the incorporation of a counter instead
of the multiplier in the PE design may pay off well when implement-
ing the Sparse Distributed Memory (SDM) neural network model. A
256 PE REMAP3 realization with counters is found to run SDM at a
speed 10 - 30 times faster than that of an 8k PE Connection Machine
CM-2 [Rogers, 1988]. Already without counters (then the PEs become
extremely simple) a 256 PE REMAP3 outperforms a 32 times larger
CM-2 by a factor of 4 - 10. One explanation of this is the more devel-
oped Control Unit of REMAP3.

Figure 12 A PE for neural network processing

8 CONCLUSION

We have described the first steps in an experimental research project
aiming at the design and implementation of highly parallel SIMD ar-
ray modules from which embedded, massively parallel systems can be
built. The early prototypes use programmable hardware to realize the
PEs, and examples of PE designs implementable on the hardware have
been given. A later step, which is now started, is the design of the in-
ter-module communication. This should support the combination of
two or more modules to one SIMD array as well as combinations of
modules to form MIMSIMD (Multiple Instruction streams, Multiple
SIMD arrays) architectures as shown in Figure 1. Flexibility of the I/O

C

R

X

T
TT

Br.C

M

ALU

>1

1

C

1

M

 Multiplier
TagMask

a

b And
Or
Xor
Add 1

0

Br.C
X

b

1
0

16

systems to allow adaptation to the application data format is an impor-
tant design criterion. The beta version will allow experimentation also
in this respect.

Programming on the microprogramming level is important in the de-
sign and evaluation of the architectures. Different activities (debug-
ging, instruction set development, algorithm develop-ment, etc.)
require different levels of sophistication in the software tools, while
still on the microprogramming level. The MASS and SMAL languages
described illustrate this.

9 ACKNOWLEDGEMENT

We thank Michael Unnebäck who made a detailed study on the use of
the new X4000 FPGA family in his Master’s thesis project at Luleå Uni-
versity of Technology.

The REMAP3 project is partly financed by NUTEK, the Swedish Na-
tional Board for Technical Development, under contracts no 9001583
and 9001585.

10 REFERENCES

Bengtsson L. “A control unit for bit-serial SIMD processor arrays”,
Technical Report 9102, Centre for Computer Science, Halmstad Uni-
versity, Halmstad, Sweden.

Bengtsson L. “MASS - A low-level Microprogram ASSembler, specifi-
cation”, Technical Report 9103, Centre for Computer Science, Halm-
stad University, Halmstad, Sweden.

Bräunl, T. “Structured SIMD programming in Parallaxis.” Structured
Programming. Vol. 10(3): pp. 121-132, 1989.

Fernström, C., I. Kruzela and B. Svensson. LUCAS Associative Array
Processor – Design, Programming and Application Studies, Vol. 216 of Lec-
ture Notes in Computer Science, Springer Verlag, Berlin, 1986.

Linde A. and Taveniku M. “LUPUS – a reconfigurable prototype for a
modular, massively parallel, SIMD computing system”, Master’s the-
sis 1991:028E, Division of Computer Engineering, Luleå University of
Technology, January 1991. (In Swedish).

Nordström T. “Sparse distributed memory simulation on REMAP3”,
Research Report No. TULEA 1991:16), Luleå University of Technology,
Luleå, Sweden, 1991(a).

Nordström T. “Designing parallel computers for self organizing
maps”, Research Report No. TULEA 1991:17), Luleå University of
Technology, Luleå, Sweden, 1991(b).

Nordström T. and Svensson B. “Using and designing massively paral-
lel computers for artificial neural networks”, To appear in Journal of
Parallel and Distributed Computing, March 1992.

L Bengtsson, A Linde, T Nordström, B Svensson, M Taveniku, A Åhlander

Design and Implementation of the REMAP3 Software Reconfigurable SIMD Parallel Computer 17

Rogers D. “Kanerva’s sparse distributed memory: an associative mem-
ory algorithm well-suited to the connection machine.” Technical
Report No. 88.32, RIACS, NASA Ames Research Center, 1988.

Svensson B. “Parallel implementation of multi layer feedforward net-
works with supervised learning by back-propagation”, CDv Research
Report 8902, Centre for Computer Science, Halmstad University,
Halmstad, Sweden, June 1989.[1989a]

Svensson B. and Nordström T. “Execution of neural network algo-
rithms on an array of bit-serial processors”, Proc. of the 10th Interna-
tional Conference on Pattern Recognition: Computer Architectures for Vision
and Pattern Recognition, Atlantic City, New Jersey, June 16-21, 1990.

Tanenbaum, A. Structured Computer Organization, Third Edition, Pren-
tice-Hall, 1990

TMC. “C* Programming Guide”, Version 6.0, Thinking Machines Cor-
poration, 1990.

Treleaven, P. C. “PYGMALION neural network programming environ-
ment.” In International Conference on Artificial Neural Networks, Vol. 1,
pp. 569-578, Helsinki, Finland, 1991.

Wiberg P. “Architectures for trainable mechatronical systems, and their
programming”, Manuscript, Centre for Computer Science, Halmstad
University, Halmstad, Sweden, 1991.

